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1. Introduc t ion and summary of the classical case 

1.1. Consider a Lie group G, e.g., the Lorentz, Poincare, conformal groups, and 
differential equations 

z / = J (i-i) 
which are G-invariant. These play a very important role in the description of physi­
cal symmetries - recall, e.g., the examples of Dirac, Maxwell equations. It is impor­
tant to construct systematically such equations for the setting of quantum groups 
(expected as ^-difference equations). The hope is that these equations will have less 
singular behaviour than the classical counterparts. 

The approach to this problem used here relies on the following : In the classical 
situation the differential operators X giving the equations above may be described 
as operators intertwining representations of complex and real semisimple Lie groups 
[38], [40], [59], [16]. . . . . . 

To recall the notions, consider a semisimple Lie group G and two representations 
T, X" acting in the representation spaces C,C, which may be Hilbert, Frechet, e t c 
An intertwining operator X for these two representations is a continuous linear 
map 

X : C—>C (1.2) 

such that 
loT(g) = T'(g)ol, Vg e G (1.3) 

This is what precisely is meant when we say that the equation (1.1) is a G - invariant 
equation. Note that kerX, imZ are invariant subspaces of C, C , resp. If kerX = 0 
and i m l = C , then the representations T and T' are called equivalent, otherwise 
T and T' are called partially equivalent. If kerX ^ 0, this means that the equation 
(1.1) with j' = 0 has non-trivial solutions. 

Such equations exist also for more general classes of Lie groups. However, if G 
is semisimple then there exist canonical ways for the construction of all intertwining 
operators and thus, of the G - invariant equations. [For simplicity we consider mostly 
semisimple Lie groups, though the same results are valid for reductive Lie groups, 
since only their semisimple subgroups are essential for these considerations.] These 
operators are of two types - differential and integral. For the integral intertwining 
operators, which we shall not discuss here, we refer to [38] for the mathematical side 
and to [27], [30], [28] for explicit examples and applications. 

As stated we are interested in the invariant differential operators for which we 
refer to [40], [59], [16]. [For early examples and partial cases see, e.g., [31], [27], 
[36], [30], [48], [51], [15], [35], [7], [9], [57], [33], [34], [2], [3]. Note that we do not 
discuss here nonlinear invariant operators; for two different approaches to those we 
refer to [4](and references therein) and to [10].] There are many ways to find such 
operators, however, most of these rely on constructions which are not yet available 
for quantum groups. Here we shall apply a procedure [16] which is rather algebraic 
and can be generalized almost straightforwardly to quantum groups. This procedure 
is recalled in the next subsection. 
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1.2. Here we sketch the procedure of [16] illustrating the general notions with 
the (double covering group of the) Minkowski conformal group SU(2,2). Let G be a 
real semisimple Lie group. (We noted already that we restrict to semisimple groups 
for simplicity. For more technical simplicity one may assume that in addition G is 
linear and connected.) Let Q be the Lie algebra of G. We shall use the so-called 
Bruhat decompositions of Q 

Q = N+ ®M®A®M~ (1.4) 

(considered as direct sum of linear spaces), where A is a noncompact abelian sub-
algebra, M (a reductive Lie algebra) is the centralizer of A in Q (mod A), and 
JV+, JV~, resp., are nilpotent subalgebras forming the positive, negative, resp., root 
spaces of the restricted root system (Q,A). For the conformal group the subalge­
bras M~, M, A, yV+, are the subalgebras of translations, Lorentz transformations, 
dilatations, special conformal transformations, resp. 

In general, a real noncompact Lie algebra Q has more than one Bruhat decom­
position. This is standard material, cf., e.g., [8]. (It is explained also in [16], or in 
[20].) Note that V = V+ = M®A®N+ are subalgebras of Q, the so-called 
parabolic subalgebras. (The subalgebras V^ and V~ = M ® A ® Af~ are 
conjugate under the Cartan involution.) The parabolic subalgebras with min­
imal dimension are called minimal parabolic subalgebras of Q. Let us denote by 
Vo a minimal parabolic subalgebra: VQ = MQ ® AQ ® Mo . The number of 
non-conjugate parabolic subalgebras (counting also the trivial case V = Q = M) 
is 2r° , To = dim*4o. The group 5U(2,2) has three non-trivial non-conjugate 
parabolic subalgebras of dimensions 9,10,11. With the above identification V~ are 
maximal conjugate parabolic subalgebras; V~ is called usually the Weyl algebra 
(comprising the Poincare algebra and the dilatations). 

Let us now introduce the corresponding subgroups of G. Let K denote the 
maximal compact subgroup of G, and let JC denote the Lie algebra of K. Then we 
have the simply connected subgroups A = exp(*4), N± = exp(M±). Further, M 
is the centralizer of A in G (mod A). (M has the structure M = MdMr, where 
Md is a finite group, Mr is reductive with the same Lie algebra M as M.) Then 
P = MAN* (and their conjugate MAN~) are called parabolic subgroups of G. 

The importance of the parabolic subgroups stems from the fact that the repre­
sentations induced from them generate all (admissible) irreducible representations 
of G. In fact, it is enough to use only the so-called cuspidal parabolic subgroups, 
singled out by the condition that rank M = rank MC\K\ thus M has discrete series 
representations. 

Let P be a cuspidal parabolic subgroup. Let LA fix a discrete series repre­
sentation D*1 on the Hilbert space Vfl or the so-called limit of a discrete series 
representation (cf. [37]). Let v be a (non-unitary) character of A, v € A*. 

We call the induced representation x — Indp(/i ® v ® 1) an elementary 
representation of G. (These are called generalized principal series representations 
(or limits thereof) in [37].) 
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Consider the space of functions 

Cx = {J-GC°°(G,VM ) I F{gman) = e" ( H ) • ^ ( m " 1 ) ^ ) } (1.5) 

where a =- exp(H), H £ A. The special property of the functions of Cx is called 
right covariance [16] (or equivariance). It is well known that Cx can be thought 
of as the space of smooth sections of the homogeneous vector bundle (called also 
vector G-bundle) with base space G/P and fibre V^ , (which is an associated 
bundle to the principal P-bundle with total space G). 

Then the elementary representation (ER) T x acts in Cx , as the left regular 
representation (LRR), by: 

C T W W ) = Hg-'g'), 9,9'eG (1.6) 

(In practice, the same induction is used with non-discrete series representations of 
M and also with non-cuspidal parabolic subgroups.) One can introduce in Cx a 
Frechet space topology or complete it to a Hilbert space (cf. [37]). Finally, note 
that in order to obtain the invariant differential operators one may consider the 
infinitesimal versions of (1.5) and (1.6) (cf. the end of this subsection). 

The ERs differ from the LRR (which is highly reducible) by the specific repre­
sentation spaces Cx. In contrast, the ERs are generically irreducible. The reducible 
ERs form a measure zero set in the space of the representation parameters /x, v. 
(Reducibility here is topological in the sense that there exist nontrivial (closed) in­
variant subspace.) The irreducible components of the ERs (including the irreducible 
ERs) are called subrepresentations. 

The importance of the elementary representations stems from the following re­
sult: 

T h e o r e m . [41], [39] Every irreducible admissible representation of a real 
connected semisimple Lie group G with finite centre is equivalent to a subrepresen-
tation of an elementary representation of G. 
Remark: Admissibility is a technical condition which is usually fulfilled in the phys­
ically interesting examples. 

The other feature of the ERs which makes them important for our considera­
tions is a highest weight module (HWM) structure associated with them. [It would 
be a lowest weight module structure, if we replace N = IV"1" with 1V~, as 
is actually done in [16].] For this we introduce the right action of Q® (the 
complexification of Q) by the standard formula: 

{XT){g) = jtf{gexp{tX))\t=0 (1.7) 

where, I G ^ , T G Cx , g G G, which is defined first for X G Q and then is 
extended to Q® by linearity. Note that this action takes T out of Cx for some X 
but that is exactly why it is used for the construction of the intertwining differential 
operators. 

We illustrate the highest weight module structure in the case of the minimal 
parabolic subalgebra. In that case M is compact and VM is finite dimensional. 
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Consider first the case when M is non-abelian. Let vo be the highest weight vector 
of Vp. Now we can introduce (F-valued realization Cx of the space Cx by the formula: 

<p(g) = (vo,?(g)) (1.8) 

where (,) is the M-invariant scalar product in V^. On these functions the right 
action of G® is defined by: 

(X<p)(g) = (v0,(XF)(g)) (1.9) 

If M is abelian or discrete then V^ is one-dimensional and we set (p = J7. Part of 
the main result of [16] is: 
Propos i t ion . The functions of the (F- valued realization Cx o f t h e E R C x satisfy: 

x<p = A{X)-tp, xen^ (l.ioa) 
x<p = o, l e e f (1.106) 

where A = Ax G (H®)* is built canonically from \-> [-t contains all the information 
from Xi except about the character e of the finite group M^], G%>> G-, are the pos­
itive, negative root spaces of G , i-e., we use the standard triangular decomposition 

Now we note that conditions (1.10) are the defining conditions for the highest 
weight vector of a highest weight module (HWM) over Q® with highest weight A. 
Moreover, special properties of a class of highest weight modules, namely, Verma 
modules, are immediately related with the construction of invariant differential op­
erators. 

To be more specific let us recall that a Verma module is a highest weight module 
VA with highest weight A, such that VA = U(G-)vo, where VQ is the highest weight 
vector, U(G-) is the universal enveloping algebra of G-- Verma modules have the 
following universality property: every HWM is isomorphic to a factor-module of the 
Verma module with the same highest weight. 

Generically, Verma modules are irreducible, however, we shall be mostly inter­
ested in the reducible ones since these are relevant for the construction of differential 
equations. We recall the Bernstein-Gel'fand-Gel'fand [5] criterion according to which 
the Verma module VA is reducible iff 

2(A-f O,/3) - m(/3,/3) = 0 (1.11) 

holds for some (3 G A + , m G W, where A + denotes the positive roots of the root 
system (G^iH®), p is half the sum of the positive roots A + . 

Whenever (1.11) is fulfilled there exists [13] in VA a unique vector vs, called 
singular vector, such that vs ^ (Fvo and it has the properties (1.10) of a highest 
weight vector with shifted weight A — m(3 : 

Xvs = (A-m(3)(X)-vs , XeH® (1.12a) 

xVs = o, xeG% (l-12b) 
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The general structure of a singular vector is [16]: 

vs = Pmp(Xj,...,Xj)v0 (1.13) 

where Pmp is a homogeneous polynomial in its variables of degrees mki, where 
ki G -Z-H- come from the decomposition of j3 into simple roots: P = Yl ^iai-> ai € As? 
the system of simple roots, XJ are the root vectors for —aj, aj are the simple 
roots, £ = rankC/^ . It is obvious that (1.13) satisfies (1.12a), while conditions 
(1.126) fix the coefficients of Pmp up to an overall multiplicative nonzero constant . 

Now we are in a position to define the intertwining differential operators, cor­
responding to the singular vectors. 

Let the signature x OI> a n ER be such that the corresponding A = Ax satisfies 
(1.11) for some /3 G A + and some m G W. [If /? is a real root, (i.e., /3\nc = 0, 
where r ( m is the Cartan subalgebraof Ai), then some conditions are imposed on the 
character e representing the finite group Md [55]]. Then there exists an intertwining 
differential operator [16] 

VmP : Cx —> Cx, (1.14) 

where x! 1S such that A' = Ax> = A — mj3. 
The important fact is that (1.14) is explicitly given by [16] 

Vm^(g) = Pm0(Xr,...,X^)<p(g) (1.15) 

where Pmp is the same polynomial as in (1.13) and XJ denotes the action (1.7). 
We stress that these are explicit and compact expressions once the singular vectors 
are known. The latter are known for Q® = sl(n, W), and for a large class of positive 
roots for the other simple Lie algebras [19]. 

One important simplification is that in order to check the intertwining proper-* 
ties of the operator in (1.15) it is enough to work with the infinitesimal versions of 
(1.5) and (1.6), i.e., work with representations of the Lie algebra. Thus, also in the 
quantum group setting we work with representations of quantum algebras. 

Naturally, the above Verma module constructions are related with the elemen­
tary representations of the complexification G® of G, or infinitesimally, of Q®. The 
corresponding representation spaces (in particular, the right covariance conditions) 
are given by (instead of (1.5)) [58] : 

cA = Wc e C°°(G(r) | Mghn) = eA^ . ?c(g)} (1.16) 

where g G G®, h = exp(H), H G Ua\ n G G% = exp(<?+), A is as in (1.10). Note 
also that <PC\G = ¥*- and (1.10) holds also for <pc. Thus, below we shall use the 
notation <p also for these functions. 

This finishes the sketch of the classical results in general. In the next subsection 
we present an example. 

1.3. In this subsection we follow mostly [27]. In the setting of the previous 
subsection we take G = SOe(n -f- 1,1), the Euclidean conformal group of n -
dimensional Euclidean space, and also its double covering group G = Spin(n+1,1). 
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We take n > 3, while for n = 1,2 we refer to Appendix B of [27]. In this case 
K = SO(n + 1), K = Spin(n+1), M = SO(n), M = Spin(n), dim A = 1, 
N± = Mn. As in [27] we first take irreducible representations of M labelled by 
fj, = ( 0 , . . . , 0, £) ([n/2] entries), £ G -~/+ . An alternative labelling (differing by the 
values of the half-sum of the positive roots) is: fi = { 0 , 1 , . . . , h — 2,£-\- h— 1}, where 
h = [f] . Usually these are realized as symmetric traceless tensors Tflli...)fil of rank 
g^ jj,j = 1,... ,n. However, they can be also realized in the space of homogeneous 
polynomials of degree £ 

v(0 = ^ M. U - - - U (1-17) 

on the complex light cone: 

iKn = {iear\e = #.+ ... + & = o} (i.i8) 
(summation over repeated indices is understood). Each such function has a unique 
harmonic (homogeneous polynomial) extension <£(C)> C € ^ : 

д c<Ж) = o, д c = — + . . . + д2 д2 

Щ + '" + җ 
Ф\Q — fџi,...,џt Ç/ii • • • C/І* 

(1.19) 

Let us denote the signature of the class of ERs we consider by x — K c ] where 
c G (F determines the character of _4. The reducible ERs from this class are 
parametrized by two integers £ G 2Z+ , p G IN. They form four families with the 
following signatures: 

X% = [£,±(^+£ + p-l)] (1.20a) 

x% = [e+p,±(z + e-i)] (1.206) 

For fixed £, p the four ERs XeP -> Xep
 n a v e the same values of the Casimir operators 

and are partially equivalent. Let us denote by C£ , C'fT the representation spaces 

with signature xj , x'ep » r e s P - The intertwining maps between C i and C7 and 

between C'^ and Cr
£~ are integral operators, cf. [27]. The intertwining operator 

between C7 and C^~ is given by: 

АР • ř~ v Č'~ 
a • Wp ř ^£p 

(<F<p)(x;t) = ( £ - V ) p ф ; 0 , ¥>€(* 

x € Mn, £ 6 Kn, í • V = £„ V„ , V„ = 

tp ' (1.21) 
___ 
дxџ 
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The intertwining operator between x'el a n ( l xtp

 1S given by: 

( < * " » ( * > 0 = ( o « - V ) P <p(X]Q, <P€C'+, 

xeRn, (eir<n, ofv - o«v„ 

(1,22) 
Note that the operator D^ (cf. Appendix A of [27], in particular, formula (A.47)) 
is an interior operator on the light cone E\n , i.e., for any polynomial <p(£) we 
have: 

(Die v ( 0 ) | e 2 = o = 0 (1-23) 

We finish this example by stressing that the intertwining differential operators 
dp and dfp are just powers of one and the same expressions in all cases irrespec­
tively of the rank of the tensors they are acting on, which is in sharp contrast with 
the corresponding expressions if one is using the realization J7

flll...iflt with tensor 
indices. 

If one is not restricting to symmetric traceless tensors of M = SO(n) then there 
are other collections of ERs which have the same values of the Casimir operators and 
are partially equivalent. Such collections are called multiplets and for the general 
treatment we refer to [14]. Here we restrict to those multiplets of G = SO(n + 1,1), 
G = Spin(n + 1,1), resp. which are in 1-to-l correspondence with the (finite-
dimensional) unitary irreducible representations (UIRs) of SO(n + 2), Spin(n + 2), 
resp. (the compact form of the complexification of G, G, resp.). [These multiplets 
are 'maximal' w.r.t. to the number of ERs they contain and they correspond 1-to-l 
to the elements of the restricted Weyl group W(G, __), cf. [14].] Let us parametrize 
the UIRs of Spin(n + 2) as follows: 

r = {mi , . . . , m^ + 1 } , n e v e n , m j G ^ / 2 , |mi | < m 2 < • • • < m ^ + 1 

r = {mi , . . . , 772̂ _|_1} , n odd , mj £ Z/2 , 0 < mi < ra2 < • • • < nrijl,1 

(1.24) 
(h = [f ]). To this UIR corresponds a multiplet of exactly 2h + 2 ERs of 
G which have the same values of the Casimir operators and are partially equivalent. 
Moreover, there are no other ERs partially equivalent to those (cf., e.g., [14]). In 
general, the signature of the ERs of G are labelled as follows: 

X = { m i , . . . , m i ; c } (1.25) 

where the first h entries are the labels of the UIRs of M = Spin(n), and the last 
entry labels (as above) the characters of A. (In this notation the ERs induced from 
symmetric traceless tensor representations of M are labelled as {0,1 , . . . , £ + h — 
l;c}.) Accordingly the signatures of the ERs in the multiplet under consideration 
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are labelled as: 

xt = { e m i , . . . , mh\ ± m / i + i } 

xt = { c m i , . . . , mh_ly m ^ + 1 ; ±m-h} 

xt = { e m i > • • • > m / i - 2 >
 m / i > m&+i 5 ± m h - i / 

(1.26) 

x ± = { c m i , m 3 , . . . , m ^ , m i + 1 ; ± m 2 } 

Xjf+i = { ^ m 2 , . . . , m ^ , m i + 1 ; zbmi} 

(t for n even 
for n odd 

[The signatures in (1.20) XeP-> XeP •> correspond to Xi » X2 ? resp.] Note that in 
every multiplet only the ER x f n a s a finite-dimensional nonunitary subrepresen-
tation. The latter has the same dimension as the fixed UIR of Spin(n + 2) in (1.24) 
to which the above multiplet corresponds. The ERs in the multiplet are related by 
intertwining integral operators and by 2h different intertwining differential oper­
ators . Let us denote by Cf the representation space with signature xt • The 
integral operators intertwine the pairs Cf and C~ : 

Gf : C~ —• Cf , G~ : Cf —> C~ (1.27) 

The intertwining differential operators act as follows: 

d' 

UҺ+\ 

dк+\ 

CГ-+ ^ t + l > г = l,...,/г, Vn 

u i + i + Č+, i = l,...,/г, Vn 

= 4' n even 

• л+i 
> č + 

>LҺ ' 
n even 

: ч -— > Č + 

^ Ч + i ' гг even 

(1.28) 

The degrees of these intertwining differential operators are given just by the differ­
ences of the c entries: 

degdi = degd- = ml+2_i - m A + 1 _ . , i = l , . . . , h , Vn 
(i.zyj 

degc/^+ 1 = m,2 + m\ , n even 

The equalities between some intertwining differential operators for n even in (1.28) 
mean that these have the same expressions as actual differential operators. This 
is possible first of all because these operators are produced by singular vectors 
corresponding to the same positive roots of the root system of so(n + 2, (F) and 
only if one uses the representation spaces C comprised of (F- valued'functions [14], 
[16]. Naturally, d\ and d[ coincide with dp and d,p, resp., (with p = m ^ + 1 — m^), 
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whenever they act on ERs which are induced from symmetric traceless tensors of 
M = SO(n). The multiplets are shown in Fig. 1, Fig. 2, for n even, odd, resp.; the 
double arrows are the integral intertwining operators (1.27), and the other arrows 
are the intertwining differential operators (1.28). 

For the group SU*(4) = Spm(5,1) the integral operators and the four 
different differential operators were given explicitly in [30]. Again the intertwining 
differential operators are given by powers of four different basic operators. Using 
Weyl's unitary trick these multiplets may be turned into multiplets describing ERs 
of the group SU(2,2), cf. [51]. These multiplets may be'obtained also from direct 
SU(2, 2) considerations as submultiplets of the maximal (24-member) multiplets, 
cf. [15], and they will be used here in Section 6 in the a-deformed case. 

1.4. Organization of the rest of the lectures. Sections 2. and partly 3. review 
part of the exposition of [23] for Uq(sl(n)) with general n. Then in Sections 4. and 
5. we consider in detail the case n = 4 following part of the exposition of [24]. In 
Section 6, following mostly [25] and [26], we use q - conformal invariance to propose 
new q - Minkowski space-time and q - Maxwell hierarchies of equations. 

2. T h e matrix quantum group GL 9 (n) and the dual quantum algebra 

In the beginning of this Section we follow [45] and [18]. Let us consider an 
n x n matrix M with non-commuting matrix elements aXJ, 1 < z,j < n, called 
also quantum matrix [45]. Let us denote by Aq(n), q G (F, the bialgebra with 
unit element 1.4 and generated by the matrix elements aij with the following 
commutation relations [45] (A = q — a - 1 ) : 

auaij = qatjaa , £>j (2.1a) 

akjQij = qciijUkj ? k > i (2.1b) 

akjaa = a^akj , k > i , £ > j (2.1c) 

ai3akt = aktalJ - \ateakj, k > i, £ > j (2.1d) 

and the following comultiplication S^ and counit Cj\ : 

n 

$A(aij) = ^ ^ 0 % , £A(aij) = Sij (2.2) 
k=i 

This bialgebra has an element D called quantum determinant and given by: 

D = Yl €(P) ahp(V • - an,p(n) = ^2 6(^) «p(l),l •••ap(n),n (2-3) 
pGSn p€Sn 

where summations are over all permutations p of { 1 , . . . , n} and the quantum sig­
nature is: 

<p) = n (-<l-1) (2-4) 
j<k 

p(i)>p(fc) 
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The determinant obeys: 

8A(D) = D®D , eA(D) = 1 (2.5) 

The determinant is central, i.e., it commutes with the elements aik : 

aik D = D alk (2.6) 

Further, it is assumed that D ^ 0 and one considers an extension of this bialgebra 
by an element J)-1 which obeys: 

DD'1 = D~XD = lA (2.7) 

where 1.4 denotes the unit element also in the extension. This extension is called 
the matrix quantum group GLq(n). It is a Hopf algebra with antipode defined as 
follows. We first define the left and right quantum cofactor matrix Aij : 

A = 2 ^ (• Л « l ,p ( l ) ' - - a ü- - - a n , P (n ) 
P(І)=І У l ) 

~~ l^ €<a>) a p ( l ) Л - - - a i } - - - a p Ы , n 

(2.8) 

where <jt- and a'- denote the cyclic permutations: 

Gi = { i , . . , l } , O-; = { j , . . . ,n} (2.9) 

and the notation x indicates that x is to be omitted. Now one can show that : 

J2 atj A£j = ] T Aji aj£ = 5l£ D (2.10) 
j J 

and obtain the left and right inverse: 

M " 1 = D'1 A = A D'1 (2.11) 

Finally, we can introduce the antipode in GLq(n) : 

1A(atJ) = D~x A3l = A3l D-1 (2.12) 

Until here we followed [45] and [18]. Further we follow [23]. 

We introduce a basis of GLq(n) which consists of monomials 

/ = ( a 2 i ) m 2 1 . . . K , n - i ) ^ ^ = 

= Jfn,l,h 
(2.13) 

where m,£,n denote the sets { ra^} , {^i}, {^ij}, resp., ra^-,^, n^- G 2Z+ and we 
have used the so-called normal ordering of the elements aij. Namely, we first put 
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the elements aij with i > j in lexicographic order, i.e., if i < k then aij (i > j) is 
before a^t (k > £) and an (t > i) is before atk (t > k); then we put the elements an; 
finally we put the elements a^ with i < j in antilexicographic order, i.e., if i > k 
then aij (i < j) is before aw (k < £) and a^ (t < i) is before atk (t < k). Note also 
that : 

/o,o,o = U (2-14) 

We need the dual algebra of GLq(n). This is the algebra Ug = Uq(sl(n)) ® 
Uq(Z), where Uq(Z) is central in Ug [21], [29]. Let us denote the Chevalley generators 
of sl(n) by Hi, X{ , i = 1 , . . . , n — 1. Then we take for the 'Chevalley' generators of 
U = Uq(sl(n)) : K = qH</\k~l = q~Hi/2, Xf, i = 1 , . . . , n - 1, with the following 
algebra relations: 

kikj = kjk, , ktk~l = k~lki = lUg , kiXf = q±CijXfki (2.15a) 

[Xf,X-] = M f c 2 - f c r 2 ) M , (2.156) 

(Xffxf - [2}qXfxfxf + Xf(Xf)2 = 0 , | t - j | = l , (2.15c) 

[Xf,Xf] = 0 , | t - j | ^ l , (2.15d) 

where c t J is the Cartan matrix of sl(n), and coalgebra relations : 

Su(k?) = k±®k? 

8U(X?) = X±®ki + k-'^Xf 

eu(kf) = 1 , eu(Xf) = 0 

lu(ki) = K1 , lu(*t) = -g ± 1 X? 

(2.16) 

where kf = kz, ki = ki
 l . Further, we denote the generator of Z by H and the 

generators of Uq(Z) by k = qHf2, k~l = q~H/2, kk~l = k~lk = lUg. The 
generators k,k~l commute with the generators of U, and their coalgebra relations 
are as those of any ki. From now on we shall give most formulae only for the 
generators ki, X{ , k, since the analogous formulae for k~l, k~l follow trivially 
from those for ki, k, resp. 

The bilinear form giving the duality between Ug and GLq(n) is given by 
[23]: 

(2.17a) 

(2.176) 

(2.17c) 

(2.17d) 

The pairing between arbitrary elements of Ug and / follows then from the 
properties of the duality pairing. The pairing (2.17) is standardly supplemented 
with 

< y , U) = eu9(y) (2.18) 

( k г . > a j t ) = Sjtq
(6ii'Si^l)l2 

(*t ' » a j t ) = &j+i,eSij 

(xг, » ajЄ ) = Sj-ijSц 

(k, , CLji ) = S3eя1/2 
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It is well known that the pairing provides the fundamental representation of 

u, 
F(y)je = {y,ajt), y = ki,X±,k (2.19) 

Of course, F(k) = q1/2In , where In is the unit n xn matrix . 

3 . R e p r e s e n t a t i o n s of Ug a n d U 

This Section follows mostly [23]. We begin by defining two actions of the dual 
algebra Ug on the basis (2.13) of GLq(n). 

First we introduce the left regular representation of Ug for which in the q = 1 
case we need the infinitesimal version of : 

T T ( F ) M = Y'1 M , Y,M e GL(n) (3.1) 

Explicitly, we define the action of Ug on GLq(n) as follows (cf. also (1.6)): 

*(y)ait = ( F ( 7 ° ( y ) ) M ) , , = £ F ( 7 ° ( y ) ) . . aje = £ < 7&(y) , a.,- > a,-, 
J J 

(3-2) 
where y denotes the generators of Ug and Ju(y) is the antipode action for q = 1. 
From (3.2) we find the explicit action of the generators of Ug : 

7r(ki)aje = 9 (*+- . i -M/2 a > / (3 > 3 a) 

7r(Kt
+) a^ = -J .jj a j + 1 ^ (3.36) 

~{X~) Q>je = -* t+i , i a j - i ^ - (3.3c) 

?r(fc) a^ = q~1/2 aj£ (3.3d) 

The above is supplemented with the following action on the unit element of GLq(n): 

*{ki) U = U , ir{Xf) U = 0 , 7r(fc) U = U • (3.4) 

In order to derive the action of ir(y) on arbitrary elements of the basis (2.13), we 
use the twisted derivation rule consistent with the coproduct and the representation 
structure, namely, we take: -(y)(pip = TT(SU (y))(ip ® V0» where 6U = a o 5y 
is the opposite coproduct, (a is the permutation operator). Thus, we have: 

7r(ki)(pi/> = 7r(fci)(D • -(ki)tp (3.5a) 

n{X?)<ptl> == K(Xf)y • ^(k-1)^ + n{ki)tp - ir{X?)t/> (3.56) 

7r(k)(pip = 7r(k)(p • 7r(k)ip (3.5c) 

From now on we suppose that q is not a nontrivial root of unity. Applying 
the above rules one obtains: 

n(ki)(ajC)n = 9 » < * + ' . ; - M / 2 ( a t 7 ) n (3.6a) 

Tr(X?)(aje)
n = -SijCniajt^aj+u (3.66) 
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~(X~)(aje)
n = -5i+ijcnaj-u(aj£)n~ (3.6c) 

-(k)(aje)
n = q-n/2(aj£)

n (3.6d) 

where 
cn = q(n-l)'2 [n)q , [n}q = (qn-q-n)/\ (3.7) 

Analogously, we introduce the right action (for Uq(sl(2)) see also [46]) for 
which in the classical case (1.7) one needs the infinitesimal counterpart of : 

TTR(Y) M = M Y , Y,M e GL(n) (3.8) 

Thus, we define the right action of Ug as follows (cf. (1.7)): 

-R(y) aie = [MF(y))l£ = ^ atJ F(y)j£ = ] T a{j; ( y , aje ) (3.9) 

3 3 

where y denotes the generators of Ug 

From (3.9) we find the explicit right action of the generators of Ug : 

~R{ki) aje = q^-Si+l,t)/2 aj£ ( 3 > 1 0 a ) 

TTR(X+) aje = Sl+1,e a ^ _ i (3.106) 

~R(X~) aj£ = S%e a ^ + 1 (3.10c) 

-R(k) aje = q1/2 aj£ (3.10d) 

supplemented by the right action on the unit element: 

~R(K) U = U , ~R(X?) U = 0 , -R(k) lA = lA (3.11) 

The twisted derivation rule is now given by nR(y)ipip = -R(Su (y))(<p (8) V0> 
I . Є . , 

^R(kí)<p^ = ^R(ki)fTTR(ki)i) (3.12a) 

KR{X?)<pil> = nR{Xf)<p • nR(ki)i> + 

+ *RÍKl)*P-*R{Xř)1> 
nR(k)fip = nR(k)<fnR(k)4> , (3.12c) 

(3.126) 

Using this, we find: 

*R{ki)(ait)
n = qn««-swV2(ajt)

n (3.13a) 

7rR(X+)(aje)
n = í i + i ^ c n a ^ - x í a , - / ) " - 1 (3.136) 

TrR(X-)(aje)
n = 8iecn(ajt)

n-lahe+l (3.13c) 

KR(k)(aje)
n = qn/2(aje)

n (3.13d) 
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Let us now introduce the elements <D as formal power series of the basis (2.13): 

V = X ] ^m./.n fmAn (3-14) 
m,£,h€.2£+ 

By (3.6) and (3.13) we have defined left and right action of Ug on (p. As in the 
classical case the left and right actions commute, and as in [16] we shall use the right 
covariance to reduce the left regular representation. In particular, we require the 
right action to mimic properties of a highest weight module, i.e., annihilation by the 
raising generators Xf and scalar action by the (exponents of the) Cartan operators 
ki,k. However, first we have to make a change of basis using the q-analogue of the 
classical Gauss decomposition. For this we have to suppose that the principal minor 
determinants of M : 

A n = 2 ^ e(p) « l , p ( l ) . . .a m .p(m) = 

P!f: (3.15) 
= z2 e(p) ap(i)A'--ap(m),m , rn<n 

pesm 

are invertible; note that Dn = D, Dn-\ = Ann. 
Further, for the ordered sets I = {i1 < • • • < ir} and J = {ji < • • • < j r } , let 

£ j be the r-minor determinant with respect to rows I and columns J such that 

£J = ^2€{p)aiP(i)ji'"aiPir)jr (3-16) 
pesr 

Note that fj;;;j = Di . Then one has [1] (i,j,£ = 1 , . . . ,n) : 

°>u = z^jBijZje , Bu = £\\\'.t~
 l -O7-i •> %** = Di~1£i-i-ie (3-17) 

3 

Bie = 0 for i < £, Zie = 0 for i > £, (which follows from the obvious extension 
of (3.16) to the case when I, resp. J, is not ordered). Then Ztj, i < j , may 
be regarded as a g-analogue of local coordinates of the q - deformed flag manifold 
B\GL(n). 

For our purposes we need a refinement of this decomposition : 

Bu = YitDtt , Yit = Z\::.[-UDJ1 , Dee = DtDJ^ , (D0 = 1A) (3.18) 

where Yje, j > £, may be regarded as a <?-analogue of local coordinates of the q -
deformed flag manifold GL(n)/DZ. 

Clearly, we can replace the basis (2.13) of GLq(n) with a basis in terms of Y^, 

i > £, De, Zie, i < £• (Note that Ya = Za = 1^.) Thus, we consider formal power 
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series: 

* = E /-U«(^)m21-"(->n,n-ir-- lX 
mr€

e x + (3.i9) 

X (£>.)<» . . . (£>„)'" ( z n - l . n ) " - 1 ' " • • • ( z l 2 ) n i 2 

Now, let us impose right covariance (cf. [16] and (1.106)) with respect to Xf , 
i.e., we require: 

nR(X+)ip = 0 (3.20) 

First we notice that: 

* * ( * + ) 6 = -0 , for J = { l , . . . , j } , V / (3.21) 

from which follow: 

nR{Xt)Dj = 0 , nR(X+)Yj( = 0 (3.22) 

On the other hand TTR(X^~ ) acts nontrivially on Zji : 

nR(X+) ZJ( = Si+lit qSii/2 Zitt-x (3.23) 

Thus, (3.20) simply means that our functions (p do not depend on Zji . Thus, 
the functions obeying (3.20) are: 

<P = E / i ; , * ( - > 2 i r a , . . . ( - > n , n - i r - - - - i P l ) ' 1 . . . ( D n ) ' - (3.24) 

Next, we impose right covariance with respect to fc;,k : 

**(*.) <p = qri/2 <p (3.25a) 

nR(k) <p = qfl2 <p (3.256) 

where r;, r are parameters to be specified below. On the other hand using (3.12a, c), 
(3.13a, c) we have: 

*R(ki)tj = qSii/26, *R(k)£j = qJ/26, for J = { 1 , . . . , j } , V J , 
(3.26) 

from which follows: 

"«(* .) Dj = q6"'2 D3 , nR(k) Dj = a'!2 D, , (3.27a) 

*n(ki) Yjt = Yjt , *n{k) Yjt = Yjt , (3.276) 

and thus we have: 

Tfl(fci) V = qti/2 $ (3.28a) 

VR(k)ip = q^i-^ti/2 ip (3.286) 

Comparing right covariance conditions (3.25) with the direct calculations (3.28) 
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we obtain i{ = n , for i < n, X>?=ii^j = r- This means that ri,f £ 2Z and that 

there is no summation in t{, also in = (r — ^"-Tj ir{)/n. Thus, the reduced functions 

obeying (3.20) and (3.25) are: 

(p = j / i * ( ^ r ^ . - i v i r - - 1 (Dir.^Dn-irHDnf (3.29) 
TO£.__:+ 

where £ = (r — 5ZI__Ti iri)/n-
Next we would like to derive the Ug - action n on (p . First, we notice that 

ZY acts trivially on Dn = D : 

n(Xf) D = 0 , 7r(/ct-) D = D (3.30) 

Then we note: 
Tr(fc) /?,- = q~j/2 Dj , 7r(fc) Y> = Yj£ (3.31) 

from which follows: 
n(k) (p = q-fl2 <p (3.32) 

Thus, the action of U involves only the parameters r,-, i < n, while the action 
of Uq(Z) involves only the parameter r. Thus we can consistently also from the 
representation theory point of view restrict to the matrix quantum group SLq(n), 
i.e., we set: 

D = D'1 = 1A (3.33) 

Then the dual algebra is U = Uq(sl(n)). This is justified as in the q = 1 case [16] 
since for our considerations only the semisimple part of the algebra is important . 
(This would not be possible for the multiparameter deformation of GL(n) [56], [53], 
since there D is not central. Nevertheless, we expect most of the essential features 
of our approach to be preserved since the dual algebra can be transformed as a 
commutation algebra to the one-parameter Ug, with the extra parameters entering 
only the co-algebra structure [21], [29].) 

Thus, the reduced functions for the U action are: 

SpiX,D) = Y, Mm(- > 2l ) r a a l . . . ( - > „ ,„ - l ) m " — l X 
m€_t 

x ( A r - . - d ^ - i Y - 1 = (3.34a) 
= <,3(?)(oi) r ' . . .(Dn_iY-1 (3.346) 

where Y,D denote the variables Yu, i > i, _);, i < n. 
Further we note the commutation relations of the Yj and D; variables: 

YtYij = qYijYu , i>i>j (3.35a) 

YkjYij = qYijYkj , k>i>j (3.356) 

YkjYu = YuYkj , k>i>i>j (3.35c) 

YktYij = YijYtt + XYitYki , k>i,i>j, . - _ * (3.35d) 
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YkiYj = q-'YjYki + q-1 \Ykj , k>i>j (3.35e) 

YjtDi = D,Yje , j>£>i (3.36a) 

YjtDi = qDiYjt , j>i>£ (3.366) 

YjtDi = DiYjt , i>j>£ (3.36c) 

where in (3.35d) we use Yte = 0 when i < t. Note that (3.35a — d) may be 
obtained by replacing a^ with Yn in (2.1a — d). Note that the structure of the 
q - deformed flag manifold for general n is exhibited already for n = 4, while for 
n = 3 relations (3.35c, d) are not present. The commutation relations between the 
Z and D variables are obtained from (3.35), (3.36), by just replacing Yst by z<3 in 
all formulae. 

Next we obtain: 

7r(fc.) Dj = q-Si>l2 Dj (3.37a) 

n(X+)Dj = -SijYj+^Dj (3.376) 

TT(X~) Dj = 0 (3.37c) 

Tr(kt)Yjt = qW'+i.i-s>i-s<+i.'+'«) Yjt (3.38a) 

TT(X+) Yjt = - Sn Y]+1,t + Sa q1-6'-^'2 Yt+1,t Yjt + 

+ S,+1,e ( a - 1 Yj,t-i - Ye,t-i Yjt) 

n(X~) Yjt = -Sl+1,j g - 5 " / 2 Yj-i,e (3.38c) 

(3.386) 

These results have the important consequence that the degrees of the variables 
Dj are not changed by the action of U. Thus, the parameters r t indeed characterize 
the action of U , i.e., we have obtained representations of U, and it is easy to 
check that IT satisfy (2.15). To obtain the representations more explicitly one just 
applies the above formulae to our basis using the twisted derivation rule (3.5). In 
particular, we have: 

ir{ki) (Dj)n = g-""W2 (Dj)n , neZZ , (3.39a) 

Tr(X+)(Dj)n = -Sijcn Yj+1,j(Dj)n , neZZ, (3.396) 

ir(Xr) (Dj)n = 0 , n e ZZ , (3.39c) 

Tx(kx) (Yjt)
n = 9i<*'+>...-*y-*+M+*«) (Yjt)n , neZZ+ , (3.40a) 

*{X+) (Yje)n = ~ Sij cn (Yjt)"-1 Yj+1,e + 

+ Si+1,e cn ( g - 1 Yj,e-, (y,-*)""1 - Ye,t-i ( V » n ) + 

+ Sit q1-"6"**/2 cn Yl+i,e (Yjt)n , neZZ+ (3.406) 

n(X-) (Yjt)
n = - S,+1,j g-rfi.'+>"l2

 C n Yj-he (Yje)11-1 , neZZ+, (3.40c) 

where 
c n = q(1-n)l2[n)q (3.41) 
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It is easy to check that 7r= satisfy (2.15). 
We shall denote by C= the representation space of functions in (3.34) which 

have covariance properties (3.20), (3.25a). The representation acting in C= we 
denote by 7i> doing also a renormalization to simplify things later, namely, we set: 

*,(*.) = ir(k,), Jrf(JT,±) = q ^ ^ ' 2 n(Xf) (3.42) 

Then 7t> also satisfy (2.15). 
Further, since the action of U is not affecting the degrees of £>,, we introduce 

(as in [16]) the restricted functions >f(Y) by the formula which is prompted in 
(3.346) : 

$(?) = {A<p)(Y) = <p(Y,D1=--- = Dn-1 = lA) (3.43a) 

<p(Y) = Y, Mm(- > 2 l ) m a l . . . ( - > n ,n - l ) m " - - 1 (3-436) 

We denote the representation space of <f(Y) by C= and the representation 
acting in Cf by 7rf . Thus, the operator A acts from Cf to Cf . The properties 
of Cf follow from the intertwining requirement for A [16]: 

7T> O A = A O 7T> • (3.44) 

We have defined the representations 7rf for ri E 2Z. However, notice that 
we can consider the restricted functions <fi(Y) for arbitrary complex r;. We shall 
make these extension from now on, since this gives the same set of representations 
for Uq(sl(n)) as in the case q = 1. 

For the more compact exposition of the representation formulae we shall need 
below also the following operators (corresponding to each Yjt) : 

MJ($(Y) = Y, »™MJt {Y2i)m21...(Yn,n-i)m"-n-1 (3.45a) 

Tjt<p{Y) = J ] M m ^ ( Y 2 i r 2 1 . . . ( Y n , n - i ) m " ' - 1 (3.456) 
mGl+ 

Mje / m = (Y2i)m21 • • • ( Y / / ) m " + 1 • • • (Y^n-i)™"-1 (3.46a) 

Tjt frn = qmi' frn (3.466) 

/ * = ( - > 2 i ) m a i . . . ( - > » , » - i r - ' - 1 (3.46c) 

Using this we define the G-difference operators by: 

Vje<p(Y) = | M ; ( T „ - ^ ) # ) (3.47) 

from which follows: 

f>je / m = [mjt], (f21)m21 . . . (Yjt)^-1... ( Y n . n - i r - - 1 (3.48) 
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Of course, for q —> 1 we have Vje —> dyje = d/dYje. (Note that the above 
operators for different variables commute, i.e., with these we have actually passed 
to commuting variables.) 

For the intertwining operators between partially equivalent representations we 
need the action of nR(X-) on Yje and De. Using (3.10) and (3.12) we obtain: 

7rR(X-)(De)
n = 8iecn (De)

nZeM1 (3.49a) 

nR(X-) (Yje)
n = 6ie qn-z>2 [n]q (Yje)

n~l YitM Dw D~2 De., (3.496) 

where, as usual, we use Yjj = 1,A = Do. We shall use also the repeated action of 
TTR(X~) so in addition we need: 

TTR(X-) Zje = 8ti ZjM1 - 6ZJ q-6^l* ZhJ+1 Zjt + 5itj-! DJ1 t\;:.]-2je 

(3.50) 
nR(k{) Zje = ^ + i , i - ^ + ^ - ^ + i , / ) / 2 Zj£ t 3 > 5 1 ) 

4 . T h e case of U 7 ( s l (4 ) ) 

In this Section we consider in more detail the case n = 4, following mostly [24]. 
[For n = 2 ,3 , resp., we refer to [22], [23], resp.] 

It is convenient (also for the comparison with the q = 1 case) to make the 
following change of variables: 

(4.1) 
Y31 = Y3i — qY21Y>2 , Yll — Y41 — qY21Yl2 , 

Y21 = -qY2l , F43 = 0Y43 - Yij = Yij , for [ij) = (32) , (42) 

Using (3.35) we have: 

YuYij = q'-^YijYa , 4 > i > I > j > 1 , (4.2a) 

YkjYij = ql-26i*YijYkj , 4 > k > i > j > 1 , (4.26) 

Y41Y32 = Y32YU + AY31F42, (4.2c) 

YaYfl = YfiYu , (»j) = (23),(32), (4.2d) 
YkiYn = ql-2Si3YijYki - (-l)*"An> , 4 > k > i > j > 1 , (4.2e) 

(each of (4.2a, 6, e) has four cases). Note that (3.36) holds also for Yje replacing 
Yje. Note that for q a phase (\q\ = 1) the q - flag manifold in the Y coordinates is 
invariant under the anti-linear anti-involution w acting as: 

u(Yjt) = Y5-t,s-j. (4.3) 

Thus it can be considered as a a - deformed flag manifold of the quantum group 
5U , (2 ,2) . 
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The reduced functions for the U action are (cf. (3.34)): 

(p(Y,D) = Y^ Vijktmn Wijktmn (4.4a) 
i,j,fc,«?,m,n£___*+ 

*3.>Mm» = (Y2iy (Y3iy (Y32)
k (Y41)

e (Y42)
m (Y43)" x 

x ( o j ) r i (D2y> (_)3) r3 (4.46) 

Now the action of Uq(sl(4)) on (4.4) is given explicitly by: 

TTf(fci) Vijkemn = ç«'+«--+<-"»-i)/- (pijktmn , (4.5a) 

*f(*2) ëijkemn = ç~ + (-'+i+m-»-r2)/2 - . . ^ ^ ( 4 5 6 ) 

M M £.>-*»» = 9»+<->-~+<+»'-'-)/- <pijklmn , (4.5c) 

7Tf(X+) (pijUmn = g - - + (-i+~-<+m)/- [r. - . ] , £ i + _ i i W m n + 

+ g . - r _ - l + (>-_-«.m)/2 [fc]? ̂ . i i + l i t _ l i / r a B + (4.6a) 

+ _.-r.-l + (>-„+/-m)/2 [ m ] ? ^ 0 . f c i / + l i r a _ l i n , 

nf(X+) (pijkemn = qr2-k+(i-i-m+n),2 [^ ^ ^ ^ + 

+ q(t+j+m-n)/2 y_t + k + m _ n _ r 2 ] $ijk+lttmn + 

(4.66) 

+ i?-r2+(- î+.+- + 3m-3»)/2 ^ ^ l . + l f c i f _ l m + l n + 

+ _fc-r_ + (-.+>+m-„)/2 [n]q ^ . > M i r a + l i n _ 1 , 

7Tr(X3+) & i t / m n = - gr,-l-»+(>+fc-/-m)/2 [ ^ «̂  • . _ , M + l 7 n n _ 

_ gr,-l-»+<3>+--3<-m)/2 [ f c ] ? ^ . ^ ^ ^ + (4.6c) 

+ g - -+( - i -*+ '+m) / - [„ - r 3 ] , ^> M , „ , „ + 1 , 

*r(XD fijktmn = ç- + <-J + ~-<+'»>/- [.], £,•__.,•«„,„ + 

+ 9<+2+(->+--/+m)/2 [j]q ^_uk+Umn + (4.7a) 

+ q^+U-k-e+m)/2 ^ f.jktt_hm+lin , 

MXï)<Pijktmn = " g<-'+''-m+">/2 [fc], <fiij,k-1,tmn , (4.76) 
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7Г f(_K 3-) ФгjkЄmn = ~ g - n + ( - > - З W + З m ) / 2 Г ^ ф , ^ ^ ^ -

~ g - n + ( - i - * + ' + m ) / 2 [ m ] q ф i j t k + l t i t m _ l t П _ ( 4 . 7 c ) 

^l + (-j-к+Є+m)/2 

It is easy to check that тг=(кi), 7гf(Xг- ) satisfy (2.15). 
Then we consider the restricted functions (cf. (3.43)): 

Ф(Ӯ) = 5Z ЏijкЄmn фijкЄmn , (4.8a) 
iJ,кìŁtmìnЄ2Ż+ 

фгjкtmn = (Y2ІУ (YзiУ (YзгY (Уkl)' (Г42)m ( П з ) " • (4.86) 

As а consequence of the intertwining property (3.44) we obtаin thаt фijкЄmn 
obey the sаme trаnsformаtion rules (4.5), (4.6), (4.7), аs фijkЄmn-

Recаll thаt we consider the representаtions 7гf for аrbitrаry complex r аnd 
we know from the geneгаl аnаlysis of [23] thаt wheneveг some m; = r^ + 1 or 
rriij = mi + • • • + mj, (i < j) is а positive integer the representаtions аre reducible 
аnd there exist invаriаnt subspаces. We give now two simple exаmples. 

Let m\ = r\ + 1 Є 1N. Then it is cleаr thаt functions ф with џijкЄmn = 0 if 
i > m\ form аn invаriаnt subspаce since: 

ñř(X+) фnJкЄmn = q^J+m ) / 2 [k]q фnJ+l,к-l%Єmn + 

+ 9<>+<-*---»)/- [ m ] , ^ Г l , І M + 1 , m _ l i П , ( 4 ' 9 ) 

аnd аll other operаtors in (4.5), (4.6), (4.7) either preserve or lower the index i. The 
sаme is true for the functions ф. In pаrticulаr, for r\ = 0 the functions in the 
invаriаnt subspаce do not depend on the vаriаble Yѓi-

AnаlOgOUSІy Іf Шз = TЗ + 1 Є .ÍV tҺe fuПCtІOПS ф WІtҺ ЏijкЄmn = 0 if n > Шз 
form аn invаriаnt subspаce since: 

7Г f(X+) ФгjkЄm,r3 = ~ 0( f c+J + m - ^ - 2 ) / 2 [j]g фiì3_\кí+\ìГПГз -

_ (k+Зj + m-ЗЄ-2)/2 r i й . ( 4 Л 0 ) 
(/ [rn\q Srгj,A;-l,^,m+l,rз • 

аnd аll other operаtors in (4.5), (4.6), (4.7) either preserve or lower the index n, the 
sаme holding for the functions ф. In pаrticulаr, for г 3 = 0 the functions in the 
invаriаnt subspаce do not depend on the vаriаble У^з-

It will be convenient to use аlso the following notаtion for the coordinаtes of 
the flаg mаnifold: 

ţ = Y21 , x = Гзi , u = У32 , w = YAl , y = Y42 , rj = Y43 . (4.11) 

The аbove notаtion we shаll employ аlso for the operаtors (3.45), (3.47). In 
terms of the lаtter operаtors we rewrite the trаnsformаtion гules (4.5), (4.6), (4.7) 
for the functions ф аs follows : 

ҡř(кi)Ф(Y) = ~Гl/2 T6 (TxTwүl2 (TUTУГ^2 ф(Y) , (4.12a) 
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ҡf{k2)ф{Y) = q-r>'2 Tu{TxTУүl2 {TЉГ1'2 ф{Y) , (4.126) 

%ĄҺ)ф{Y) = q~rз/2 Tv {T^Ty)1'2 (TXT„)-1/2 ф{Y) , (4.12c) 

%f{Xt) ф{Y) = (1/Л) q-1 Щ (TUTУ)1/2 {TXTW)~1/2 ( ^ T " 1 - q-r*Tt) ф{Y) + 

+ q^-1 Mx Vu Tţ {TxTyү'2 {TUTW)~1/2 ф{Y) + (4.13a) 

+ q-*-1 Mw Vy Tţ {TxTwүl2 (T„T )- 1 / 2 ф{Y) , 

ЌĄX+) ф{Y) = ç*- Mx î>( T-1 (TÍT„)1/2 (TXTУ)-1/2 ф{Y) + 

+ (1/Л) M„ {TçTy)1'2 (т x т„)- 1 / 2 x 

x (q-r^TM Tr,)-1 - qПTţT^TЉTyГ1) ф{Y)+ (4.136) 

+ q-n Mx My Vw {Tx T^)1'2 (T ťT 3)- 1 / 2 ф{Y) + 

+ q-r- My vv тu (т x т y ) 1 / 2 { тv)~1/2 ф{?) , 

ҡĄX+) ф{Y) = - qч-1 мw vx т- 1 (TXTU)1/2 {TWTУГ1/2 ф{Y) -

- qr*-1 My Vu T-1 (T3TU)1/2 (T3T )- 1 / 2 ф{Y) + (4.13c) 

+ (1/Л) q-1 Щ (TшTÿ)1/2 (TXTИ)-1/2 ( 9 " T , - ^ Г - 1 ) ф{Ӯ) , 

тг-(JУГ) ^(Ӯ) = ç ć ť {тuтyүi2 (т x т ш )- 1 / 2 # Ӯ ) + 

+ q2 Mu Vx T€ (TUTУ)1/2 {TXTW)~1/2 ф{Y) + (4.14a) 

+ q2 My Vw T4 (TXTУ)1/2 (TUTШ)-1/2 ^(Ӯ) 

Ч-XTЖ-O = - A (TXT„)1/2 { TУ)~1/2 ф{Y) , (4.146) 

Mxn Ф{Ÿ) = - мxvw т-1 {тwт
3

yүi2 (т x т 3 )- 1 / 2 Ф{Ÿ) -

- Mu Vy T-1 {T^Ty)1'2 (TXT„)~1/2 ф{Y) - (4.14c) 

- q Vv {TwTyү'2 ( T X T U ) - 1 / 2 ф{Y) . 

5. Intertwining operаtors 

This Section reviews mostly [24]. The generаl prescription for finding the in-
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tertwining operators is as in the classical case (cf. also [23]). In order to apply this 
procedure we need the explicit action of -R(X~) on our functions. First we have to 
calculate the action on the new basis Yj£. We have instead of (3.496): 

nR(X~) (Yje)
n = (-1)*" 5a 5i+lti qn-1'2 H X 

x (Y i+i , , )" - 1 Di+1 D~2 Di-lt t = 1,3 (5.1) 

nR(X~) (Yjt)
n = ( - 1 ) ' g (»- - )«-D+i /2 [„], Y2e (Y.e)"-1 Yj3 D2 D~2 , 

where we again use D± = Do = Yjj = 1,4, Yjt = 0 for j < L 
Using (5.1) and (3.49a) we obtain: 

<-r>( Y~) , o m i ' m 2 , m 3 — - < 7 * - I - ^ - ^ - m + ( m i - 2 ) / 2 [1 ~ m 1 - 2 , m 2 + l , m 3 , 
~R\^l ) Yijkemn — <i [%\q ri-ljkfmn i " 

+ ( m i - 2 ) / 2 r _ ..i ~ m i , m 2 , r n 3 -
+ Q L m l L\q Yijkemn ^ 1 2 > 

— (y~\ , X m i > m 2 , m 3 _ 2 f c + ^ + m - n + ( m 2 - 2 ) / 2 r -i ~ m - + - , m 2 - 2 , m 3 + l , 
~R\^2 ) Yijkemn ~ V U\q Yi+lJ-l.kimn "+" 

i „ f c + ^ + m - n + ( m 2 - 4 ) / 2 r i l ~ m i + l , m 2 - 2 , m 3 + l , 
+ ^ l^J? Vijtk-ljmn "T" 

i fc-j+2m-n+(m2-4)/2 r/>l ~mi + l , m 2 - 2 , m 3 + l , 
~T 9 L<d<7 V^+l . j j f c . f - l .m .n+ l ~T~ 

I nm-n+(m2-6)/2 r l ~m 1 + l , m 2 - 2 , m 3 + l 
"T" 9 LmJ? r t j J f c / . m - l , n + l 

_ 2 m - n + ( m 2 - 4 ) / 2 x r / i r/n ~mi + l , m 2 - 2 , m 3 + l , 
q A [K\q [l\q ^ij^lk-iie-l,m,n+l + 

I Jm2-2)/2 r -, l ~ m i , m 2 , m 3 ^ 
+ G [m2 - l j g Vijkemn Z 23 , 

T T p f X " ) _ m - ' m 2 ' m » - a " + ( m 3 - 2 ) / 2 r i ~ m i , m 2 + l , m 3 - 2 
" P ^ 3 J YijkCmn — H lnJ<7 Yijkem.n-l + 

5.2c 
i (mr,—2)/2 r i l ~ r n i , m 2 , m 3 — 

+ ^ " [m3 - l]q Vijkemn Z34 , 

where we have labelled the functions also with the representation parameters 
m3 = rs + 1. As in the classical case [16] the right action is taking out from 
the representation space C f, and while some of the terms are functions from other 
representation spaces (depending on which X~ is acting), there are terms involving 
the Zj£ variables which do not belong to any of our representation spaces. The terms 
with Zj£ vanish exactly when ms £ IV and we take (7rji(X~))ms [16], [23]. Indeed, 
we know from the general prescription (cf. (1.15), [16], [23]) that if m3 £ IV then 
there exists an intertwining operator Im* = (7TH(X~))ms. We have the following 
intertwining properties: 

I!™1 0 "mi ,m 2 ,m 3 = " - m i , m 1 2 , m 3 0 Imi , mX £ IV 

I2™2 °/~m1,m2,m3 = "mi 2 , -m 2 ,m 2 3 0 I™2 , m 2 £ IV , (5 .3) 

Ir3 °"mi,m2,m3 = "mi,m23,-m3 0 I™3 , m 3 £ IV 

(5.2Ò) 
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The explicit expressions for two of these operators are: 

t^rr^t V - ^ ™ - , ; x m i ' m 2 ' m 3 _ t _ 1 \ m i nmi(i-m_/2) rig- »-mi,m 1 2 ,m3 (K A\ 
K^RK^l )) Yijkimn ~ \ l) H \i — m 1 ! ^i-m^jkimn \0'^) 

(TrT>(X~\\7n^ -mi,m2 >m3 __ m 3 ( i -m 3 /2) inJg- ~mi,m23,-tn3 fc e\ 
(7Trt(A3 j j Vijkimn ~ 9 r _ i , V ijklm,n-mz \°'°) 

[ft 'it>3\q' 

Having in mind the preceding discussion let us introduce the following q-
difference operators (using notation (3.45), (3.47), (4.11)): 

h = - q^~2)l2 Vi 2> (T.T^Ty)-1 (5.6a) 

12 - q{m_-4)/2 ^ ^ £x Tu + Vu + 

+ Mz Mn Vw (T^Y1 Ty + q'1 Mr, Vy (TUTW)-X - (5.66) 

- XMXMV Vu Vw (T^y1 Ty) Tu Tw Ty T " 1 

13 = c /m3- 2 ) / 2 Vrj Tv (5.6c) 

It is not difficult to see that if ms G -ffV we have: 

I> = Ir* = (Tfi t^;))"1* • (5.7) 

Let us consider now the intertwining operators corresponding to the two non-
simple non-highest roots ai2, #23 which are realized when 77112 G IN, 77123 G IN, resp. 
In these cases the intertwining operators (up to an overall multiplicative constant) 
are given by : 

m 

I,7 = E a* (**(xnr-k Mxnr (**(*.-))' -
*=o (5.8a) 

m = m i j , (ti) = (12),(23), 

ak = ( -1 )* a [mi\. ( 7 ) , * = 0 , . . . , m , a ^ 0, (5.86) 
[TTli — rCjg \ K / q 

or equivalently, by : 

m 

7,7 = — a'k (nR(X-))m-k (nR(X-))m (MX~))k , 
*=o (5.8c) 

m = mii, ( y ) = (12),(23), 

«'fc = (-l)fc «' | ^ r | r ( 7 ) , ' fc = 0>--->™> « V 0 , (5.8d) 

where we are using the singular vector given in formula (27) of [17]. 
Let us illustrate the resulting intertwining operators in the cases rai2 = 1, 
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m23 = 1- We have (after a suitable renormalization) : 

A12Ui2 = l = ~ t m l - Mq ~R{XD -R{XD + tml]<7 ~R{X2) ~R{XD > (5-9 a) 
rl -mi,m2,m3i _ _2i->-n r -. i („k+l r -i ~mi -1 ,m2-l,?n3 + l , 
"12 Vijkemn U12-I - Q l m l ~ l\q [<1 \j\q r^.j-l.jfc/mn + 

, n-j~t+m \p] ~mi-l ,m2- l ,m3 + l \ 
+ 9 [Hq r^jjfc.f-i.m.n+l J 

- ni-J-n-m1-3 r -i ( k+1 r -i -mi -1 ,m2- l ,m3+l 
0 L Z J ? ^ LJJg ViJ-l^emn + 

1 Hd ~mi-l ,m2- l ,m3 + l , (5.96) 
+ [k\q ̂ _ 1 ) J ; f c _ 1 / m n + V } 

1 ,,-J-^+m r/n ~mi-l ,m2- l ,m3 + l , 
"T" " -̂ -W rtjjfc.f-i.m.n+l ^ 

1 -fc-£-l r 1 ~mi-l ,m2- l ,m3 + l 
+ Q [m\q W l . j M . m - l . n + l " 

-/c-^+m x rii r/n -mi - l ,m 2 - l ,m 3 + l \ 
~ ° A lAJf l*J* Wl. j+l .Jb-M-l .m.n+lJ 

^23lm23 = l = U ~ m 3 ] ? 7TR(^3~) M ^ " ) + l111^ ~R(XD ~R(XD > (5.10a) 
rl -mi,m2,m3i _ k+e+m+n-1 r ii ( -k-l-1 r 1 ~mi + l ,m 2 - l ,m 3 - l , 

112(Pljkemn Im23 = l - ~ 9 [m3 ~ 1J9 ^ [mjg ^jifc/.m-l ,n + 

, „ - i -€+m r/n ^mi + l ,m 2 - l ,m 3 - l _ 
+ V l̂ J<7 ^i+ijjfc^-i.mn 

_ -fc-M-m \ [LI [/n ~mi + l , m 2 - l , m 3 - l \ 
G A [fc]g [£jg r°,-|j + lfJfc-i1/-ilmn J 

A:+^+m+m3-2 r 1 / fc+1 r -i ~mi+l ,m 2 - l ,m 3 - l , 
+ ^ lnJ<7 y* Ulq ri+ij-i^tm^-l + ,- i n , x 

-L TM ^ m i + l , m 2- l ,m 3 - l , 
"1" PHg V^jfc-l^m.n-l "f" 

1 n-j-t+m [f] ~mi + l ,m 2 - l ,m 3 - l , 
+ ° KJ<7 r°t+l,jM-l,mn + 

L „~k-e-l r 1 ~mi + l ,m 2 - l ,m 3 - l 
+ q lmJ<7 <Pijkt,m-l,n 

-k-e+m x r.i \p] ~mi + l ,m 2 - l , rn 3 - l \ 
~ ~ A N<7 KJg ^i.j + l.fc-M-l.mnJ * 

Using the operators I5 the above formulae can be rewritten as: 

J l2Ui 2 = l = [1 ~ m i ] g h h + [mi]</ I2 Ii , (5 .Ha) 

A1
2U12=i = [mi - 1], (q Vx Tu + M1} Vw (TXTW)-X T„) T | (T^T, )" 1 -

- a"™1"1 (qM^VxTu + Vu + 
V (5.116) 

+ M<: M„ Vw {TxTwyl Ty + q'1 Mv Vy (TUTW)-X -

- \MXM„ Vu Vw (TUTW)~X Ty) T>t T^ ( T ^ ) " 1 
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I23lm23=i = [1 - m 3 ] , h I2 + [m3], t2 Is , (5.12a) 

I23lm23=i = - Ç"1 [m3 - 1], («T1 ©„ ( T ^ ) " 1 + M( Vw (TXTW)-' Ty -

- A Mx Vu Vw {TUTW)-1 Ty ) Tu Tw Ty Tv + 

+ qm'~2 (q M€ A Tu + Vu + (5-126) 

+ M€ M , î>„, (T .T , , ) - 1 Ty + ç - 1 M , P , (T.Tu,)-1 -

- \MX Mv Vu Vw {TuTw)~l Ty) V„ Tu Tw Ty . 

6. N e w q - Minkowski space-t ime and q - Maxwell equations hierarchy 
from q - conformal invariance 

6.1. The present Section reviews mostly [25] and in the last subsection [26]. 
We start with the q = 1 situation and we first write the Maxwell equations in an 
indexless formulation, trading the indices for two conjugate variables z,z. This 
formulation has two advantages. First, it is very simple, and in fact, just with the 
introduction of an additional parameter, we can describe a whole infinite hierarchy 
of equations, which we call the Maxwell hierarchy . Second, we can easily identify 
the variables z, z and the four Minkowski coordinates with the six local coordinates 
of a flag manifold of SU(2,2), or of SL(4) with the appropriate conjugation. Thus, 
one may look at this as a nice example of unifying internal and external degrees of 
freedom. 

Next we give the q - analogs of the above constructions. We recall that the 
specifics of our approach is that one needs also the complexification of the algebra in 
consideration. Thus for the q - conformal algebra we can use the Uq(sl(4)) apparatus 
of Sections 4 and 5. Thus, we can propose new q - Minkowski coordinates as part of 
the appropriate q - deformed flag manifold. Using the corresponding representations 
and intertwiners of Uq(sl(4)) we can finally write down the infinite hierarchy of q -
Maxwell equations. 

6.2. It is well known that Maxwell equations 

d^F^ = Ju , d^F^ = 0 (6.1) 

or, equivalently 

dkEk = J0(=4TTP), d0Ek-CkemdeHm = Jk (= -4irjk), 
(6.2) 

dkHk = 0 , doHk+ekemdeEm = 0 , 

where Ek = Fko, Hfc = (l/2)ekCmFem, can be rewritten in the following manner: 

dkF± = Jo, doF± ±iektmdeFt - J * , (6.3) 
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where 
F± = Ek±iHk . (6.4) 

Not so well known is the fact that the eight equations in (6.3) can be rewritten 
as two conjugate scalar equations in the following way: 

/+ F+(2) = j(Zyz) , (6.5a) 

/ - F'(z) = J{z,z) , (6.56) 

where 

/ + = žd+ + dv - ^ (jzd+ + zdv + ždv + d-)dt , (6.6a) 

/ - = zd+ + dv - | (žzd+ + zdv + ždv + 3_) d-z , (6.66) 

x± = xo ± X3, v = xi — ix2, v = x\ + ix2, (6.7a) 

d± = d/dx±, dv = d/dv, d-v = d/dv, (6.76) 

F+{z) = z2{F+ + iF+) - 2zF+ - {F+ - iF+) , (6.8a) 

F-(ž) = ž2{Fr - iF2) - 2žF- - (Fr + iF2) , (6.86) 

J{z,ž) = žz(J0 + J3) + ž{Ji -iJ2) + z{Ji +iJ2) + {J0- J 3 ) , (6.8c) 

where we continue to suppress the x^, resp., x'-t,u,t;, dependence in F and J . (The 
conjugation mentioned above is standard and in our terms it is : 7 + <—> I~, 
F+0) <-» F-(z).) 

It is easy to recover (6.3) from (6.5) - just note that both sides of each equation 
are first order polynomials in each of the two variables z and z, then comparing the 
independent terms in (6.5) one gets at once (6.3). 

Writing the Maxwell equations in the simple form (6.5) has also important 
conceptual meaning. The point is that each of the two scalar operators /"*", I~ is 
indeed a single object, namely it is an intertwiner of the conformal group, while the 
individual components in (6.1) - (6.3) do not have this interpretation . This is also 
the simplest way to see that the Maxwell equations are conformally invariant, since 
this is equivalent to the intertwining property. 

Let us be more explicit. The physically relevant representations Tx of the 4-
dimensional conformal algebra 5u(2,2) may be labelled by \ = [n\->n2',d], where 
ni,ri2 are non-negative integers fixing finite-dimensional irreducible representations 
of the Lorentz subalgebra, (the dimension being (n\ + l)(n2 + 1)), and d is the 
conformal dimension (or energy). To these representations correspond (via Weyl's 
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unitary trick) ERs of Spm(5,1) which would be labelled as {(ni — n 2 ) / 2 , 1 + 
(ni + n2 ) /2 , d — 2} , cf. (1.26). Then the intertwining properties of the operators 
in (6.6) are given by: 

I+ : C+—>C°, I+oT+ = T ° o I + , (6.9a) 

I" : C~ —>C°, I"oT" = T ° o I " , (6.96) 

where Ta = T x , a = 0,+,—, Ca — Cx are the representation spaces, and the 
signatures are given explicitly by: 

X+ = [2 ,0;2] , x - = [0 ,2 ;2] , X° = [ l , l ; 3 ] , (6.10) 

as anticipated. Indeed, (ni ,n2) = (1,1) is the four-dimensional Lorentz represen­
tation, (carried by J^ above), and (ni ,n2) = (2,0), (0,2) are the two conjugate 
three-dimensional Lorentz representations, (carried by F+ above), while the con-
formal dimensions are the canonical dimensions of a current (d = 3), and of the 
Maxwell field (d = 2). We see that the variables z^z are related to the spin prop­
erties and we shall call them 'spin variables'. More explicitly, a Lorentz spin-tensor 
G(z,z) with signature (ni ,n2) is a polynomial in z,z of order n i , n 2 , resp. 

Formulae (6.9), (6.10) are part of an infinite hierarchy of couples of first order 
intertwiners given already in [30] for the Euclidean conformal group SU*(4), and 
then for the conformal group SU(2,2) in [51], [15]. (Note that [30], [51] use a 
different approach, while [15] already uses the essential features of [16] in the context 
of the conformal group.) Explicitly, instead of (6.9), (6.10) we have [15] : 

J + . C + - + C 0 , , J + o T + = T ° o / + , (6.11a) 

I- : C~ - > C°n , I- o T~ = T° o I- , (6.116) 

where Ta = TXn, Ca — CXn, and the signatures are: 

Xt = [n + 2 , n ; 2 ] , *n = ["," + 2;2] , Xn = ^ + 1 ^ + 1;3] , n G 2L+ , (6.12) 

while instead of (6.5) we have: 

I + F + ( - . £ ) = Jn(z,z), (6.13a) 

I' Fn(z,z) =J„(z,z), (6.136) 

where 

In = ~ - | - - (žд+ + дv) - - (žzд+ + zдv + žдv + д-)дг , nЄZ+ (6.14a) 

^ y ^ (zд+ +дv)-\(žzд+ + zдv + žд-v + д-)д-z , nЄ2Z+ (6.146) I- = 

while F+(z,z), Fn (z,z), Jn(z,z), are polynomials in z, z of degrees (n + 2,n), 
(n, n + 2), (n + 1, n + 1), resp., as explained above. If we want to use the notation 
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with indices as in (6.1), then F^(z,z) and F~(z,z) correspond to FtlUtalj,tmjQn which 
is antisymmetric in the indices tt, v, symmetric in a.\,..., an, and traceless in every 
pair of indices, while Jn(z,z) corresponds to J^.ai,...,«„ which is symmetric and 
traceless in every pair of indices. Note, however, that the analogs of (6.1) would be 
much more complicated if one wants to write explicitly all components. The crucial 
advantage of (6.13) is that the operators I„ are given just by a slight generalization 
of I- = IQ. In another form these operators may be obtained [51] from those for 
the Euclidean conformal group in [30] using Weyl's unitary trick. The Euclidean 
counterparts of (6.12) are xt > X~ -> xt > *n ^ n e notation of (1.26) with h — 3, and 
(7711,7772,7713) = (0,1,77 + 2), while the Euclidean counterparts of (6.11a, b) are d~\ , 
d\\ , in the notation of (1.27). 

We shall call the hierarchy of equations (6.13) the Maxwel l hierarchy . The 
Maxwell equations are the zero member of this hierarchy. 

To proceed further we rewrite (6.14) in the following form: 

It = \((« + 2 ) I i h - (n + 3 ) / 2 / i ) , (6.15a) 

In = \ ((n + 2 ) / 3 / 2 - (n + 3 ) / 2 / 3 ) , (6.156) 

where 
I! = dz , I2 = zzd±+zdv + zdv+d- , I3 = d-z . (6.16) 

We note in passing that group-theoretically the operators Ia correspond to the three 
simple roots of the root system of 5/(4), while the operators 1^ correspond to the 
two non-simple non-highest roots [15], [16]. 

This is the form that we generalize for the q - deformed case. In fact, we can 
write at once the general form, which follows from (5.11a), (5.12a) (cf. also (5.6)) : 

X = \([n + 2]ql!ll ~{n + 3 ] , / | / « ) , (6.17a) 

,In = \([n + 2}qllll -\n + 3],/2«/3«) . (6.176) 

It is our task (using the previous Sections) to make this form explicit by first 
generalizing the variables, then the functions and the operators. 

6 . 3 . The variables x±,v,v,z,z have definite group-theoretical meaning, namely, 
they are six local coordinates on the flag manifold y = SL(4)/B, where B is the 
Borel subgroup of SL(4) consisting of all upper diagonal matrices. (Equally well 
one may take the flag manifold SL(4)/B~, where B~ is the Borel subgroup of lower 
diagonal matrices.) Under the natural conjugation (cf. also below) this is also a flag 
manifold of the conformal group 5U(2,2). 

We know from Sections 3. and 4. what are the properties of the non-
commutative coordinates on the SLq(4) flag manifold. We make the following 
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identification (compare with (4.11)) : 

x± = w = F41 , x- = u = F3 2 , v = x = Y31 , v = y = Y42 (6.18a) 

z = £ = Y21, z = rj = Y43, (6.18b) 

for the O-Minkowski space-time coordinates and for the spin coordinates, which we 
denote as their classical counterparts. Thus, we obtain for the commutation rules 
of the a-Minkowski space-time coordinates (cf. (4.2)) : 

x±v = q vx± , x±v = q vx± , 
(6.19) 

X±X- — X-X± = AW , VV = VV . 

As expected, relations (6.19) coincide with the commutation relations between 
the translation generators P^ of the G-conformal algebra [20]. It is also easy to notice 
that these relations are as the GLq-i(2) commutation relations [45], if we identify 
our coordinates with the standard a, b, c, d generators of GLq-i (2) as follows: 

M = (: i) - ( v ;_) • <«°> 
The (/-Minkowski length is defined as the GLq-i(2) (/-determinant : 

£q = detg-i M = ad — qbc = x±X- — qvv , (6.21) 

and hence it commutes with the q-Minkowski coordinates. It has the correct classical 
limit £q=i = XQ — x2. 

We know from (4.3) that for q phase (\q\ = 1) the commutation relations (6.19) 
are preserved by an anti-linear anti-involution to acting as : 

u(x±) = x± , LJ(V) = v , (6.22) 

from which follows also that u>(£q) = £q . 

Remarks : 
1. Note that relations (6.19) are different from the commutation relations of q-
Minkowski space-time (with q real) in [11], [54], [43]. Recently, [44], it was shown 
that the (/-Minkowski space of [11], [54], [43] can be obtained by a quantum Wick 
rotation (twisting) from a q-Euclidean space. The latter is also related to GLf?(2), 
as our (/-Minkowski space, however, for q real and under a different anti-linear anti-
involution: &E(a) = d, tOE(b) = —O_1C, i.e., for the matrix M (cf. (6.20)) this is 
the unitary *, [44], while with our conjugation (6.22) M is hermitean. 
2. Another proposal for deformed space-time may be obtained by extension of a 
new operator realization of SU(2) quantum group representation matrices over non-
commuting coordinates [6]. 
3. In the framework of algebraic field theory different proposals for quantum space-
times were put forward in [42], [32]. 
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The commutation rules of the spin variables z,z between themselves, with the 
g-Minkowski coordinates and with the ^-Minkowski length are (cf. (4.2)) : 

ZZ = ZZ , 

X+Z -= q~ zx+ , x. -Z = qzx- -\v , 

VZ = q~ zv , vz -- qzv — \x+ , 

ŽX+ -- qx+ž , žx- = Ч ~lX-Ž + \v , 

ŽV = q~ vž + Лx_j- , žv -= qvž î 

ZІq - £qz , z>cq — IqŽ . 

(6.23) 

Certainly, the commutation relations (6.23) are also preserved (for q phase) by the 
conjugation LJ which acts (cf. (4.3)) by : u(z) = z. Thus, with this conjugation 
yq becomes a flag manifold of 5Ug(2,2). 

From (4.4) we know the normally ordered basis of the q - flag manifold yq con­
sidered as an associative algebra : 

$ljkemn = zl vj xk_ x% v™ z" , t, j ,fc,-f,m,n e 2Z+ . (6.24) 

Let us denote by Z , Z , and Mq the associative algebras with unity generated 
by 2, 2, and x±, v, u, resp. These three algebras are subalgebras of yq, and we notice 
the following structure of yq : 

yq = ZdMqDZ, (6.25) 

where A(~ B denotes the tensor product of A and B with A acting on B. 
We introduce now the representation spaces Cx , \ = [ni->n2\d] • The 

elements of Cx , which we shall call (abusing the notion) functions, are polynomials 
in 2, z of degrees n\, n2, resp., and formal power series in the q - Minkowski variables. 
(In the general Uq(sl(n)) situation the signatures n i ,n2 are complex numbers and 
the functions are formal power series in 2, 2 too, cf. (3.436).) Namely, these functions 
are given by: 

$nun?(Y) = ]T ^Mmn Vijkimn , (6.26) 
i,j,k,l,m,n£Zi 

i < n i , n < n 2 

where Y denotes the set of the six coordinates on yq . Thus the analogs of F„ , 
J n , cf. (6.13), are : 

qFn = (^n-f2,n(J>) , qF~ = (^n ,n+2(i>) , qJn = <pn+l,n+l{Y) . (6.27) 

Next, as in (3.45), (3.46)), we introduce operators MK , TK, where n = 2, 
± , v, v, 2, and MK acts on (fijkemn by increasing with 1 the index i,j, k,£, m,n, 
resp., for K = 2, v, —, + , u, 2, resp., wrhile TK acts on (pijkimn by multiplying it with 
gp , where p = i,j,fc,£, 7n,n, resp., for K; = z,u, —, + , u , 2 , resp. Then we define the 
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^-difference operators by (cf. (3.47)) : 

VKy(Y) = iM-1 (^-T-1) <p(Y) (6.28) 

Finally, we write down explicitly the operators qI^ in (6.17). This can be 
done by substituting Ia from (5.6) in our variables using (6.18), or by using directly 
(5.11b), (5.12b) (up to normalization and substituting our variables and representa­
tion parameters) : 

, t f = y [n + 2}q (q Vv T- + M-2 V+ (T..T+)-1 Tv) T2
2 (T^)'1 -

- p-n~2 (q M2 Vv T- + V- + 

+ M2 M-2 V+ (T.T+)-1 Tv + q-1 M2 Vv (T-T+)'1 -

- \MvM-2 V- V+ (T-T+)-1 T s ) V2 T2 (T^)'1 (6.29a) 

*In = | [n + 2}q (q-1 Vv (T-T+)-1 + M2 V+ (TVT+)~X Tv -

- \MVV- V+ (T-T+)-1 Tv ) T_ T+ Tv T-2 + 

+ ^qn+3 (q M2 Vv T- + V- + 

+ M2 M-2 V+ (TVT+)-' Tv + q-1 M-2 Vv (T-T+)'1 -

- \MV M-2 V- V+ (T-T+)-1 T0) V-2 T- T+ Tv (6.296) 

Clearly, for q = 1 the operators in (6.29) coincide with (6.15). 

With this the final result for the q - Maxwell hierarchy of equations is (cf. 
(6.27)) : 

, / + , F + =qJn (6.30a) 

qI~ qF~ =qJn (6.306) 

Note that our free q - Maxwell equations, obtained from (6.30) for n = 0, and 

qJo = 0, are different from the free q - Maxwell equations of [52], [47]. (This is 
natural since they use different q - Minkowski space-time from [11], [54], [43].) The 
advantages of our equations are: 1) they have simple indexless form; 2) we have 
a whole hierarchy of equations; 3) we have the full equations, and not only their 
free counterparts; 4) our equations are q - conformal invariant, not only q - Lorentz 
[47], or q - Poincare [52], invariant. (In fact, it is not clear whether the q - Lorentz 
algebras of [11], [54], [43], [49] or the q - Poincare algebra of [50] are extendable to 
q - conformal algebras (often easy q =- 1 things fail for q ^ 1).) 

6.4. The material in this subsection appeared first in [26]. We start by noting 
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that formulae (6.13), (6.11), (6.12) are part of a much more general classification 
scheme (discussed in the classical Euclidean conformal group case in subsection 1.3 
above, and in [15], [16]) involving also other intertwining operators, and of arbitrary 
order. 

A subset of this scheme are two infinite two-parameter families of represen­
tations which are intertwined by the same operators (6.14). Explicitly, instead of 
(6.11), (6.12) we have: 

I+
+ + : C \ + — > C ° t + , I\ +oT++ + = T°+ + o I + + + (6.31a) 
n7 ,nj nĵ J njyn^ nj ,n^ nj ,nj nj ,n£ ? z 7 , n 2

r v ' 

/"_ _ : C'_ _ —»• C°~ _ , _"_ . o T . _ = T°Z _ o /"_ _ (6.316) 
n_ , n 2 nl , n 2 h1 , n 2 n_ , n 2 n_ , n 2 n_ , n 2 n_ , n 2

 v ' 

where Ta
± ±=TX"t-nt, C\ ± = C * n * ' " 2 , _ = ± , or a = 0± , and 

n j . n j n i >n2 

x„í„í = Ҝ-i,n+ + i;^ ^ + 2] 

г _ _ Щ — П~ -л 

K~,n- = [ П ľ " 2 Î " + 1] 

*„:.»- =[»Г + i ł»_--i;2 2-_p-+2l 

n+ Є -V, n+ Є _£+ , (6.32a) 

n f Є Ж + , n^ Є N , (6.32b) 

while instead of (6.13) in the a = 1 case and (6.30) in the G-deformed case, we have: 

«Cf^,nJ^*) = J « M ) > ( 6 - 3 3 «) 
,/;_ F - __ (z, z) = J ° I __ (z, z) , (6.336) 

ь 2 " l ' , l 2 П . , П 0 

where qI*+, gI _, are given by (5.11) (or (6.14) for q = 1), while F 1 ^ ±(z,z), 

J± ± (z, z), are polynomials in z, z of degrees (nx , n_r), (? ĵ =p 1, n_r ± 1 ) , resp. The 
n. , n 2 

Euclidean counterparts of x + + + » X°+ + > resp. are (in the notation of (1.26) with 

h = 3), x_T » X3~ > resp., or X3 1 X2 > resp., depending on the values of n_*~,n_>~ , 

while the counterpart of (6.11a) is d\ , cf. (1.27). Analogously, the Euclidean 

counterparts of X~-n- , X ° - n - - resp., are x~ , xf 1 r e sP-> o r Xs" 1 X2", r e sP-» 

depending on the values of n~,n~ , while the counterpart of (6.116) is df. 
The crucial feature which unifies these representations is the form of the oper­

ators qIn, which is not generalized anymore in equations (6.33). 
We shall call the hierarchy of equations (6.33) the generalized q - Maxwel l 

hierarchy . The q - Maxwell hierarchy is obtained in the partial case when 
Y 0 t . = Y°~ - — X°n which fixes three of the four parameters: nt — 2 = nt = 
^n^,n^ ^nl ,n2 ^ n r 1 z 

n~ = n~ — 2 = n. 
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Another one parameter subhierarchy of the generalized q - Maxwell hierarchy 
is obtained if we set nx = n2 = n £ N, then 

Xtn = Xn,n = [n + l ,n + l ; l ] = X ° \ (6.34a) 

X°% = [ n T l , n ± l ; 2 ] = xl-i (6.346) 

cf. (6.12). This hierarchy will be called the potential q - Maxwel l hierarchy . 
The reason is that the lowest member obtained for n = 1 (and q = 1) consists of 
the equations: 

d{ilAu] = F^ . (6.35) 

We also mention the equations obtained from the generalized q - Maxwell hier­
archy for the minimal possible values of the parameters, namely, for ri{ = n2 = 1, 
n~ = n2 = 0, i.e., the two conjugate q - Weyl equations. 
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Figure Capt ions 

Fig. 1. Partially equivalent ERs and intertwining operators for Spm(n +1 ,1 ) with 
n e 2W, h = n / 2 . 

Fig. 2. Partially equivalent ERs and intertwining operators for Spm(n-f-l, 1) with 
n e 2JN + 1, h = ( n - l ) / 2 . 
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