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NATURAL OPERATORS LIFTING VECTOR FIELDS
ON MANIFOLDS TO THE BUNDLES OF COVELOCITIES

W. M. Mikulski

Abstract. We prove that for n-manifolds (n > 3) the sets of all natural operators
T — (T{*,T") and T — TTL*, respectively, are free finitely generated C°((R¥)")-
modules. We construct ezplicitly the bases of the C°((R¥)")-modules.

Keywords: natural operators, bundle functors.

AMS classification: 58A20, 53A55.

0. Introduction. We show how a vector field X on M can induce a fibre bundle
map Ap(X) : T{*M — T* M over idp (or a vector field Ap(X) on Tf*M), where
T*M = J7(M,RF), is the bundle of (k,r)-covelocities over M, cf.[6]. In Section 1
we present some constructions of such types. In Section 2 we remark that the idea of
such constructions is reflected in the concept of natural operators T — (T7*, T{*) (or
T — TT[*), cf. [6]. The rest of the paper is dedicated to the proof of the following

two theorems.

Theorem A For n-manifolds (n > 3), the space of all natural operators T —
TT[* is a free finitely generated module over C°((R¥)").

Theorem B  For n-manifolds (n > 3), the space of all natural operators
T — (T{*,T{") is a free finitely generated module over C°((R*)").

0This paper is in final form and no version of it will be submitted for publication elsewhere.
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In the proof of these theorems we construct explicitly the bases of these C°((R¥)")
-modules.

Since T{* M = T{* x p... x M T{* M (I-times ), without loss of generality we assume
that [ = 1. If £ = 1 we reobtain the result of [10].

Similar problems have been studied by many authors, cf. [1], [4], [5]-[10] e.t.c.

All manifolds and maps in this paper are assumed to be smooth, i.e. infinitely
differentiable.

1. Main examples. Let n,r,k,¢q > 1 be integers, M be an n-manifold and X be
a vector field on M. The C°°(M)-module of all global vector fields on M is denoted
by X(M).

In this section we present some examples of fibre bundle maps T{*M — T{*M
and vector fields on T7*M induced by X.

Example 1.1. Let ” < ” be the usual lexikographic ordering on Z2. Let
Qi =Uiza Q;’,‘;, where for any s € {1,...,q}

;’,’q ={((a1,a1),..., (as,@,)) € (Z2). .

(1.1)
(0,1) < (a1,01) £ ... < (ag,@,) < (s—1+r—g,k)}.

We see that if 1 < s < maz(l,q —r +1), then @y} = 0. Furthermore, if ¢ > s >
maz(l,q — r + 1), then card(Qy7) = ((""'_’,)H"l). For any

ox = ((al,al),...,(a,,a,)) € Q;,q

we have a fibre bundle map A5""9(X) : T[*M — T* M over idps defined as follows.
Let ¥ = (71,.-,7k) : M — R¥ and =z € M be such that y(z) = 0. Considering X
as the differential operator C°(M) — C*°(M) we define by ;.o = by: M — R by

by = [I(X%7m — X27,(2)) = (X ™9, = X275, (2))- (X ™75, = X5, (2)),

where X* = X o...0 X (a;-times).

Since o € Qf ., the g-jet at = of b, depends only on the r-jet at z of 4. To see this
we consider an arbitrary n = (11,...,7) € (mi+!)¥  where m, is the ideal of maps
M — R vanishing at z. Let ' = v + 7. Then by — b, is a sum of terms of the form
[1;=1(X% p; — X% pj(z)), where p; € {n1, ..., 7, Y&, -+ 7a, } and pj, = n;, for some
jo € {1,...,s} and i € {1,...,k}. We see that X% p; — X% p;(z) € m, and

r+l-aj,

X %o Pj. — X %o Pj. (z) =‘Xa,',mo € my C mz—a+2,
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as aj, < a, <s—1+r—g<r—1. Therefore by — by € mi+!, as well.
Any element from T*M is of the form j7v, where v : M — R* and z € M are
such that y(z) = 0. We put

(1.2) (ANH X)) = 38(by) = A [(X % s — X 7ai(2)))
=1

for any jIvy € Tf* M. Since b,(z) = 0, jI(by) € (T{*M).. Using the local coordinate
argument it is easy to verify that AK}""" (X) is smooth. Of course, it is a fibre bundle

map over idyy.

Example 1.2. In general if E — M is a vector bundle and A : E — E is a fibre
bundle map over idp, then there exists the unique vertical vector field A* € X(E)
such that A*(y) is the velocity vector of R >t — y +tA(y) € E at 0, where y € E,
cf. [2]. Hence for any fibre bundle map A : Tf*M — T[*M over idps there exists
At € X(T{*M). In particular, for any (o,...,a¥) € (@Qi.) = Qp, x ... X Q%
(k-times ) there exists AK;""‘ah;r’k(X) € X(T[*M) given by Ag;""’ab;"k(X) =
(A5 (X), oo, A3 (), where Q, and (A3"*7(X), ..., A3 "RT(X))
T&*M - TP*M = T7*M X ... Xp Ty* M (k-times ) are defined in Example 1.1.

Example 1.3. In general, if G is a natural bundle, then we can define G(X) €
X(GM) ( the complete lift of X to GM) via the prolongations of flows, c.f. [3],[6].
Hence we have T{*(X) € X(T{*M) such that: if ¢, is the flow of X then T{*(y:) is
the flow of T{*(X).

2. Natural operators T — (T{*,T{*) and T — TT{*. It is well-known that
the concept of geometrical constructions can be formulated in the form of natural

operators, cf. [6].

Example 2.1. Let n,r, k, ¢ be fixed natural numbers. Let a € Q , (or (al,...,ak)
€ (Qf,)%), where Qf | is defined in (1.1). The family A*"%7 (or At matinky of
functions

X(M) > X — AL™M(X) € C(T* M, TE* M)

(or X(M) > X — A%k (X) € X(TP* M) ),
for any n-manifold M, where A3"*9(X) (or A;;""'ah;"k(X ) ) is described in Exam-
ple 1.1 (or in Example 1.2) and C33(T{* M, T{" M) is the set of all fibre bundle maps
over idy, is a natural operator T — (Tf*,T{") (or T — TT¢*). Similarly, the family

T7* of functions

X(M) 3 X - T{*(X) € X(T{*M)
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for any n-manifold M, where T7*(X) is described in Example 1.3, is a natural oper-
ator T — TT{*.

3. The main result. Let n be a natural number. Let G : Mf — VB and
F : Mf, — VB be bundle functors, cf.[6], where VB is the category of vector bundles
and vector bundle maps. Let E = (G|Mfr)* : M f, — VB be the bundle functor dual
to (G|Mfn)ie. EM = (GM)* and Ep = (G(p™1))* for any M € obj(M f,,) and any
¢ € morph(Mf,). . Then the set of all natural operators T — (E, F) (or T — TE),
cf. [6, p.174], is a C((GoR)*)-module. Actually, for any A,B : T — (E, F) (or
A,B:T — TE and f,g € C*((GoR)*) the natural operator fA+¢gB:T — (E, F)
(or fA+¢B:T — TE) is defined by

((fA+9B)u(X))(w) = fwx)(Am(X))(@)) + 9(wx)(Bm(X))(w)) , -

where M is an n-manifold, X € X(M),w € E;M, z € M, and wherewx € (GoR)* is
defined as follows. Let {¢7} be the flow of X. Let ®X : R —» M be a map defined on
some neighbourhood of 0 € R by ®X(t) = ¢X(z). Then we put wx := wo (Go(®X)),
of [10].

In particular, Tf* : Mf, — VB is naturally isomorphic to (T,fr)IM fn)*, where
T : Mf — VB is the linear r-th order tangent bundle functor, see [6, p.123], and
T,g')M =TOM xpr... xp TMM ( k-times). Now using the isomorphism Tér)R =
R", w = (w(55(z*)))i=,, we have the C*®°((R¥)")-modules of all natural operators
T — TT{* and T — (T[*, T{*) respectively. It is easy to verify that for every natural
operators A,B : T — (T{*,T{*) (or A,B : T — TT[* and f,g € C((R¥)") the
natural operator fA+gB : T — (Tf*,T{") (or fA+gB: T — TT[*) is given by

(fA + gB)m(X))(z7) =f(X7(), ..., X"7(2))((AM (X)) (3Z7))
+9(X(2), -, X"1(2))(BM(X))(527))s
where M is an n-manifold, X € X(M), X* = X o...0 X (s-times) and jJy € T{*M.
The main result of this paper is formulated in the following two theorems, corre-
sponding to Theorem A and Theorem B, respectively.

Theorem 3.1. Let r,k,n be natural numbers. If n > 3, then (for n-manifolds)
the natural operators T{* and Aehetink for (al, .., ak) € (Q%..)* (described in
Ezample 2.1) form a basis of the C®((R¥)")-module (described above) of all natural
operators T — TTy*.

In particular, if n > 3, then the C®((R¥)")-module of all natural operators T —
TTy* is isomorphic to (C°°((R")'))l+k}::-1 ("%,
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Theorem 3.2. Let r,k,q,n be natural numbers. If n > 3, then (for n-manifolds)
the natural operators A%™%9 for o € Q%,q (described in Ezample 2.1) form a basis
of the C®°((R*)")-module of all natural operators T — (T[*,T{*).

Since T{*M = T{* xpr ... xpm T{* M (l-times ), we have the following consequence
of Theorem 3.2.

Corollary 3.1. Let r,k,q,l,n be natural numbers. If n > 3, then (for n-
manifolds) the natural operators (A"“;""’“,...,A"";""’q) for (a?,...,a'") € (Q;,q)l form
a basis of the C®°((R*)")-module of all natural operators T — (T*,T{"), where

. 1,
(Aal;r,k,q’ .",Aa';r,k,q)M(X) = (Aﬁ,r,kyq(x)’ ...,A;["’k’q(X)) . T{-M — T,th.
In particular, if n > 3, then the C°((R¥)")-module of all natural operators T —
a* .. . & ‘E' ((a+r—q)k+n—1)
(TL*, T) is isomorphic to (C°((RF)")) ~e=maz(ta-r+1) : .

4. A preparatory proposition. The following (decomposition) lemma for
E = T{* shows that Theorem 3.1 is a simple consequence of Theorem 3.2.

Lemma 4.1. Let E = (G|Mf,)*, where G : Mf — VB is a bundle functor.
Let A: T — TE be a natural operator. Then there ezist h € C®°((GoR)*) and
a natural operator B : T — (E,E) such that A = hE + B*, ie. (Am(X))(w) =
hwx)(E(X))(w)) + (Bu(X))(w) for any n-manifold M, X € X(M), w € E, M
and x € M, where wx € (GoR)* is defined in Section 3, E(X) is the complete lift of
X to E (see Ezample 1.3) and the operation ( )* is described in Ezample 1.2.

A proof of Lemma 4.1 one can find in [10].

The proof of Theorem 3.2 will be given in Section 5. In the proof of Theorem 3.2

we shall use some technical facts proved in this section.

From now on the usual coordinates on R" are denoted by z!, ..., z". The canonical
vector fields z2; on R™ are denoted by ;. The C*((R*)")-module of all natural
operators T — (Tf*,T{") for n-manifolds is denoted by T (r, k,¢,n).

For any integers r, k,g,n > 1 we have a homomorphism of C*°((R*¥)")-modules
(4.1) T(r,k,g+1,n) 3> A > nitloA € T(r,k,q,n),

where (7§*t10A)m(X) := 7§*! 0 (Ap(X)) for any n-manifold M and any X € X (M)
and where for arbitrary 7,k

(4.2) At TN M - TP M, 7257 ) = 50,
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is the jets projection. We also have a homomorphism of C*°((R*)")-modules
(4.3)  T(rk,qn) 3 A— Aot € T(r +1,k,q,n)

where (AonT*1)p(X) := (Am(X)) o w1, A C*°((R¥)")-module structure in 7 (r +
1,k,q,n) is induced from the C*((R*)+!)-structure by the homomorphism
C=((R*)") 3 f — fopr € C®((R*)™)
of rings, where p, : (R¥)™! = (R¥)" x R¥ — (R*)" is the projection.
In this section we will prove the following proposition.

Proposition 4.1. Let r,k,q,n be natural numbers. If n > 3, then the natural
operators A%™*9 for a € Q% (see (1.1) and Ezample 2.1) form a basis of the
C((R*)")-submodule

(4.4) Tr,k,q,n) = {A € T(r,k,q,n): mq.,04 = 0}
where w3 := 0.

Proposition 4.1 will be a consequence of the following lemma.

Lemma 4.2. Let r,k,q,n be natural numbers. For any C € T°(r,k,q,n) define
RC : (R*)" x (R¥)" > R by

r r—1
(45)  hm) = (20 (Crr@NGE(Y pm@)™ + Y —im(@)"2)),
m=1 m=0

where v = (V1,..,Vr), = (Hoy-ery ir—1) € (RF)" and

(4.6) ®: (TR — R, (ifn) = 5(0)"(0).
Ifn > 3, then the function

4.7 T°(r,k,q,n) 3 C = hC € C=((R*)" x (R*)")

is a C°((R¥)")-module monomorphism, provided a C°((R*)")-module structure in
Co((R*)" x (R¥)") is given by (f +9)(¥,2) = f(,2) + 9(y,2) and (Af)(y,2) =
A©)f(y,2) ;where X € C=((R*)"), f,g € CZ((R*)" x (R*)") and y,z € (R¥)".

First we prove the following lemma.

Lemma 4.3. Let A\B € T(r,k,q,n) be such that g4 = g¢B, where g4 :
(Tr*R™)o — R is defined by gA(j5v) = (®0(Ar~(01)))(i§7). Ifn > 2, then A= B.
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Proof of Lemma 4.3. Letv; : R® — R and n¢ : R — R be such that ji(n¢) =
(Are(2))(€) and (1) = (Brn(31))(C) for any ¢ € (T{*R")o. By the assumption
we have D%y¢(0) = D*n¢(0) = 0 for any a € (N U {0})" with 0 < |a| < ¢—1 and
any ¢ € (T{*R")o (D :=(01)** 0...(Gn)*). It is sufficient to show that D*v¢(0) =
D21¢(0) for any a € (N U {0})" with |a| = g. (Then (Ar~(81))({) = (Br~(81))(¢),
i.e. Arn(01) = Brn(61) over 0, and consequently A = B because of the Frobenius
theorem.)

By the polarization formula, it is sufficient to show that X%5¢(0) = X%v,(0) for
any constant vector field X € X(R") and for any ¢ € (Tf*R"),. We can assume
that X ¢ span(0,). Since n > 2, there exists a linear isomorphism ¢ : R® — R"
preserving 0; such that Ty 0 3; = X o ¢. Using the invariancy (of A and B) with
respect to ¢ we obtain ‘

X¢(0) = (8)(n¢ 0 7 )(0) = ¢'g*(TL*¢(¢)) = ¢'g®(TE*¢(¢)) = X17¢(0).
Lemma 4.3 is proved. g

Proof of Lemma 4.2. It is easy to see that the function given in (4.7) is
a homomorphism of C®°((R¥)")-modules. Let A,B € T°(r,k,q,n) be such that
hA = hB, We shall prove that A =B.

By the invariancy of A with respect to b = (z!, 22, tz?, ..., tz"), t # 0, (preserving
8 and 8;) we obtain that g4(j§7) = gA(ig(y o b)) for any j§y € (T{*R")o and
t € R — {0}, where g# is defined in Lemma 4.3. If ¢ — 0 then

(4.8) g4 Gier) = 9*(ig(v 0 (2,270, .,0)))

for any j§v € (Tf*R")o. Let P = {(m,s) € (NU{0})2 : 1 < m+ s <r}. Define
fA:(RF)P > Rby

FAllmai (mys) € PY = g*G5( 3 —1itima(@ ™))
(m,s)eP

We show that f4 is independent of pm,, for all (m,s) € P with s > 2.

Assume the contrary. Let s, > 2 be the maximal number for which there exists
m such that (m,s,) € P and f# depends on pm ,,. Since n > 3, the diffeomorphism
¢ = (zt,22,23 + (22)%,24,...,2") : R® — R" preserves 8. Since jlp = ji(id),
then T¥*~1(jdn) = jin for any jin € (TF*R"), with j@~'n = 0. Hence using the
invariancy of A with respect to ¢ and the assumption 7rg_1 o(Arn(81)) = 0 we deduce
that

40 (Tr"p ™o = B0 (Arn(@1)) o (TF*¢ ™o = & 0 (T¥" 9o 0 (Arn(21))
= &0 (A~ (81)) = g%,
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Then, using (4.8), we have

FA (G (m, s)eP>—ngo<Z La@) 430 Y () ())

=1 m—O

o7 (j5 (Z L@ 435 T (e
s=1m=0

r—38,

+3 e @)"2)

8,—1 r—s

=i} ((2 @4 Y S ()

& &
:Z; m,ls —Hme.(3)"3%) 0 9))
AT (1’.2_:1 ey + 5 5 i@y
# 3 m E2)
~ G5 ppmale)" 4 2=: 3 gl
+;§fom, i (21)"5%))
A GH(L pmale')" 4 2_::; L)),

i.e. f4 is independent of Bm,s, for allm =0,...,r — 3,. This is a contradiction. Thus
f# is independent on gy , for all (m,s) € P with s > 2. Hence

923G5r) = 9% Us(v o (21, 2%,0,...,0)))
=AY @)@ 0E)" (D))

(m,s)eP

= FH(@)"(@)10) (maeP)
= gAGs <Z (@)™ (0)* s — (@)oY

m=0

=h"((31)1 (0),--‘,(31)' (0, (81)°327(0),...,(81)" " B27(0))
= hB((81)'7(0), .., (31) ¥(0), (81)°327(0), ., (81)""*8:%(0)) = ¢2(5§7)
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for any jiv € (T{*R")o. Therefore A = B because of Lemma 4.3. 0

Proof of Proposition 4.1. Let A € T°(r,k,q,n). Using the invariancy of
A with respect to the homotheties ¢; = (z1,tz%,23,...,z") : R® —» R", t # 0,
(preserving 0;) we obtain
hA(Va tu) = tth(Vv H)

for any v = (V1,.0yVr)y B = (B0yeers r=1) = (10,15 ++ey H0,ky covy Bre1,1y vory Br=1,k) €

(R*¥)" and t € R — {0}, where h4 is given by (4.5). Therefore, by the homogeneous

function theorem, cf.[6], A4 is a linear combination of monomials in gg,1, ..., to,k,

ey fhr—1,1 ey br—1,k Of degree g with coeflicients being C*° maps depending on v.
On the other hand, if B = A%"¥4 where a = ((a1,@1), ..., (aq, &) € Q;’qu, then

RB(v, 1) = poy @ - Hag,5, for all v = (v1,...,r), = (Hoy wery fir—1) -

= (10,1 ++o3 40,k ooy ir—1,15 -y Br—1,k) € (R¥)7. It follows from the fact that AB(v, )

is the coefficient corresponding to (z2)? of the polynomial (in z!, z2)

H[(al)a’(z Vmor,(zl)m+ Z ,l‘ma,(xl)m z?)

-(31)“'(2 L a,(l‘l)"'+z ,uma,(z )"z*)(0)]

which is of the form []!_, (ka; 5; 2% + z'w;(z!, z?)), where w; are polynomials), see
=1 j J . 3
(1.2).
Now applying Lemma 4.2 we end the proof. O

5. Proof of the main result. We will prove Theorem 3.2 by induction with
respect to q. The first step is Proposition 6.1 for ¢ = 1. Now, we assume that
Theorem 3.2 is true for ¢ and for all r, k. We prove the theorem for ¢ +1 and all r, k.

It follows from (1.1) that

1 +1,9+1 »q+1 1
(5.1) Q:’;_H Qk,q u Q; q+¥ ’ Q;,q+l - Q:,qq+l C Qk,q and Qk;ﬂ c Qr+

By the inductive assumption A%"¥94, for a € Qr g aTe C>((R*)")-linearly inde-
pendent. By Proposition 4.1, A%™%:4+1 for o € Q:’,qqill, are also C°((R*)")-linearly
independent. We see that nitloA®nketl = 0 if a € Q,:’,';ill, and = A%"ka if
«€Q 41— Q:‘,qqill. Moreover, the function (4.1) is a C*°((R*)") -module homo-
morphism. Therefore, A%"*9+1, for a € Qf ,4, are C°((R*)")-linearly indepen-

dent.
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Now we prove that Axnkatl for o € Q% q+1» generate the C*((R*¥)")-module
T(r,k,q+ 1,n). Let us consider an arbitrary natural operator A € T(r,k,q + 1,n).
By the inductive assumption for any « € Qf , there is fo € C*°((R¥)") such that

,’rg'f-lgA = Z faAor;r,k,q‘
a€Qp .

We see that

(5.2) it lo(Aont = 3 (faop)ANTHIRH) < g,
a€Q

where p, : (R¥F)™+! = (R¥)" x R*¥ — (R*)" is the obvious projection,

because 1r3+19A°;'+1""9+1 = A%THLEg = gainkdonr+l for all a € Qi,q. Then it
follows from Proposition 4.1 (with ¢+ 1 and r + 1 instead of ¢ and r) and from (5.1)
and (5.2) that

(53) AQ]I':+1 - z gaAa;r+l,k,q+1
UGQZ,*.‘“
for some maps g, € C®((R*)™1).
Forany B € T(r+1,k,q+1,n) and s € {1,...,¢+1} with s— 147 — ¢ > 0 define
HB» . (RF)r+1 x (R¥)r+1 x R* —» R by
HP*(v,p,2) = (s 0 (Bra(31))) 5+ (Y,0,0))s

where v = (Vla'"’ur'l'l)r b= (l‘O)"w/"T) € (Rk)r+l, A€ Rka

r+1 1
Tv.ur8 = Z m”m(xl)m
m=1
1 1
1\m_3 1\s—-14r— 2\q—-3+2
- . S— 9(p2)7
+mz=:om|/“m($) I+(8—1+T—q)' (.17) (.‘B) I

and ¥, : (Tf*'*R"); — R is given by

1

(8t ) = (g—s+2)(s—1)

{(8)7+2(3)" " 1(0).

By the invariancy of B with respect to the homotheties ¢; = (z!,tz?,23,...,2"),
t # 0, we deduce that HB*(v, u,0) = t97*+2HB:(1, 11, 0), i.e. HB*(v,p,0) = 0 for
any v, u € (R¥)™+1, In particular,

(5.4) HA™ (0, 1,0) = 0.
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If B= A%™+1Lka+l where a = ((a1,@1), ..., (@, @a)) € Q;’f;l“, and s € {1,...,q+
1} with s =1 +7r —gq > 0, then HB*(v,p,)) is the coefficient corresponding to
(22)97*+2(2%)*~! of the polynomial

| § ((CARE AR G RE AW ()
J=1

in z!, 22, 23; or (equivalently) it is the coefficient corresponding to (z2)97*+2(z3)*-!
of the polynomial 1‘[;=1(al)ai7;‘fj‘,&,, where Yu,u0,0 = (72 4000075 4 2.»)- Hence,
ifae Q:’:,_'l — Qpy+1 then a=s and a, = s —1+r — g, and then HB%(v,u,))
= Az, Boy @y - Hay_ 1,3,y TOT ADY Uy 11 = (10,15 oey 0,ks ooy Hrm1,15 ooy Br—1,k) € (RF)™H1
and A = (A\,..., ) E RF. Ha € Qi ys1 thena =sand oy, < s—1+r —g, and
then HB*(v,u,)) = 0 for any v,p € (R¥)™*! and A € RF. If a € szlﬁ - ;:’:Z;,
then HB»*(v, u, ) is a polynomial in A1, ..., Mk, f0,1 +-y H0,ky <+ fhr, 15 -y fbr,k €ach term
of which is a monomial of degree a # s.

Then using (5.3), (5.4) and the equality j§(Yu,u,2,s) = 7§(Yv,u,0,s) We have

0= HA2":+1'3(V7 Ky 0) = HAE":+1”(V$ Hy ’\)
= Z ga(u))\a,pm,al...ua‘_l..‘;‘_l + e

aeQ - in
for any s € {1,...,¢+1} with s — 147 — ¢ > 0 and any
B = (ﬂo,l,---,l‘o,k,---,ﬂr—l,l,---,llr—l,k)yl/ € (Rk)r+l’ A= (’\l’---vAk) € Rkv where
the dots denote a polynomial in fg 1..., f0,ky -y ir,1y oovs fhr ks ALy ooy Ak €ach term of

which is a monomial of degree # s. Then g, = 0 for any a € Q;:';ﬂr’i —Qy %41 Hence
(by (53))

(Ar~(81))Ga7) =((Ar=(81)) 0 77 1)(ig ™)
=(( D 9a(- DA )Ra (81))(557)
a€Qr 1
for any v : R® — R* with v(0) = (8;)™*'4(0) = 0 (i.e. for an arbitrary j5vy €
(T{*R™)o). Therefore A = EaeQ; “ 9al., 0)A%mka+1 a5 well. o
"9
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SOME INTEGRAL FORMULAS FOR A RIEMANNIAN 3-MANIFOLD
EQUIPPED WITH A SYSTEM OF ORTHOGONAL FOLIATIONS.

JACEK ROGOWSKI

1. INTRODUCTION.

All objects in the paper are assumed to be of claas C*.

Let M be an orientable Riemannian manifold of dimension 3. Two codimension 1
foliations F and G of M are orthogonal if and only if for any p € M the 1-dimensional
complements (T,F)* and (T,G)* of T,F and T,G in T, M are orthogonal. Here T, denotes
the tangent space of the leaf of F through p.

D. Hardorp in [H] has shown that every 3-dimensional compact orientable manifold
M admits a system of three mutually transverse foliations F;, %3, F3 of codimension one.
Taking any Riemannian metric which makes these foliations pairwise orthogonal and
choosing unit vector fields X;, X, X; such that X; is tangent to the 1-dimensional foliation
F; N F we get some Riemannian structure g with three mutually orthogonal foliations.
If this construction is made for a Riemannian manifold (M, ¢'), then in general g # ¢'.
It leads to the following question: Which closed orientable Riemannian manifolds of
dimension 3 admit three mutually orthogonal foliations of codimension 1? The full answer
to this problem is not known, anyway to the author. Local version of the question was
considered by E. Cartan [C], who proved that for each point of any analytic manifold of
dimension 3 there exists a neighbourhood with three mutually orthogonal foliations. This
result was extended in 1984 by DeTurck and Yang [DY] to the case of C*-manifolds.

In the present paper we prove some integral formulas for a 3-dimensional closed ori-
ented Riemannian manifold equipped with a system of mutually orthogonal foliations of
codimension 1 (shortly: SMOF). The first formula (Theorem 1) is some upper estimation
for total scalar curvature of the manifold with a SMOF, and the estimation is stronger
then this one which follows immediately from formulas obtained by F. G. Brito and P. G.
Walczak in [BW]. Two other formulas give some relations between principal curvatures
of leaves of foliations in a SMOF. They seem to be useful for further investigations. For
example, if M is of constant non—zero sectional curvature, then no foliation with at least
one constant pricipal curvature can be raised up to a SMOF (Corollary 2).

This paper is in final form and no version of it will be submitted for publication elsewhere.
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2. MAIN RESULTS.

Let M be a closed oriented Riemannian manifold of dimension 3. In [W], P. Walczak has

proved that if F is a codimension-one foliation of a closed oriented Riemannian manifold
M, then

(1) [ (Bict) - 2k,(7) =

where NV is the unit vector field on M orthogonal to F, Ric(lV) is the Ricci curvature of
M in the direction of N, and ky(F) is the second mean curvature of (the leaves of) F.
The integral is computed with respect to the standard volume form defined by the metric
tensor of M. We shall always omit a symbol of this form.

Now, let M be a closed oriented Riemannian manifold of dimension 3. Suppose
that F,, F,, 3 is a SMOF of M, and X;, X,, X3 are unit vector fields on M such that
X L F, i =1,2,3. Hence F; is the integral foliation of the distribution spanned by
{X;,Xx}, i #j # k #4i. From (1) we get immediately the following inequality

/ Ric(X,) < / R, i=1,2,3,
M M

where h; is the mean curvature of F;. Indeed, if A;-‘) denotes the j-th principal curvature
of Fi, then ky(F;) = AAP and by = AP + AP for i # j # k # . Summing up left and
right sides of the last inequalities we get

3
2
‘/;{35‘/“4.2:1:’1.1

where s is the scalar curvature of M. We shall prove that, in fact, some stronger inequality
holds.

Theorem 1. With the above notation and assumptions
: 3
2 / h?>2 j s.
(2) ; ;, ;
Moreover, if the equality holds in (2), then all foliations F; are totally umbilical.

PROOF. Let 'y = < V. X4, Xp >, where < , > denotes the metric tensor on M
and V is the Levi-Civita connection of M.
In [BW], the authors proved the following formula

2/ (F:3F§3 + F},ng + ngrgl) = /M(3 + r;lrgl + Fézriz + Fgaria)
M

in the case, when {X;, X;}, ,4 # j, span a distribution on M which need not be integrable.
Further, we shall always assume that i # j # k'# % is some permutation of (1,2, 3).
In our situation, by integrability of {X;, X;}, we get
Y =Ty,

what leads to the conclusion that
I =0.
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On the other hand
21-‘::&[‘5& = h2 (I" k)z (F;:k)zv

/Eh’ /Ek’+/ s

=1 =1
where k; is the geodesic curvature of X;. By the main theorem of [BW]

[ £xe s

=1

hence

what implies (2).
Finally, equality in (2) holds if and only if

fxE=Le

i=1

In this case, by [BW], all F; are totally umbilical. O

Corollary 1. If the sectional curvature ¢ of M is constant, then

/Mth—Z/Ms,

i=1

if and only if c=0 and all foliatwna F: have only planar leaves in M.

PROOF. By the assumptions we get

/ Zh’ = 6cvol(M),
i=1
and all foliations are totally umbilical. It is known that there are no totally umbilical
foliations in the closed 3-dimensional Riemannian manifold of constant sectional curvature
¢ > 0. It implies that ¢ = 0 and h; = 0. In consequence I'}}; = —TI'%; and, by umbilicity,
I;=0foralli#j. O

Remark. If M is the flat torus 7% = S* x S? x S! (endowed with the standard product
metric) with three mutually orthogonal foliations {t x S x 5}, {S* x t x S}, {S* x §' x t},
then all leaves are planar and equality in Corollary 1 holds.

In a little different way, one can obtain some other integral formulas for systems
F1, Fa, F3 of mutually orthogonal foliations on a closed oriented 3-dimensional manifold
M of constant sectional curvature. In the theorem below we present some of them, which
seem to be usefull in further investigations.

Theorem 2. If M has a constant sectional curvature c, then for any natural number
n the following formulas hold.

®3) n/M(A?'_’)"-IAI(")()\?') O =A4(A?))”hki

(4) . /};’[(n - 1)(Ukk)"hk + n(w,,,,)"“u] = 0,
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where w ts the determinant of the matriz

0 A2 P
M0 AP
PYSIED YOI

and wy are subdeterminants obtained by ignoring the k-th row and k-th column.

ProoOF. Let X;, X3, X; be unit pairwise orthogonal vector fields on M such that for
every permutation i # j # k # i of (1,2,3) the fields X;, X; span the foliation ;. Then

A is the principal curvature of leaves of ¥; along X;. Hence, Codazzi equations yield:
X0 = 3000 - 20),

On the other hand
d’l‘U(ka) = ng - fh-k

for any smooth function f on M. Since M is closed, then

| xr=[ sm.

This fact and Codazzi equations give the formula (3) for f = (A9)" and the formula 4)
for f= (. DO

Corollary 2. If M has a constant sectional curvature c and one of the foliations
Fi1,Fa, F3 has at least one constant principal curvature, then ¢ =0.

PROOF. Let G, = Afk))\y’) be the Gaussian curvature of F;. Suppose that ,\§3> = const.
Then by Codazzi equations

AP =20 =0,

For n = 2, from (3) we get

L0909 -0 = [ anp.
M M
By our assumption

A / Gy=0.
M

From the Asimov theorem (see [A]) it follows

/G2=C,
M

so Aga)c = 0. Hence ¢ = 0 or ,\33’ = 0. In the second case G3 = 0 and using again the
Asimov theorem we get c=0. 0O
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3. FINAL REMARKS.

1) If the sectional curvature of M is not constant, then the formulas (3) and (4) take
the following form:

) n [ OO DO+ - 30) = [ 0P)h,
M

A'[(n - 1)(w,,,,)"h,, + n(w,,,,)"‘lw - AE')RL. - AE")R;,”] = 0,

where R2p. =< R(X4, XB)X¢, Xp > and R is the curvature tensor on M.

2) Formulas (3) and (5) remain true if dimM = m and there is a system of mutually
orthogonal foliations of codimension one on M.

3) Except some integral formulas as above, there are not known (anyway to the author)
any other global properties of manifolds equipped with a system of mutually orthogonal
foliations. In particular, it seems to be interesting to find all closed 3-dimensional Rie-
mannian manifolds of constant curvature, which admit such systems.
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