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NATURAL 2-FORMS ON THE TANGENT BUNDLE
OF A RIEMANNIAN MANIFOLD

JOSEF JANYSKA

ABSTRACT. 1l-order natural differential operators from metrics to 2-forms on the tangent bundle are
classified. Some natural transformations from T'T to T*T for Riemannian manifolds are described.

Introduction

It is very well known that on the cotangent bundle gy : T*M — M of a manifold M there
is the canonical symplectic 2-form given by the exterior differential of the Liouville 1-form.
Similar canonical construction on the tangent bundle pps : TM — M is not possible. But we
can construct the canonical symplectic form on the tangent bundle of a Riemannian manifold.
Namely, let (M, g) be a Riemannian manifold and let h(u) = %g(u,u), u € TM, be the induced
function on TM. The canonical symplectic 2-form on TM is given by

Q(g) = dd,h,

where d, denotes the vertical differential, [G].

From the point of view of natural geometry, [N], [KMS], [KJ], 2 is a natural 1-oder differential
operator, over the identity of T, from the natural bundle functor of Riemannian metrics to the
natural bundle functor of exterior 2-forms on the tangent bundle. 2-forms on the tangent bundle
of a Riemannian manifold which arise as the results of natural operators from metrics will be
called natural 2-forms on TM. The aim of this paper is to give the full classification of natural

2-forms of order 1 on TM. We deduce that the family of natural 2-forms on TM depends on
some smooth functions of one variable.

Kowalski and Sekizawa, [KS], gave the full classification of natural symmetric (0,2)-tensor
fields of order 1 on TM which, together with our results, gives the complete classification of
natural (0,2)-tensor fields on TM.

This paper is in final form and no version of it will be submitted for publication elsewhere.
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Koléf and Radziszewski, [KR], classified all natural transformations TT*M — T*TM. They
pointed out that there is no natural equivalence TTM — T*TM. It corresponds to the fact that
there is no natural symplectic form on TM. But in the case of Riemannian manifolds metrics
admit wide possibility to construct natural transformations of TTM to T*TM. In Section 3 we
use the natural transformations by Kolaf and Radziszewski, [KR], and natural (0,2)-tensor fields
on TM described in Section 2 to show some families of natural transformations TTM — T*TM
for Riemannian manifolds.

All manifolds and mappings are assumed to be infinitely differentiable.

1. The canonical example
Let M be a manifold with a Riemannian metric g and (z*) be local coordinates on M. Then
9z = gij(2)dz’ O de’,  gij(z) = g;i(z), det(gij(2)) # 0.
We consider the induced function h on TM, h(u) = %”u”2 = 19:(u,u), u € T:M. The vertical
differential of h is a 1-form on TM with the coordinate extression

dyh(u) = ag—l(;:)d:t" = gim(z)u™dz’,

where (z*,u*) are the induced fibred coordinates on TM. The canonical s&mplectic 2-form on
TM is then defined by
Qu(9) = ddyh(u)

with coordinate expression
Qu(9) = ddoh(u) = Bigmj(z)u™dz’ A dz? — g;j(z)dz* A dul.

In what follows we shall write gk, instead of 8igjr(z). We shall also use the matrix notation

) m
1.1 Q.(g) = (gmiyi — gmi,j)u _gij] .
(11) 9) Y ;
Now, we shall give another description of the canonical symplectic form, which will be more

convenient for our purposes. Let I’ be the Levi-Civita connection on M, i.e. its Christoffel
symbols are given by

im

i _ 9
(1.2) it =5 (Imik + Imkj = Gikm)-

Then for any u € TM the tangent space T, TM splits with respect to I' into the horizontal and
the vertical subspaces, i.e.
T.TM =H,®V,.

The connection I' defines the isomorphism between the vector spaces T, M and Hy, pm(u) =
z. This isomorphism is called the horizontal lift and for {; € T; M the horizontal lift will be
denoted ¢H € H,.
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The vertical lift of a vector &, € T, M is a vector £Y € V, such that ¢Y(df) = €. f for all
f € C™®M. Here df is considered as a function on TM, i.e. df(u) = uf. The vertical lift defines
an isomorphism between T, M and V,,. Obviously, each vector { € T,TM can be written in the
form ¢y = ¢ + Y, where ¢,n € T. M are uniquely determined vectors.

Now we can define a 2-form on TM as follows

(1.3) Qu(@)EH ) =0,  Qu(g)(€¥,nY) = —g.(¢,m),
' Qu(9)(€V, ") = g:(n, €), Qu(9)(€V,n") =0.

for all §,n € T; M. The matrix expression of (1.3) is

Tl — gmilT Ju®  —gij
1.4 Qu —_ (ng ai — 9mi aj 7|,
(14) ® iy ;

From (1.2) we can easily see that the matrix expressions (1.1) and (1.4) coincide and hence
(1.3) defines the canonical symplectic form on TM.

Remark 1.1. From (1.3) we see that the canonical symplectic form Q(g) is defined by the
construction which is similar to the construction of the horizontal lift, [KS], of a metric to a
symmetric (0,2)-tensor field on TM. It is why the construction (1.3) is called the korizontal lift
of a metric to a 2-form on TM.

2. Natural 2-forms on TM

Let S_%_T‘ C T* ® T* be the natural bundle functor of Riemannian metrics. The canonical
symplectic form described in Section 1 is a natural 1-order operator from S2T* & T to A2T*(T)
over the identity of T. We shall classify all such 1-order (with respect to metric) operators. It
is very well known that such operators are in a bijective corespondence with G2-equivariant
mappings from the standard fibre of the bundle functor J!(S3) @ T to the standard fibre of
A2T*(T). To determine these equivariant mappings we use the infinitesimal method, [KS], [KJ].

Let us denote @ = @’R™ x (0?R"™* @ R™) x R" the standard fibre of J1(52) ® T and
(9ij» gij,k, u') the canonical coordinates on Q. The action of GZ on Q is given by

9ij = @} d}gpq
Gijk = G ajaggpe,r + (aha] + a1}, )gpq )
@' = apuf,
where (af, a;'-k) are the canonical coordinates on G2 and tilde denotes the inverse element.
The fundamental vector fields on @ relative to this action are

5 9 2
q =49 — — — — (83 3 :
(2.1) fp(Q) U B 29ap B9er (83gpb,c + 83 9ap,c +6%gab,p) 39are’
o - @
r0) = — —+ 77—
(2.2) &' (@Q) =90 (ag.,,,, + agar,q) '
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Let us denote S = R" x A2ZR?"* the standard fibre of A2T*(T') with the canonical coordinates

ul
[} $ 4 4 H 2 g o1
(uf, ( ’2 J)), ul; = —u};, uf; = —u};. The action of G on S is given by
Uji Ui
i __ i, P
@' = ayuf,
=1 _ ~P~q, 1 aPal — k,r, s 4
u;; = afajuy, + (afa, — alal, )aru "ul, + &b, a ajyara,u"u’uy,,

@2 = afalu? +a? i’l'a’"u"u4

i = “1%5%pg myr rq’
—~4 _ ~p~q. 4
'U,"j = idj’qu.

The fundamental vector fields on S relative to this action are

a 7] i) i} 7]
(23) G(8) =55~ Marur ~ Yre gz~ Vergur, ~ Mergu
(2.4) 2657(S) = (63u'ufp + 6:u'u,,, - 6Zu'u2 - 5{u'u3,)auilb—

0i]
4 4
— (63u"upy + 6,','u’up,,)au§b .

A mapping F: Q — S is G%-equivariant iff the corresponding fundamental vector fields are
F-related. If F has the coordinate expression
i

u=u , uf-;- = F:‘;(gab,!]ab,c, un), a=1,2,4,

then Fj have to satisfy the following system of partial differential equations

oFs OFF _ OF ot reps
(2‘5) 2gﬂPa + (6ag}’b c + 6bgap,c + 6cgﬂb,P)a aup Rp‘s] + F 16' )
OF% OF%
2.6 +— ) =,
( ) (agaq, agar,q)

4 T
(2.7) ) = Fpju"8] + Fpué],

OF O
+
ag ag,r ag ar,g

OF.  OFL o
(2.8) 29pa (aga:r + 39.;:,) = F2u"6! + FLuts] — 6’ FLuts].
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Theorem 2.1. All G%-equivariant mappings F : Q — S are given by the formulas

F}; = w*u’T5T % ap, + u'Th;Bri — wThiBrs + 7ij,
(2.9) E?, =u rbiau + ﬂl'j)
Ff = aij,

where I"k are the formal Christoffel symbols and a;j, Bij,7vi; are functmns on Q which are
squtxons of the following system of differential equations .

9(ij

(2.10) 30 =0
0gpq,r
9Ci; 6
(211) 29ap aC., - (" = = Cip6j + (ps6].
Gag
Moreover, a;; = —aji,vij = —7ji-

Proof. We have to show that all solutions of (2.5) - (2.8) are of the form (2.9). We contract
both sides of (2.6)-(2.8) by g?? and use the cyclic permutation of the indices p, q,r. We get

OF4
(2.12) Ho_,

09pq,r

6F.? 4 oma, begpgr PyrT pgT pgT PgT 4 §PIT
(2.13) 439pq =F mj9 (6ub. + 6mb + 6mb 6tba ‘Sbta btn )’

6};"11 2 ma b Pg" Pg" pPgr pyr pgr pgr
(214) 439" = F (6|b¢ bm - 6ab| - 6115 - 6345 - 6bat )+

2 ma b pgr pPgT PIr PgT Pg" pPgT
+ F (6abj 6a;b + 6]ab - 6an - 6b]a 651] )’

which can be rewrite, by using (1.2), in the form

OF? , I
2.15 Y=
( ) 09pq,r ag,,,
OFL , Ory: , orm
2.16 e F2
( ) 0gpq,r ag,, r 6g,q,

Putting F,‘J = a;j and substituting it into (2.15) we get after the integration
(2.17) F} = u’Tar; + Bij)

where 3—1— 0 and substituting (2.17) into (2.16) we get after the integration

(2.18) F1 =u u'T,,,I" iy +u I‘,,Jﬂ,. — ubT5:8,5 + 7ij,
where %;7:57 = 0. It is easy to see that a;; = —aji,vij = —vji and aij, Bij and «;; satisfy

(211). O
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Remark 2.1. From (2.10) and (2.11) it follows that aij, Bij,i; are the components of (0,2)-
tensor fields on M which are given as 0-order natural differential operators from S2 @ T to
®2T™*. Such natural tensor fields are called natural F-metrics, [KS].

Now we can easily prove

Theorem 2.2. All natural 2-forms Q(g) of order 1 on TM are of the form

(2.19) Qu ()€™, n™) = 72(60),  Qu(9)(€7,nY) = B=(€,m),
Q“(g)(ﬁv, 77") = —PB:(n,£), Qu(g)(fv’ 77V) = az(§,n)-
where a, 3,7 are natural F-metrics and moreover vy and a are skew-symmetric.

Proof. It is easy to see that the coordinate expression of (2.19) coincides with (2.9). O

We recall here the classifying theorem for natural 1-order symmetric (0,2)-tensors on TM
by Kowalski and Sekizawa, [KS], (see also [KMS]).

Theorem 2.3. All natural 1-order symmetric (0,2)-tensor fields G(g) on TM are of the form
(2.20) Gulg)(€7,n1) = 7:(E,m),  Culg)(€7,n7) = B=(E,m),

Gu(9)(€Y,n™) = Bz(n,€), Gu(9)€",n") = az(é,m).
where a, 3,7 are natural F-metrics and moreover v and a are symmetric. O

Hence the problem of classifying natural (0,2)-tensor fields of order 1 on T'M is reduced to
the problem of classifying natural F-metrics. This problem was completely solved by Kowalski
and Sekizawa, [KS].

Theorem 2.4. Let (M,g) be an oriented Riemannian manifold of dimension n. Then all
natural F-metrics on M derived from g are given as follows:
i) For n = 1, all natural F-metrics are of the form

(221) Cu(&,m) = p(llullP)g(€,m),

where p is an arbitrary function of ||u[|? = g(u,u).
ii) For n = 2, all symmetric natural F-metrics are of the form

(2.22) Cu(€,m) = p(llul®)g (€, n) + v(|[ull*)g(€, u)g(n, u)+
+ &(|[ul*)[g(&, w)g(n, Ju) + g(n, w)g(é, Ju)],

and all skew-symmetric natural F-metrics are of the form

(2:23) Cu(ém) = Ml[ul®)g(€, u)g(n, Ju) — g(n, w)g(€, Tu)),

where y, v, &, X are arbitrary functions of ||u||? and J is one of the two canonical almost complex
structures on (M, g).
iii) For n = 3, all symmetric natural F-metrics are of the form

(2.24) Cul&sm) = ulllul®)g(€,m) + v(llul*)g(€, u)g(n, u),
and all skew-symmetric natural F-metrics are of the form
(2:25) Cul&m) = Mll*)g(€ x n, u),

where p, v, \ are arbitrary functions of ||u||> and ¢ x 7 is the usual vector product of £ and 7.
iv) For n > 3, all natural F-metrics are symmetric and are of the form (2.24). O
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Remark 2.2. M was supposed to be oriented in Theorem 2.4. In the case of non-oriented
Riemannian manifold all natural F-metrics are of the form (2.21), for n = 1, and (2.24), for
n2> 2.

Remark 2.3. If we combine Theorem 2.2 and Theorem 2.4 we get the following: If n = 1, the
family of all natural 2-forms depends on one arbitrary function of one variable, for n = 2 it
depends on six arbitrary functions of one variable, for n = 3 on five functions and for n > 3 on
two arbitrary functions of one variable.

Remark 2.4. In the general case (for oriented Riemannian manifolds if n = 1 or n > 3, for
non-oriented Riemannian manifolds in all dimensions) all natural 2-forms are horizontal lifts
of a natural F-metric to a 2-form on TM. The canonical symplectic form is then given for

¢=-g.

Remark 2.5. The restriction of order of our operators is necessary. If we consider higher order
operations we get many further natural (0,2)-tensor fields on TM. For instance let (M, V) be
a manifold with a linear connection V. Let R be the Ricci tensor of V. Then

Qu(g)(€" ,n") =0, Qu(9)(€", 1Y) = Ra(&m),
Qu(g)(fv, TIH) = _Rz(01€)1 Qu(g)(gv’ 7IV) =0.

is a 2-form on TM which is naturally induced from V and is of order 1 with respect to V.
Hence, if M is a Riemannian manifold and V is the Levi-Civita connection, we get 2-order
(with respect to a metric) natural 2-form on TM.

3. Some natural transformations TT — T*T

Kolai and Radziszewski, [KR], classified all natural transformations of the bundle functor
TT* to T*T. They pointed out that there is no natural equivalence of TT to T*T. It is a
consequence of different geometrical properties of these bundle functors and it corresponds to
the fact that there is no canonical natural symplectic form on TM. In Section 1 we have
constructed the canonical natural (with respect to a metric) symplectic form Q on the tangent
bundle of a Riemannian manifold, which gives a natural transformation Sq : TTM — T*TM.
This transformation is in fact a natural differential operator

S:S3T*®TT - T*T

of order 1 in metrics. In this section we shall give some natural tra.nsformatlons TT — T*T for
Riemannian manifolds, which are of order 1 with respect to metrics.

First we recall the main result by Koléf and Radziszewski, [KR]. We give two canonieal
natural transformations TT* — T*T. The first is the transformation sps : TT*M — T*TM by
Modugno and Stefani, [MS], which can be described geometrically as follows. Every A € TT*M
is a vector tangent to a curve 4(t) : R —» T*M at t = 0. If B € Ty, (4)TM, then iB is tangent
to the curve é(t) : R — TM over the curve gp(y(t)) on M. i : TTM — TTM is the canonical
involution. Hence we can evaluate (y(t),6(t)) for every ¢ and the derivative Z|o(v(t),6()) =:
o(A, B) depends on A and B only. This determines a linear map TTqM( 4oTM - R, B —
(A, B), i.e. an element sy (A) € T*TM.
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The second construction is the following. We have the injection ks : T*M — T*TM given
by the pullback with respect to the projection pas : TM — M. Le. kpm(A)(B) = (A,Tpm(B)),
A€ T:M, B € T,TM. Then kpm o0 pr-pm : TT*M — T*TM is a natural transformation
TT*M — T*TM such that the diagram

TT*M

i

T*M M oy ITM T

M M
M

commutes.

Finally we denote Y - (k),Y and Y + (k);Y, k € R, the scalar multiplications in TT*M
with respect to two vector bundle structures preps : TT*M — T*M and Tqpm : TT*M - TM,
respectively. In the notation X € TT*M, p = prem(X) € T*M, £ = Tqm(X) € TM we have,
[KR], [KMS],

Theorem 3.1. All natural transformations of TT*M to T*TM are of the form

(3.1) (Fp, ) (G((p, €)))2sm(X) + sm(H((p, €))p),

where F(t),G(t), H(t) are three arbitrary smooth functions of one variable. 0O
Let us express (3.1) in coordinates. If (z*) are local coordinates on M, then we have the
induced fibred coordinates (z',u’) on TM, (z*,u’, &, U;) on T*TM and (2%, p;, €¢,m;) on TT*M.
Then the coordinate expression of (3.1) is ’
u' = F(pm€™)E',
(3.2) i = F(pm€™)G(pm&™ )i + H(pm&™ )pi,
Ui = Glpmt™)pi.
The canonical transformation sps is then given by F=1,G=1,H =0, i.e.
w=¢, Li=m, Ui=pi
and kp opreym isgiven by F=1,G=0,H =1, i.e.
ui = Eiv EI‘ = Pi, Ui =0.

Now we are in the position to describe some natural transformations of TTM to T*TM for
a Riemannian manifolds by using Theorem 3.1. Let us suppose that we have a (0,2)-tensor field
¢ on M which defines the mapping S; : TM — T*M, over M, by

(33) (Se(u),€)s = Co(&,u),  Eue T M.
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Then we can define two families of natural transformations (natural also with respect to {) of
TTM to T*TM. The first family is given by the commutativity of the diagram

TTM TS¢ TT*M
zk‘ A«
T*TM

where T are the natural transformations from Theorem 3.1. Transformations Zy : TTM —
T*TM are over the natural transformation of TM given by the scalar multiplication in TM
such that the diagram

Zm
TTM —— T*TM

Trul lqru

F(Cem€*u™)
™ 2" TM™

commutes, where F' is the function from Theorem 3.1. The coordinate expression of the family
Zpy is

u' = F(Gem€Fu™)E',

€ = F(Cem€* u™)G(Chm € 4™ ) (Gim ku™€* + CimE™) + H(Ckm€ u™)Cimu™,

Ui = G(Cem € u™)Gimu™,
where (z¢,uf, ¢', =) are the induced fibred coordinates on TTM.

The second family of natural transformations of TTM to T*TM is given by the following
commutative diagram

TS,
TTM —— TT*M

iMT lEu

Zm
TTM —— T*TM

where ip is the canonical involution of TTM. The family of natural transformations ZM is
over the scalar multiplication in TM via the commutative diagram

Zm
TTM —— T*TM

PTMl quM

F(Camu*e™
™ 28

The coordinate expression of the family Zy is
u' = F((kmukf"')ui, A
& = F(Cemu*E™)G(Chmtu €™ ) (Gim bt ™ + GmE™) + H(Cemu E™)CimE™,
Ui = G(Chmu* ™) CimE™.
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Now if ¢ is a natural F-metric from Theorem 2.4 we get two families of natural transforma-
tions ot TTM to T*TM for Riemannian manifolds. These families depend on functions of one
variable via the natural F-metric and via Ty, where as arguments appear g(u,u),g(¢,£) and

9(u, 6).

The third possibility how to construct natural transformations of TTM to T*TM is to use a
natural lift of a metric to (0,2)-tensor fields on TM. Namely, if Q(g) is a natural lift described
in Theorem 2.2 or 2.3, then

Sae) : TTM - T*TM

defined by (3.3) is a natural transformation. All these transformations are over the identity of
TM and some of them are contained in the family Z.
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