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CONNECTIONS FOR NON-HOLONOMIC 3-WEBS 

ALENA VANZUROVA 

ABSTRACT. A {P, B}-structure determines on a manifold a four-tuple of distributions 
which may be non-integrable in general, and can be regarded as a generalization of 
a web. On a manifold endowed with a {P, B}-structure, we will find all connections 
which parallelize distributions of the structure. We will re-prove a formula for the 
so called canonical connection which is important especially in the integrable case. 
We also investigate integrability of the structure, and deduce some conditions for the 
torsion tensor of the canonical connection equivalent to integrability. 

All manifolds, bundles, vector and tensor fields under consideration are supposed 
to be smooth (of the class C°°). M will denote a manifold, TM its tangent bundle, 
X(D) denote the set of all vector fields of the distribution D (i. e. on the subbundle 
D -> M of TM-+M). 

1. NON-HOLONOMIC THREE-WEBS 

1.1. {P, .B}-structures. A rf-web of dimension (codimension) n on a manifold 
M consists of d foliations on M of the same dimension (codimension) n which are in 
general position (in the case of different dimensions it is difficult to give a nice theory). 
The most important case arise when d = n + 1 and dimension of the manifold M is 
a multiple of n. Here we will restrict ourselves to the case n = 2. For the purpose of 
tensor theory of webs it is more convenient to consider a web as a family of integrable 
distributions (in general position) tangent to given foliations. More generally, we can 
introduce a non-holonomic d-web as a family of d distributions in general position 
which are not necessarily integrable. We can give an alternative tensor definition for 
non-holonomic 3-webs. 

Definition 1.1. A {P^B}-structure [Ng 3, Ng 1], or a non-holonomic three-web 
on a smooth manifold M is a triple (P>B,M) where P and B are smooth (1,1)-
tensor fields on M such that P is a projector, (P - I)P = 0, B is involutory, i.e. 
(B -I)(B + I) = 0, and PB + BP = B. 
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A {P, H}-structure determines on M a quadruple of n-dimensional distributions 
arising as invariant subspaces corresponding to characteristic roots of the endomor-
phisms P and B 

(1) Di=ker(/-P), D2=kerP, D3 = kei(B-I), D4 = ker(£ -I- 7), 

and a {P, 5}-manifold endowed with this {P, .B}-structure has even dimension 2n. It 
can be verified that the above distributions (and also each triple of them) are in ge­
neral position. So they define a non-holonomic 4-web1 (D\, D2, Dz, D4) of dimension 
n, and each triple of them forms a non-holonomic 3-subweb. 

As morphisms of {P, H}-manifolds, we take local diffeomorphisms f : M —> Mf of 
base manifolds which commute with both tensor fields2, TfoP = PfoTf, TfoB = 
B' oTf. {P,H}-manifolds together with their morphisms form a category. Each 
fibre TXM, x € M is equipped with a structure of a {P, P}-vector space [Ng 3], and 
morphisms induce linear {P, £}-maps between fibres. 

A frame is adapted with respect to a {P, #}-structure if it is of the form 

{Ki,..., Xn» BXi,..., BXn}. 

The set of all adapted frames forms a GL(n, Restructure on M. On the other hand, 
it can be verified that the existence of a G-structure on a 2n-dimensional manifold 
with G = GL(n> R) is equivalent to the existence of a {P, 5}-structure on M. 

Definition 1.2. We say that a {P, B}-structure is integrable if the distributions D\, 
D2, Dz are integrable. 

Example 1.1. Any ordered 3-web (i. e. an ordered triple of smooth foliations in 
general position) on a manifold determines a {P, H}-structure the distributions D\, 
D2, Dz of which are integrable [Ng 1, V 2]. Vice versa, any integrable {P,P}-
structure defines an ordered 3-web formed by integral foliations of the corresponding 
distributions D\> D2y Dz (some authors prefer D4 to D3). The remaining distribution 
D4 (or .D3, respectively) is not necessarily integrable. 

Since we will be interested at most in 3-webs we will pay more attention to the 
first triple (.Di,D2>--̂ 3) of distributions of the structure. 

1.2. Projectors of a {P, P}-structure. For simplicity, let us denote the com­
plementary projector I — P by P. It can be verified that 

PP = PP = PBP = PBP = 0, 
(2) . 

PB = HP, BP = PH, P = HPP, P = BPB. 

1Note that this 4-web is of a very special type since D4 is not arbitrary but an invariant subspace 
of B. 

2Here T denotes the tangent functor. 
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As in (1), let A , i = 1,2,3,4 denote distributions of the given structure and let 
P/ be the corresponding projectors with kernel D{ and image Dj. Then P2 = P, 

Pi = P, 
P3 = P(I-H), P* = (L + B)P, 

P2
3 = P(/-B), P3

2 = P(/+£), 

P4
3 = - i ( £ - / ) , P* = \(B + I), 

B = B\2 = P31 - P3 = P3
2 - P3, fl* = P£ - P/, * = 3,4, t , j = 1,2 etc. Since 

.B|D3 = I and .B|D4 = -I the distributions (constituted by invariant subspaces of 
B) are characterized by 

D3 = {BPX + PX;Xe X(TM)} = {BPX + PK; X G S(TAf)}, 

D4 = {-9PX - PK; X e X(TM)} = {BPX -PX;Xe X(TM)}. 

decomposition with 

2. PARALLELIZING CONNECTIONS FOR {P , £}-STRUCTURES 

2.1. Connections preserving distributions of the structure. 

Definice 2.1. Under a parallelizing connection for a given {P, i?}-structure on M 
we understand an affine connection V (the corresponding covariant derivation will 
be denoted by the same symbol) on M with respect to which the distribution .D», 
i = 1,2,3 of the structure are parallel, i.e. for i = 1,2,3 

(4) VxYeX(Di) foT3l\XeX(TM), YeX(D{). 

It can be verified the following: 

Proposition 2.1. Let V be a linear connexion on a {P^B}-manifold. Then 

Di and D2 are parallel to V «=-> VP = 0 <$=> V(J - P) = 0, 

_D3 is parallel <=> VH = 0 <=> D4 is parallel. 

Corollary. A connection V paralelizes a {P, B}- structure if and only if 

VP = VB = 0. 

Proposition 2.2. A linear connection V paralelizes a {P, B}-structure on M if and 
only if for all X,Y eX(TM) 

V x V = P VxPF + HP Vx(HPY), 

VXY = BPVx(BPY) + PVXPY. 
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Proof. Let a connection V on M satisfy the formulas (5). An evaluation shows that 
VXPY = PVXPY = PVXY, VXBPY = BPVXPY = BPVX and VXBPY = 
PVX BPY = BPVXY. We obtain VP = VH = 0. On the other hand, let V be a 
parallelizing connection. Then 

VXY = VX(PY + FY) = PVXPY + PBVXBPY. 

Similarly for the second formula in (5). 

• 
By a standard evaluation, we can prove the following. 

Proposition 2.3. Let T be an arbitrary linear connection on a {P, H}- manifold 
M. Then each of the formulas 

V x y = PTXPY + BPTX(BPY), 
(6) . 

VXY = BPTX(BPY) + PTXPY 

defines a linear connection on M which is parallelizing for the given structure. 

Using equalities (5) we can re-prove the well-known fact that for any {P, B}-
structure there exists a unique linear connection V [Ng 1, Va 3] which satisfies the 
following conditions: 

VP = VB = 0, T(PX, FY) = 0 

where T(X,Y) = VXY - VyK - [X,Y] (P and B are covariantly constant with 
respect to V, and each couple of "homogeneous" vectors X G kerP, Y G ker P at the 
same point is conjugated with respect to the torsion tensor). It is called the canonical 
connection of a {P, J5}-structure. The canonical connection of the integrable {P, S } -
structure is called the Chern connection of the corresponding ordered 3-web. 

Let there exist a conneciton V satisfying the above conditions. Then the equalities 
PT(PX, PY) = 0 and PT(PX, PY) = 0 yield the formulas 

PVPxY = P[PX, PY], PVPXY = BPVPXBPY = P[PX, PY]. 

We substutite BY instead of Y and apply B on both sides of the equalities to obtain 

PVPxY = BP[PX, BPY], PVPXY = BP[PX, BPY]. 

Together, we obtain the formula 

(7) V x y = BP[PX, BPY] + BP[PX, BPY] + P[PX, PY] + P[PX, PY]. 

On the other hand, given (l,l)-tensor fields P, P and B on M, we can ask when 
the formula (7) defines a linear connection on M. It is evident that the linearity 
conditions are satisfied. The formula V/XY = fVxY holds if and only if PP = 
PP = 0. The formula VxfY = fVxY + (Xf)Y is satisfied if and only if the 
following conditions hold: 

P + P = 7, BPBP + P2 = P2 + BPBP = P + P. 

In the case of {P, S}-structures the above conditions are satisfied which proves that 
(7) is a linear connection. 

By the above results we obtain immediately 
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Proposition 2.4. The distributions D{, i = 1,2,3,4 of a {P,B}-structure are pa­
rallel with respect to the canonical connection. Each distribution D{ is parallel to 
any Dj and autoparallel (for i = j). 

Corollary. For an integrable {P, B}-structure, the Chern connection is reducible to 
the leaves of integral foliations of D\, D% and Ds. 

Given a connection V on a manifold M, any connection on M is of the form 
r = V + S where S is a (1,2)-tensor field. As in the integrable case [Va 1] we can 
prove 

Proposition 2.5. Let distributions D\ and Di are parallel with respect to a linear 
connection V on a {P,B}-manifold M, and let S be a (1,2)-tensor field given by 

S = BVB(aP + 6P), o + 6 = l , a, 6 non-negative reals. 

Then all three distributions of the structure are parallel with respect to a connection 
V + S. Similarly for Dit Dj if we substitute P = P/ , P = Pj, B = H§ for distinct 
i,j,ke {1,2,3,4}. 

The following is straightforward. 

Proposition 2.6. Let V be a parallelizing connection on a {P, B}-manifold. A con­
nection r = V + S is parallelizing if and only if the (1,2)-tensor field S satisfies 

(8) X e X(TM), Y e X(Di) =» S(X, Y) e X(Di), i = 1,2,3,4. 

There are many parallelizing connections for a {P, I?}-manifold, and a family of 
all such connections is described as follows: 

Proposition 2.7. Let V be a parallelizing connection for all distributions of a 
{P,B}-structure. Let3 

<Pi: M -> Horn (TM, End Di) 

be a differentiable map, and let us introduce its extension 

(p:M-> Horn (TM, End TM) 

by 

(9) (<pX)Y = (ipxX)(PlY) + B o (<pxX) o B(P]Y), X, Y e X(TM). 

Let us define S by S(X, Y) = ((fX)Y. Then V + S is a parallelizing connection for 
{P,B}. Moreover, any parallelizing connection T can be given by 

T(X,Y) = V(X,Y) + (<pX)Y 

'Analogously we can choose <pi : M -> Horn (TM, End Dj), t = 2,3,4 and modify correspondingly 
the formula for <p. 
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for some differentiate ip of the form (9). Consequently, all parallelizing connections 
constitue a 2n3-dimensional vector space. 

By the above construction it follows that (pX commutes with projectors which is 
crucial for the verification of (8). 

2.2. Torsion of the structure. Now let us consider the torsion tensor of the 
canonical connection of a {P, P}-structure which is given by 

T(X, Y) = BP ([PX, BPY] + [BPX, PY]\ + BP ([PX, BPY] 

[BPX,PY]\ + [PX,PY] + [PX,PY] - [X,Y]. 
(10) 

+ 

Let us evaluate T on couples of homogeneous vector fields belonging to the first 
(second) distribution: 

(п) 

T(PX, PY) = BP[PX, BPY] - BP[PY, BPX] - [PX, PY], 

PT(PX,PY) = -P[PX,PY], 

T(PX, PY) = BP[PX, BPY] - BP[PY, BPX] - [PX, PY], 

PT{PX, PY) = -P[PX, PY]. 

The properties of the torsion tensor anables us to give alternative conditions for 
integrability of distributions belonging to the structure. We will use the following 
identities: 

PT(PX, PY) = BP[PX, BPY] + BP[BPX, PY] - P[PX, PY], 

(12) T(BPX, BPY) = BP[BPX, PY] + BP[PX, BPY] - [BPX, BPY], 

BPT(BPX, BY) = P[BPX, PY] + P[PX, BPY] - BP[BPX, BPY]. 

3. INTEGRABLE {P,J5}-STRUCTURES 

3.1. Integrability conditions. It can be easily checked the following4: 

(a) for i = 1,2, D{ is integrable if and only if [P, P](X, Y) = 0 for X,Y € X(Di); 
(b) both D\ and D2 are integrable if and only if [P, P] = 0; 
(c) for j = 3,4, Dj is integrable if and only if [B, B](X, Y) = 0 for X, Y G X(Dj). 

Lemma 3.1. The following conditions are equivalent: 

(i) B[B, B) (X, Y) = [B, B] (X, Y) for X,Ye X(Di), 
(ii) B[B, B) (X, Y) = [B, B] (X, Y) for X J e X(D2), 

(iii) D3 is integrable. 

4 [ , ] denotes the Nijenhuis bracket. 
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Proof. An evaluation shows that for X,Y 6 X(TM), 

(B - 7) [PX + BPX, PY + BPY] = - [B, B] (PX, PY) + B[B, B] (PX, PY). 

Therefore D3 is integrable if and only if (B[B, B] - [B, B]) (PX, PY) = 0. Similarly 
for the couple PX, PY. 

• 
An analogous statement (up to a change of sign in the formulas) is true for .D4. 

Remark. A polynomial structure B satisfying B2 = I is called integrable if there exist 
local coordinates such that with respect to the corresponding holonomic frame the 

matrix representation of B is ( n _ J. It is well known by the general theory of 

polynomial structures with simple roots that B is integrable if and only if all couples 
of projectors vanish. In our case, the conditions [P4.P4] = [P41P3] = [P31P3] = 0 
are equivalent with a single condition [B, B] = 0. 

We obtain a characterization of structures for which both D3 and D4 are integrable. 

Proposition 3.1. The following conditions are equivalent: 

(i) B is integrable, 
(ii) [B,B} = 0, 

(iii) an almost product structure [D3,D4] is integrable, in other words, D3 and D4 
are simultaneously integrable, 

(iv) both D3 and D4 are integrable. 

The equivalence between (iii) and (iv) is due to the fact that an almost product 
structure [D, D'] is integrable if and only if each of D, D' is integrable (which is not 
the case for an almost product structure [D\,..., D8] with s > 2). 

3.2. Integrability through torsion. As we have seen above the integrability 
conditions for a {P,£}-structure X,Y G X(D{) ==> [X,Y] G X(D{), i = 1,2,3 can 
be expressed via Nijenhuis brackets, [P, P] = 0, [B, B](X, Y) = 0 for X, Y G X(D3). 
Another possibility for formulation of integrability conditions yields the torsion tensor 
T. By (11) it follows immediately: 

(13) Di is integrable if and only if PT(PX, PY) = 0, 

(14) D2 is integrable if and only if PT(PX, PY) = 0. 

Denote 

(15) F(X, Y) = B[B, B] (X, Y) - [B, B] (X, Y). 

The integrability of D3 is equivalent with either of the conditions 

F(PX, PY) = 0 or F(PX, PY) = 0. 
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An evaluation shows that 

PF(PX,PY) = BPF(PX,PY). 

Since B is an isomorphism it follows 

F(PX,PY) = 0 «=• PF(PX,PY) = 0. 

Let us suppose that both D\ and D2 are integrable. Then 

PB[B, B] (PX, PY) = -BPT(BPX, BPY), 

-P[B, B] (PX, PY) = PT(PX, PY). 

Together, 

PF(PX, PY) = 0 <=> -BPT(BPX, BPY) + PT(PX, PY) = 0. 

Proposition 3.2. A {P,B}-structure is integrable if and only if the following con­
ditions are satisfied 

PT(PX, PY) = 0, PT(PX, PY) = 0, 

PT(BPX,BPY) = BPT(PX,PY). 
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