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VECTOR-DERIVED MANIFOLDS

Bronistaw Przybylski

1. Introduction and preliminaries

In recent years, Poisson manifolds have become a main subject of interest of a
large group of mathematicians and physicists working in theoretical mechanics
and differential geometry. Such manifolds were for the first time considered by
Lie in some non-explicit form (see [11]) and introduced by Lichnerowicz [8] as a
generalizatidn of symplectic manifolds which play a crucial role in theoretical
mechanics. Recently, one can observe an increasing significance of the concept
of Poisson manifolds in connection with the development of the theories of
Poisson-Lie groups and of quantum groups.

By definition, a Poisson manifold is a pair (M,F) where M is a differentiable
manifold of finite dimension and F is a bicontravariant tensor field on M such
that the Schouten-Nijenhuis bracket [F,F] equals 0. The condition [F,F] = 0 is
regarded to be an integrable condition for F, which allows to introduce some
differential operators for a complex of cochains of antisymmetric vector fields
on M (see [8]) and a complex of chains of differential forms on M (see [7] and
[3]). Moreover, this condition is equivalent to the fact that the linear space
c”(M) is a Lie algebra under the Poisson bracket. One can ask whether there
exists a symmetric analogue of the notion of Poisson manifold, as well as a
complex one. An answer to this question is presented in [10] where the problem
of finding an integrable condition for the correspondirig bicontravariant tensor
field is the most interesting. On the other hand, it is~also interesting to
consider such analogues together with the notion of Poisson manifold from the
one point of view. In the case of real manifolds, this is the aim of the paper.

More precisely, we introduce the concept of a vector-derived manifold as a
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generalization of that of Poisson manifold. This generalization contains a
symmetric anélogue_ of the notion of Poisson manifold (Section 2), however, we do
not take into consideration any corresponding integrable condition. For this
reason our definition of such an analogue is based on the notion of Poisson
manifold.

In this paper we accept the terminology and notation from [6] unless otherwise
stated. By a differentiable manifold we shall always mean a paracompact c®
manifold of finite dimension. If M is a differentiable manifold, we adopt the
following notations:

C”(M): the algebra of all real smooth functions on M under the pointwise

operations;

TM: the tangent manifold (bundle) of M;

TXM: the tangent vector space of M at x;

T*M: the cotangent manifold (bundle) of M;

T;M: the cotangent vector space of M at Xx;

%(M): the C*(M)-module of all vector fields on M;
D(M): the C*(M)-module of all differential forms on M.

The module X(M) (D(M)) will be regarded as the C (M)-module of all smooth
sections of the tangent (cotangent) bundle TM (T*M). If X e X(M) (§ € DM)),
then by Xx (EX) we denote the value of X (§) at x € M. If in addition a € c ),
then by X(«) (da) we denote the action of X on « (the differential of a). More-
over, we set dxa = (clac)x for x € M. For any X € X(M) and £ € D(M) we denote by
<€,X> the 'differential pairing of M which defines the C”(M)-bilinear map from
DM) x X(M) to C”(M). This "pairing is uniquely defined by the condition <de,X>
= X(a) for all & € C°(M), X € X(M).

For any X,Y € X(M) we denote by [X,Y] the usual bracket of vector fields on M.
It is known that the linear space X(M) equipped with this bracket is a Lie
algebra called the Lie algebra of vector fields on M and denoted by (X(M),[+,°])
or by X(M), as well.

Let J be an almost complex structure on M, that is, J is a module automorphism
of X(M) satisfying J2 = -1 where 1 denotes the identity map of X(M). We denote
by J* the module automorphism of D(M) adjoint to J, which means that
A*E,X> = <€,J%> for all X € X(M), € € DM). It is seen that J*2 = -1* where 1°
denotes the identity map of D(M).

We shall denote by QZTM (ezT‘M) the tensor product TM @ TM (T*M e T*M) of the
tangent (cotangent) bundle of M by itself, as well as the total manifold of this
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bundle. The bundle will be called the bitangent (bicotangent) tensor bundle of
M. By a bicovariant (bicontravariant) tensor field on M we shall mean a smooth
section of this bundle. If & (F) is such a field, then by 'bx (Fx) ‘we denote the
value of & (F) at x € M. We say that & (F) is nondegenerate at a point x of M if
the assoc1ated bilinear map

TMxTM—)IR(F TMxTM—)IR)

is nondegenerate. If ¢ (F) is nondegenerate at each point of M (an open subset U
of M), we call it nondegenerate (on U). It is known that every bicovariant
(bicontravariant) tensor field & (F) on M can be regarded as a C”(M)-bilinear
map © o
®: X(M) x X(M) — C (M) (F: DM) x D(M) — C (M)).
We shall denote by &' (F') the transpose of & (F) defined by & (X,Y) = Q(Y,X)
for X,Y € X(M) (FT(S n) = F(n, €) for €71 € D(M)). Call & (F) symmetric if o =@
(F' = F) and antisymmetric if 8" = -8 (F' = -F).
If f: N — M is a smooth map of differentiable manifolds, we denote by

»*

f:e® D(M) — @ D(N)
the pullback of the map f for covariant tensor fields of degree k = O, where
@kiD(M) (okiD(N)) denotes the C”(M)-module (C*(N)-module) of all k-covariant
tensor fields on M (N). In particular, for k = O we have f‘: c®M) — C®(N)
where f*a = aof. In turn, we denote by

f‘: ekTN - @kTM
the differential of the map f of degree k = 1, where @kTN (@kTM) denotes the
k-tangent tensor manifold of N (M). Throughout this paper we can restrict our

attention to the case k = 2.

2. Conjugate pairs and J-connected pairs
Let M be a differentiable manifold and let & (F) be a bicovariant (bicontra-
variant) tensor field on M. We define the C”(M)-linear maps 8% AM) — DM) and

8% T(M) — DM) (F: DIM) — (M) and FO: DM) — X(M)) by

B(X,Y) = <83X,Y> = <8°Y,X> for all X,Y € X(M)

(F(€,n) = <€.Fn> = <n,F2> for all £, € DIM)).
This means that &> and (Pb (l-‘a and Fb) are mutually adjoint operations with
respect to the differential pairing of M. Thus, we can write #2* = Qb and Qb* =
82 (F** = F° and F°* = F?). Clearly, #°X = iy® = @(X,*) and %y = i@ = e(,Y)

(FaE = iEF = F(£,+) and an = inFT = F(+,7n)). Moreover, note that

127
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Qx' = &Tx and Fx‘ = FTx for x = a,b.
By an easy verification we get
2.1. Proposition. Let ® (F) be a bicovariant (bicontravariant) tensor field on

M. Then the following conditions are equivalent:

(a) FPo0?

= l;
() F2ed® = 1;
(c) 8%F? = 1%
(d) 8%F° = 1%

(e) <¥®X,FPe>
b, b
(f) <8°X,Foe>

<€, X> for all X € X(M), € € D(M);
<€,X> for all X € X(M), € € DIM). »

By a pair of 2-tensor fields on M we shall mean a pair (§,F) where & (F) is a
bicovariant (bicontravariant) tensor field on M. Such a pair is called conjugate
if it satisfies at least one from the equivalent conditions of Proposition 2.1.
Note that if (§,F) is a conjugate pair of 2-tensor fields on M, then both & and
F are nondegenerate. Moreover, the maps ¢® and @b (F* and F t:') are C_m(M)-linear
isomorphisms from X(M) onto D(M) (from D(M) onto X(M)). Clearly, Proposition 2.1
implies

2.2. Corollary. Let (3,F) be a conjugate pair of 2-tensor fields on M.

W @,F) is conjugate.

(2) If a,B € c®M) and of = 1, then (a®,BF) is conjugate. In particular, so is

(-¢,-F). m
Let & (F) be a bicovariant (bicontravariant) tensor field on M. By definition
® (F) is symmetric if 8" =6 (F =F), or equivalently, &2 = Qb (F? = Fb) and

antisymmetric if o = -0 (F = -F), or equivalently, 32 = -Ob (F% = -Fb). From

Proposition 2.1 we obviously get

2.3. Corollary. Let (8,F) be a conjugate pair of 2-tensor fields on M. Then &
is symmetric (antisymmetric) if and only if so is F. m

If & (F) is a nondegenerate bicovariant (bicontravariant) tensor field on M,
then there is a unique nondegenerate bicontravariant (bicovariant) tensor field
% (CF) on M such that (8,8") ((F,F)) is a conjugate pair of 2-tensor fields on
M. Namely, & (F) is defined by

¢~(§.n) = <€,(@a)_ln> = <n,(¢b)-15> for £,m € D(M)
CFX,Y) = <F)7IX Y = «F)7Y,%> for X,Y € T(M)).

Clearly, the assignments & & (F > F) are mutually inverse, that is,
“(@") = ® (CF)” = F). Thus we have
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2.4. Corollary. The assignment & — & (F +— F) defines a one-to-one corre-
spondence between nondegenerate bicovariant (bicontravariant) tensor fields on M
and nondegenerate bicontravariant (bicovariant) tensor fields on M. Moreover,
these assignments are mutually inverse. m

Let F be an arbitrary bicontravariant tensor field defined on a differentiable
manifold M. For any « € Cm(M), we define the canontéal left (right) F-vector
field of o to be the vector field F = F3(da) (F Fb(doz)) It is seen that the
assignment F.. a P Fa (Ft:: a »F b) is an X(M)-valued derivation of the algebra
Cc”(M) called the canonical left (rtght) F-derivation of C“(M). Clearly, we have
F:(B) = <(da)e(dB),F> and FZ(B) = <(da)®(dB),FT>, and so, F:(B) = F;(a) for all
a8 € CT(M).

Note that if (®,F) is a conjugate pair of 2-tensor fields oﬂ M, then

Q(X,Fg) = <8®X,F3(dB)> = <dB,X> for X € X(M), B € C*(M).

Similarly, we have

¢(F§,Y) = <6®Y,F%(da)> = <da,Y> for Y € X(M), « € C°(M).

By putting X = F: and Y = Fb in the above equalities we obtain

B
¢(F:,F;) = <dB,F:> = F(da,dB);
(2.1)
b b _ b, _
Q(Fa.FB) = <da,FB> = F(d«,dB).

From the last equalities and Proposition 2.1 we get

2.5. Proposition. Let (®,F) be a conjugate pair of 2-tensor fields on M.

(1) ‘b(FaE,Fan) = ¢(Fb§,l-‘b'n) = F(&,m) for all £&,m € DIM), or equivalently,
(F2eF?)0 = (FeF*)® = F.

(2) F(d?ax,d!aY) = F(Obx,d’bY) = ®(X,Y) for all X,Y € X(M), or equivalently,
(#%60°)F = (2%¢°)F = 0. w

By an easy computation we get

2.6. Proposition. Let (8,F) be a conjugate pair of 2-tensor fields defined on
M. Let 3|U =%, ¢, (dx heldx) (F|U z Jf‘j(a/ax )8(3/8x7)) be the expression
of & (F) in a local chart (Ux, X" on M. Then the matrices {¢U} and
{fl‘]} or equivalently, {¢ } and {f ‘]} are mutually inverse, i.e.

ki _ _ J =
Zkf ¢kj = Zkf ¢jk = <dx ,8/78x"> for i,j = 1,2,...,n.
Moreover, the following equalitie§ hold:
m #°x
(2) Fo¢

i i b
zijubijdxj, X =%

j i
L9 s
5 Jocif"j(alax'l), Fo¢ = 5 fij(a/ax %

(3) F2 =5, j(aa/ax‘)f”(a/axj), P =x (Ba/ax")ftj(a/ax)

129
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where X = zix‘(a/ax‘), £ = Ziaidxi and a,ai,x‘ e C°(U) for i = Lwun. m

If M is a differentiable manifold, then by a biderivation of the algebra M)
we shall mean an R-bilinear map (¢,*) on c”(M) satisfying the following
conditions: _

(7,a8) = B(y,0) + a(¥,B);

(@B,7) = Ble,7) + a(B,7).
One can see that for every biderivation (+,*) of C”(M) there is a unique
bicontravariant tensor field F on M such that («,8) = F(d«,d8) for «,B € c®m),
called the representative tensor field of (+,*). Conversely, if F is such a
field, then the formula

(oc,B)F = F(d«,dB)

defines a biderivation of C™(M) called the F-biderivation. In the sequel the
term an F-biderivation of C*(M) will always mea;l a biderivation of C™(M) with
its representative tensor field F. Note that an F-biderivation of c®M) is
symmetric (antisymmetric) if and only if so is F, i.e. Fl =F (FT = -F). Let now
& be a nondegenerate bicovariant tensor field on M. In this case the
¢ -biderivation will be also called the ®-biderivation and denoted by (-,o)q’.
From (2.1) it follows that

(@B), = ¢ (dw,dp) = ¢((¢~):,(¢”)a) = ¢((¢”):,(w~)b) for a8 € C7(M).

B B

If (M,w) is a symplectic manifold, then the w-biderivation of c®(M) is called
the' Poisson bracket on C”(M) and denoted by {«,B) = (a,B)w. It is known that
this bracket is antisymmetric and it satisfies additionally the Jacobi identity,
which means that the linear space C*(M) is a Lie algebra under multiplication
given by the Poisson brackef. Furthermore, for any a € C”(M) the vector field
Xa = (w~)2 is called the Hamiltonian vector field of a. These vector fields play
an essential role in theoretical mechanics [1]. Let us set X; = (w~): = -Xa for

o € C*(M). It is seen that

WX Xg) = w(x;,x') = {a,B) for o, € C7(M).

B B
Moreover, the Jacobi identity implies that the assignment o Xa (¢ X;)
defines a Lie algebra antihomomorphism (homomorphism) from (C°°(M),(-,~)) to
(X(M),[+.+]D.

Let now (M,g) be a pseudo-Riemannian manifold. By the pseudo-Riemannian brack-
et on C°(M) we shall mean the g-biderivation (a,8) = (a,B)g. Clearly, this
bracket is symmetric, that is, («,8) = (B,a) for a,B € c®M). If « e Cw(M), we

define the pseudo-Riemannian vector field of a to be Ra = (g~): = (gN)Z. It is
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seen that

g(Ra'RB) = (a,B) for a,B € c®M).

We shall regard the algebra C”(M) to be partially ordered by the relation 2,
where a = B means that a(x) = B(x) for all x € M. We write « > B (¢ » B) in case
«azp and a 2B (alx) > B(x) for all x € M). If .in addition g is positive-

defined, that is, (M,g) is a Riemannian manifold, we obviously have

(a,@) = O for all & € C*(M);
(a,a) > O if and only if da # O;

(a,a) » O if and only if dxa # O for each x € M.

In this case the vector field Ra is called the Riemannian vector field of «, as
well.

It is easy to verify

2.7. Proposition. Let (M,J) be an almost complex manifold. Let & (F) be a
bicovariant (bicontravériant) tensor field on M. Then the following conditions

are equivalent:

(a) $UX,JY) = 8(X,Y) for X,Y € X(M) (FUE,1"n) = F(€,n) for €1 e DM));

(b) J*e3*)2 = @ (UedIF = F);

(c) "% = &% UFU* = F?);

@ 3% = & UF%" = F°). u

Under the assumptions of Proposition 2.7, we say that & (F) is J-invariant if
at least one from the equivalent conditions of this proposition is satisfied.

Let (M,J) be an almost complex manifold. If & and ¥ (F and G) are arbitrary

J J

bicovariant (bicontravariant) tensor fields on M, we set & = (J‘@l')tb and "V =

(l'@J*)\It (F'l = (Jel)F and JG = (18J)G). Clearly, we have
QJ(X,Y) = ®(JX,Y) and J\I/(X,Y) = ¥(X,JY) for X,Y € X(M)
(FIg,m) = FU*E,m) and 'G(E,m) = G(&,3"n) for £ € DM)).

By an easy verification we get
2.8. Proposition. Let (M,J) be an almost complex manifold.

J J and G - JG) are mutually

(1) The assignments & — & and ¥ - J\I’ (F »F
inverse bijections for IJ-invariant bicovariant (bicontravariant) tensor fields
on M.

(2) These assignments define a one-to-one correspondence between antisymmetric
and symmetric J-invariant bicovariant (bicontravariant) tensor fields on M. m

It is easy to prove
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2.9. Proposition. Let (M,J) be an almost complex manifold. Let & and ¥ (F and
G) be J-invariant bicovariant (bicontravariant) tensor fields on M. Then the

following conditions are equivalent:

@ ¢ =¥ F = oy

J J
(b) ¥ =9 (G = F);
(c) 8% = ¥® (F31" = G?);
(@ 92 = 1"¢® (F® = JG?);
(e) 3%8° = ¢® (UF° = P
) 8° = ¥°%5 (F° = G%"). u

Al

Let (M,J) be an almost complex manifold. By a J-connected bicovariant
(bicontravariant) pair on M we shall mean a pdir (®,¥) ((F,G)) satisfying at
least one from the equivalent conditions of Proposition 2.9. If in addition ¢
(F) is antisymmetric and ¥ (G) is symmetric, we say that (8,¥) ((F,G)) is a J-
connected bicovariant (bicontravariant) superpair on M. A J-connected bico-
variant (bicontravariant) pair ($,¥) ((F,G)) on M is said to be nondegenerate if
both ® and ¥ (F and G) are nondegenerate. It turns out that for an arbitrary
almost complex manifold (M,J) there are nondegenerate J-connected bicovariant
(bicontravariant) superpairs on M. Indeed, we can choose a J-invariant metric
tensor g on M, and note that (Jg,g) ((J(g~),g~)) is such a superpair.

It is seen that Propositions 2.1 and 2.9 imply

2.10. Corollary. Let (M,J) be an almost complex manifold. Let (3,F) and (¥,G)
be conjugate ‘pairs of 2-tensor fields on M. Then (®,¥) is a bicovariant J-
connected pair (superpair) if. and‘ only if (F,G) is a bicontravariant one. More-

b_ b
B—GBforall

over, if (®,%) is a J-connected pair on M, then ]-‘: = JG: and JF
o8 € C°M). =

This corollary immediately implies

2.11. Corollary. Let (M,J) be an almost complex manifold. Let (w,g) be a J-
connected bicovariant superpair on M where w (g) is a symplectic form (pseudo-

Riemannian metric) on M. Then

- 00
Xoc = JRa and JXB = RB for all «,8 € C (M). =

Let (M,J) be a complex manifold, i.e. an almost complex manifold satisfying

the following integrable condition:
[JX,JY] - [X,Y] - JIX,JY] - JUJX,Y] = O for all X,Y € X(M).

A nondegenerate J-connected bicovariant superpair (w,g) on M is said to be

integrable if so is w, i.e. w is a symplectic form (dw = 0). Such a superpair
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defines a nondegenerate complex bicovariant tensor field on M which is regarded
to be a complex analogue of the symplectic structure w (see [10] for details).
Moreover, if (w,g) is an integrable nondegenerate J-connected bicovariant super-
pair on M, then g can be regarded as a symmetric analogue of w. It turns out
that the above analogues can be considered more generally for complex manifolds

equipped with J-invariant Poisson structure.

3. Regular and strictly regular points
Let M be a differentiable manifold. Let & be an assignment which sends each

point x € M to a vector subspace 8x of TxM. Let us set
r@) ={XeXM: X €& VxeM}

and note that I'(8) is a C”(M)-submodule of X(M). We say that & is a distribution
on M if for any pe M and v € 8p there is a vector field X € I'(§) passing
through v, i.e. X =v. If & is a distribution on M, we define the dimension
function 56 on M by Sg(x) = dim S’x. One can see that this function is lower
semicontinuous. We say that p € M is a regular point of & if 68 is locally
constant at p. Denote by reg & the set of all regular points of &. By an easy
verification we get

3.1. Lemma. If & is a distribution on M, then reg & is an open and dense
subset of M. m

Let U be an open subset of M. A distribution & on M is called regular (on U)
in case reg €=M (Ucs reg &). We say that & is of dimension k (on U) in case
Bg(x) = k for each x € M (x € U), and write dim & = k (dim €|U = k). Clearly, if
M is connected, then every regular distribution on M is of ccnstant dimension.

Let F be a bicontravariant tensor field on M. We associate with F the left
(right) distribution &%(F) (Eb(F)) of F on M defined by

a _ pd* b _ b*
€ (l“)x =F (TXM) (& (F)x =F (TxM)).
Note that in any local chart (U;xl,...,xn) on M the field F has the expression
F|U = zijfij(a/axi)e(a/axj ).

This implies that equalities (2) and (3) of Proposition 2.6 are satisfied for F
too. For each x € U, we define the rank pF(x) of F at x to be the rank of the
matrix {f U(x)}. Clearly, the definition of pl_.(x) does not depend from a chosen
local chart containing x. Thus we can regard that the; rank-dimension function
p]_.: X P pF(x) is well-defined on M. Moreover, it is seen that for each x € M we

have

133
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. A ¥ b,
pF(x) = dim F (TxM) = dim F (TxM),
which implies that Pp = 683(1-‘) =38.b Therefore P is a lower semicontinuous

& (F)

&3(F) and ng(F). By a regular point of F we shall

mean a point p € M such that the function Pr is locally constant at p. The set

function on M because so are &

of all such points will be denoted by reg F. Since Pp = 683(1-‘) = Sgb(F), we get
reg F = reg &%(F) = reg €b(F).

This and Lemma 3.1 immediately imply

3.2. Corollary. If F is a bicontravariant tensor field on M, then reg F is an
open and dense subset of M. m

Let U be an open subset of M. We say that F is regular (on U) in case reg F
=M (U S reg F), which means that F is locally of: constant rank (on U). It is
seen that F is regular (on U) if and only if so are &%(F) and Sb(F) simulta-
neously. We write rank F = k (rank F|U = k) if pF(x) = k for each x € M (x € U).
Let us set

reg* F={xeM p]_..(x) = dim M}

and note that reg‘r F is an open subset of reg F. Clearly, F is nondegenerate if
and only if reg‘r F = M. We say that F is quasi-nondegenerate if 1"egf F is a
dense subset of M. In this case we obviously have regf F =reg F.

Let U be an open subset of M. If ¥ is a family of vector fields on M, we adopt
the following notation: .
#|u = {X|U: X e #}.

By a module of vector fields on U we shall mean a C”(U)-submodule of X(U). If M

is such a module and if ¥ is a system of generators of Jl, we write

n-= lincw(u) s.

Let MM be a module of vector fields on M. For an open subset U of M we denote by
M(U) the C”(U)-module generated by the family mlu, ie. MU) = linceo(U) mju).
Moreover, by mlOC(U) we denote the localization of M to U. This means that
mloc(U) is a module of vector fields on U consisting of all X € X(U) satisfying
the following condition:

for each p € U there are an open neighbourhood V of p in U and a vector field
Y € M such that X|V = Y|V.

We say that M is local on U in case mloc(u) = M(U). If M is local on M, i.e.
mloc(m = M, we shortly say that it is local. Clearly, if M is local, then it is

local on each open subset of M. A family ¥ € M is said to be a system of local
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generators of M if for any X € M and p € M there is an open neighbourhood U of p
in M such that X|U e lincm(u) (#]U). We say that a family ¥ < M is a system of
locally neighbourhood generators of M if for each p € M one can find an open
neighbourhood U of p in M such that M(U) = lincm(u) (.Y’IU). Clearly, every system
of locally neighbourhood generators of MM is a system of local generators of M.
If U is. an open subset of M, then by a system of generators (base) of M on U we
shall mean a system of generators (base) of the module JM(U). .

On principle we deal with local modules of vector fields on M. For example, if
& is a distribution on M, then the module I'(€) is clearly local. By applying a
locally finite smooth partition of unity we get

3.3. Lemma. Let M be a module of vector fields on M.

(1) A finite system of local generators of M is a system of generators of M.

(2) If M is finitely generated, then it is local. m

Let M be a module of vector fields on M and let p € M. We call M pseudoregular
at p in case there is an open neighbourhood U of p in M such .that the module
M(U) is finitely generated. Clearly, the set of all pseudoregular points of M is
an open subset of M. We say that M is pseudoregular if it is pseudoregular at
each point of M.

Let M be a module of vector fields on M and let U be an open subset of M. A
base XI,...,XK of M(U) is said to be regular if the vectors X:(,...,X:: are
linearly independent for each x € U. By a regular point of M we shall mean a
point p € M such that there is a regular base of M(U) for some open
neighbourhood U of p in M. Clearly, the set reg M of all regular points of M is
an open subset of M. We say that M is regular on U in case U € reg M. If reg M
= M, then M is called regular.

It turns out that a free module of vector fields on M need not be regular in
general. For example, let X = x(8/8x) be a vector field on R and consider the
module M = lin_» {X} Clearly, M is free. But for any open neighbourhood U of

C(R)
O in R every base of TM(U) consists of one nonzero vector field on U which van-
ishes at 0, and so, M is not regular at O. ’
Let M be a module of vector fields on M. By the distribution of M we shall

mean a distribution &(M) on M defined by
Q(JII)X = {Xx: X e M}

It is seen that M is a submodule of T(&(M)).- For example, consider the vector

field X = xz(a/ax) on R. Let us set M = lincm(IR) {X} and & = &(M). We have

E-?x = TXIR for x # 0 and 60 = 0. Moreover, note that the vector field x(8/8x)
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belongs to I'(€) but it does not belong to M.

Let & be a distribution on M. A family ¥ < I'(6) is said to be a system of
smooth generators of & if it is a system of generators of the module T(8).
Similarly, we define a system of local (locally neighbourhood) smooth generators
of &, as well as a system of smooth generators (base) of & on an open subset of
M. We say that & is pseudoregular at a point p € M if so is the module I'(&) at
p. By a pseudoregular distribution on M we shall mean a distribution which is
pseudoregular at each point of M. It is easy to verify

3.4. Lemma. Let M be a module of vector fields on M and let € = &(M).

(1) If ¥ is a system of generators of WM, then for each p € reg € there are an
open nelghbourhood U of p in M and vector flelds X ,Xk € ¥ such that
{X |u... X |U} is a regular base of M on U. In parttcular,

reg M = reg &,

and so, reg M is an open and dense subset of M.

(2) For each p € reg M there is an open neighbourhood U of p in M such that
mw) = F(8|U). In particular, if M is regular, then a family ¥ < M is a system
of local (locally neighbourhood) generators of M if and only if it is a system

of local (locally neighbourhood) smooth generators of &. m

This lemma immediately implies
3.5. Corollary. Let Mt be a local module of vector fields on M and let & =
8(M). If U is an open subset of M and U < reg M, then M(U) = I'(€|V). In particu-

“lar, if M is regular, then M =T'(€). m

Let F be a bicontravariant tensor field on M. As we know F> and Fb are
C”(M)-linear maps form D(M) to X(M). This implies that M2(F) = FA(D(M)) and
mbu-') = Fb(D(M)) are modules of vector fields on M called the canonical left and

a © b
rlght modules of F, respectively. Let us set {F b= {Fa: o« € C(M} and {Fa}

{F a e C°(M) .

3.6. Theorem. Let F be a bicontravariant tensor field on M.

(1) The family {F:} ( FZ }) is a system of locally neighbourhood generators of
MAF) (ORO(F)).

(2) The module M2(F) (.’ﬂ'(b(F)) is pseudoregular and local.

(3) If in addition M is connected, then M2(F) (fmb(F)) is a finitely generated
module by {Fa} ({Fb}).

Proof. By reason of symmetry, it suffices to show this theorem for {F } and

M2(F). For convenience, we adopt the notations M® = M(F) and {F v} = {F HV.
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(1). Let us take p € M and consider a local chart (U;xz,...,xn) on M contain-
ing p. Since F® is a local operator, we can accept Fa(EIU) = (F|U)a(§|U) =
(F?€)|U for £ e D(M), which implies F(D(M)|U) = M2|U. Clearly, we have

xl,....x’l € Cm(U), and so, there are an open neighbourhood V of p in U and

functions az....,an e C”(M) such that oci|V = xi|V for i = 1,..,n. Thus dai|V =
dxt|V é.nd since the differentials dxl,...,dxn form a base of the module D(U), it
follows that the~ differentials da1|V,...,dan|V form a base of the module D(V).
Finally, it is seen that F(da'|V) = F3{|V for i = 1.,n and FX(D(V)) = M(V),
whence

a a
m2) = lm © (Fullv,...,Fan|V).

c (V)
Consequently, {F:} is a system of locally neighbourhood generators of ma.

(2). Observe first that from the prove of Statement (1) it follows that the
module ma(V) is. finitely generated, which means that m? is pseudoregular at p.
Since p can be an arbitrary point of M, we conclude that m? is pseudoregular.

To prove that the module M? is local consider a vector field X e mTOC(M). This
means that for any point p € M there is an open neighbourhood U of p in M such
that X|U e M3(U). Since FAD(U)) = M2(U), there is vy € D(U) such that
F (w ) = X|U. In turn, there are an open neighbourhood V of p in U and a
dlfferent1a1 form E € D(M) such that E |v = U]V Wthh implies F (E |V) = X]|V.
Thus there is an open covering V of M and a family {E Ve V} such that

3.1) "~ FA€Y|V) = X|V for each V € V.

Let {As: s € S} be a locally finite smooth partition of unity subordinated to
V. For each s € S we can choose V(s) € V such that supp As S V(s). Define the
differential 1-form € on M by

£=3 A gv(s).

seS "'s

V(s) me.

Clearly, we have Fa€ = It suffices to show that Fa§ = X, or

seS sF §
equivalently, that for each p € M there is an open neighbourhood U of p in M

such that
(F9)|u = x|u.
Indeed, there is an open neighbourhood W of p in M such that the set
={seS:WnsuppAs¢z}
is finite. Moreover, the set

={s € S: p e supp AS}
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is a finite subset of Sp. Note that p € supp AS S V(s) for s € SI'" and so,

n {V(s): s € Sl’)} is an open neighbourhood of p in M. Consider the set
U=(Wn V(s): e S’ \U{suppr:sesS \§s
(Wan{vis): s e S H N\ U {supp ag o N Spt

and note that U is an open neighbourhood of p in M such that the following

conditions hold:
(3.2) U < V(s) for each s € Sl’);
(3.3) U n supp As = @ for each s € S \ SIIJ'

From conditions (3.1) and (3.2) it follows that Fa(E
s € Sll:n’ This and condition (3.3) imply

v(S)lU) = X|U for each

V(s)

(FPO|U = 5 o O JUFE W = 5__o G |uX|v) = X]|U,

seS’
P
which completes the proof of statement (2).
(3). If M is connected, then by the Whitney theorem there exists a smooth
m
)

embedding ¢ = (¢1,.‘.,go :M — R™. It follows that every global differential

1-form &€ on M is a pullback of such a form on R™ via @, i.e.
€ = w‘(z?d aidxi) = ZT=1 (:p'ai)dwi

where o € c®®™). Thus, DM) is finitely generated by the differentials
d(pz,...,dq:m. This implies that the module m?* = FADM) is also finitely gener-
ated by the vector fields Fa(dwl),...,Fa(dfpm). ]

For this theorem one can remark that if M is connected, then the s;catement (3)
and Lemma 3.3 imply the statement (2).

From Theorem 3.6 and Lemma 3.4 we get

3.7. Corollary. Let F be a bicontravariant tensor field on M. For any
p € reg F there are an open neighbourhood U of p in M and functions
ul,...,ak e C”(M) (BI,...,Bk e C°(M)) where k = pF(p) such that the vector
fields

F(do|U,...,FAde®) U (F%ah|u,...,Fag®)|u)
form a regular base of Mm3(F) (mb(F)) on U. In other words, there is a local
chart (U;xz,...,xn) ((U;yl,...,yn)) on M containing p such that the vector
fields '
F(dxD,...,F2(axX) (FPayh,....FPay™)

form a regular base of Mm3(F) (mb(F)) onU. m

Let U be an open subset of M. A module M of vector fields on M is said to be
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involutive on U in case the module M(U) is involutive, i.e. if X,Y € M(U)
involves [X,Y] € M(U). If M is involutive on M, we shortly say that it is
involutive. If p € M, we call M locally involutive at p in case there is an open
neighbourhood U of p in M such that MM(U) is involutive. We say that M is
involutive at a point p € M in case for any vector fields X,Y € M there is an
open -neighbourhood U of p in M such that [X|U,Y|U] € M(U). It is easy to verify
the f ollowing\ lemmas.

3.8. Lemma. Let M be a pseudoregular module of vector fields on M. Then M is
locally involutive at a point p € M if and only if it is involutive at p. m

3.9. Lemma. Let M be a local module of vector fields on M. Then M is
involutive on an open subset U of M if and only if it is involutive at each
point of U. m

By applying Theorem 3.6 and Lemma 3.9 we get

3.10. Proposiﬁon. Let F be a bicontravariant tensor field on M and let U be
an open subset of M. Let us set m? = MmAF) (fmb = mb(F). Thén the following

conditions are equivalent:

(a) the module M3(U) (mb(u)) is involutive,

(b) [F2 <Y FB|U] e MW) (F oY FB|U1 e B°W)) for all aB e C°(M);

(c) there is an open covering V of U such that m3(v) (m (V)) is involutive for
each V € V;

(d) ma (mb) is involutive at each point of U. m

This proposition immediately implies
3.11. Corollary. Under the assumptions of Proposition 3.10, the module m2 (ﬂllb)
is involutive on U if and only if for each point p € U there is a local chart

(V;xz,...,xn) on U containing p such that

(F(dxh), Foax))) € M) (FO(dxh),Fotax))l € O for 1,5 = 1,2,.n

Let F be a bicontravariant tensor field on M. If p € M, we call F left (right)
locally involutive at p in case there is an open neighbourhood U of p in M such
that at least one from the equivalent conditions of Prop?)sition 3.10 is satis-
fied. We say that F is left (right) involutive at p in case the module M2(F)
(mb(F)) is involutive at p. Note that from statement (2) of Theorem 3.6 and from
Lemma 3.8 we get ’

3.12. Corollary. Let F be a bicontravariant tensor field on M.and let p € M.
Then F is left (right) locally involutive at p if and only if it is left (right)
involutive at p. m

Let F be a bicontravariant tensor field on M and let U be an open subset of M.

139
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We say that F is left (right) involutive on U in case it is left (right) invol-
utive at each point of U, or equivalently, it satisfies at least one from the
equivalent conditions of Proposition 3.10. 'If F is such on M, we shortly say
that it is left (right) involutive. We call F involutive (on U) in case it is
left and right involutive (on U) simultaneously. If m3(F) = mb(F‘), we say that F
is balanced. Recall that by definition F is symmetric (antisymmetric) if and
only if F = Fb (F? = —Fb). Moreover, F is nondegenerate if and only if Mm3(F) =
fmb(F ) = X(M). Hence we conclude that if F is symmetric, antisymmetric and non-
degenerate, respectively, then it is balanced. The following example shows that
F can bé left involutive but not right involutive, and conversely. Clearly,
every such field is not balanced.

3.13. Example. For any p = (x,y,z) € IR3 we consider the matrix

110
001
00 x

which defines the bicontravariant tensor field F on IR3 by
F = (8/8x)®(8/3x) + (8/8x)®(8/8y) + (8/38y)e(8/8z) + x(8/8z)e(8/38z)

Clearly, F is of constant rank 2. We have
F3(dx) = 8/8x + 8/8y, F2(dy) = 8/8z, F2(dz) = x(8/82);
Fo(dx) = FP(dy) = 8/8x, FO(dz) = 8/8y + x(8/82).

Thus, [F2(dx),F3(dy)] = [F3(dy),F?(dz)] = 0 and [F*(dx),F*(dz)] = 8/8z, which
implies that the module M*(F) is involutive (Corollary 3.11), and so, F is left
involutive. On the other hand, note that [Fb(dx).Fb(dz)] = 3/8z ¢ mb(F), which
means that the module mb(F) is not involutive, and so, F is not right invol-
utive. Obviously, the bicontravariant tensor field F T s right involutive but
not left involutive. m

Let F be a bicontravariant tensor field on M. We say that p €e M is a left
(right) strictly regular point of F if p €e reg F and if F is left (right) invol-
utive at p, or equivalently, if it is left (right) locally involutive at p
(Corollary 3.12). Denote by rega F (regb F) the set of all left (right) strictly
regular points of F. Clearly, by definition rega F (regb F)-is an open subset of
M. By a strictly regular point of F we shall mean a point p € M which is a left

and right strictly regular point of F simultaneously. It is seen that

reg* F = rega Fn regb F
is the set of all strictly regular points of F. Note that if F is the
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bicontravariant tensor field on IR3 from Example 3.13, then rega F =regF = [R3

and reg' F = regb F = @. Clearly, we get

3.14. Proposition. If F is left (right) involutive, then rega F =reg F
(regb F = reg F). In particular, if F 1is involutive, then reg‘ F = rega F =
regb.F =regF. =

If F is a bicontravariant tensor field on M, we define the left (right) polar
algebra of F to be the subalgebra P2(F) (?b(F)) of C®(M) given by the following
equalities:

P2(F) = ker F° = {a € CM): (@B) = 0V @ < C°(M)}
= {a € C°M): X(a) = 0 V X € MO(F)}
(P°(F) = ker F? = {B € C™(M): @B =0V aeCM}
= {B € C”(M): X(B) = OV X € MF)}).
One can see that the algebra P2(F) (?b(F)) is closed under composition with real
smooth functions, which means that if al,...,am e P2(F) (al,...,am € ?b(F)) and
¢ € Cc®®™), then goo(al,.‘.,ocm) e P2(F) (Wo(txz,...,am) € ?b(F)). Moreover, it is
seen that this algebra is local, that is, if a € Cc”(M) and if for each peM
there are an open neighbourhood U of p in M and a function B € P2(F) (B ?b(F ))
such that «|U = B|U, then « € P2F) (o € be(F)).

Let M be a differentiable manifold. We say that functions txl,.‘.,ak e C°(M)
are differentially independent at a point p of M in case the differentials
dpal,...,dpock are linearly independent in T;M. If U is an open subset of M and
if these functions are differentially independent at each point of M (U), we
call al,...,ozk dif ferentially independent (on U). Clearly, if al,...,ak are
differentially independent at p, then there is an open neighbourhood U of p in M
such that these functions are differentially independent on U.

If 4 is a subalgebra of Cc”(M) and if x € M, we denote by dxsd the linear
subspace of T;M consisting of all differentials dxa for a € 4. Define the left

Moz (32

(right) polar-dimension function of F to be the function & F

a-
+ F'
M — Z') given by

a s a b o b
BF(x) = dim dfo (F) (BF(x) = dim dx? (F)).

It is seen that k = Sg(x) (k = Sg(x)) is the maximal number of differentially

independent at x functions from P2(F) (?b(F)). From definition it follows that

6:. (6?.) is a lower semicontinuous function. Moreover, note that these functions

are locally defined by F, which means that for any open subset U of M we have
b .

SFIU = S;IU and 83|U = 6F|U' Further, define the left (right) total-dimension

function of F to be the function ‘I.'a: M- Z+ (Tb

o
F F.M-—)l)glven by

141
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200 = 52 + pylx) (‘r:.(x) = agtx) + pplx)).

Since both the functions 6: and PE (6;.). and pF) are lower semicontinuous, so is

‘r:. (tg). Clearly, the functions ‘l.’:. and 1.':. as well as the function pp are locally
defined by F, too. Moreover, note that
(3.4) pF(x) = t;(x) s dim M (pF(x) = t:(x) < dim M)
for each x € M.

Let U be an open subset of a differentiable manifold M and let p e M. A
distribution & on M is said to be involutive on U, locally involutive at p and
involutive at p, respectively, if so is the module I'(8).

3.15. Theorem. If F is a bicontravariant tensor field on M, then
reg® F = {x e M: T;(X) = dim M} (regb F={xeM = 3(x) = dim M}).
Proof. By reason of symmetry, it suffices to show that

reg® F = {x e M: 'r]'t:(x) = dim M}.

Let us set M = M2(F) and &% = 82(F). Let p € rega F and k = rank Fp = pF(p).
Since p is a regular point of F and F is left involutive at p, we can find an
open neighbourhood U of p in M such that n3w) is regular (Corollary 3.7) and
involutive (Proposition 3.10). Clearly, dim M3U) = k and M2(U) = F(&aIU) by
Corollary 3.5. Thus &% is a regular involutive distribution on U ar_ld dim é’aIU
= k. From the Frobenius theorem it follows that there is a k-dimensional folia-
tion F on U such that every.leaf of ¥ is a maximal integrable manifold of t’s‘a[U
(see [4]). More precisely, we can find a local foliation chart (V,p) € F such
thatp € VS Uand p(V) = W x W” ¢ IRk X IRn-k wheren = dim M and W’ and W” are
open disks in [Rk and IRn-k respectively. Let n”: W x W’ — W” be the projection
onto the second factor and let ¢” = m”o¢p. Since every plague P = (p-l(W’ x {c}),
c € W” is a k-dimensional integrable manifold of E:‘a|V, it follows that each
vector field from M3(V) = l"(@a|v) is tangent to P Thus for each « € C(W”) the
function {p”‘a e C®(V) is constant on every such plague, and so, X(go”’oz] = 0 for
each X € ma(v) = ﬂﬂa(F|V). In other words, we have ¢”*(C°°(W”)) < ?b(F|V), which
1mp11es that for each x € V the linear pullback map q) v transforms ™ 0"(x ) W” to
T P (F|V) Since the smooth map ¢”: V — W” is surjective, it follows that v;'

is a linear monomorphism, and so,

F|V(X) = dim T P (F|V) z dim T, o"(x yW* = dim W” = n-k.

Since Bl_b. is locally defined by F, we get Sg(x) = 5 (X) =2 n-k for X € V. On the

F|V
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other hand, from (3.4) we get 612(x) =n - pF(x) = n-k for x € U, and so,
3 (x) n-k for x € V. Thus T (x) = Bb(x) + pF(x) = n for x € V, which proves
the inclusion reg® F < {x eM: T (x) dim M} )

To prove the converse mclusxon, suppose that p is a pomt of M such that
T (p) dim M = n. Since both the functions Blt; and P are lower semlcontmuous
on M, there is an open nelghbourhood U of p in M such that § (x) =z 3 (p) and
p(x) = pF.(p) for x € U. But T (x) =3 (x) + pF(x) <n for each x € M, and so,
6 and pp are constant functlons on U ie. & (x) 3 (p) n-k and pF(x)
pF(p) = k for x € U. Consequently, p € reg F and there are functions al, 0
€ .‘P (F) (m = n-k) which are differentially independent at p. This implies that
they are such on some open neighbourhood U’ of p in U. On the other hand,
X(ai) =0 for X € M and since p € reg F = reg M and rank F|U = k, there is a
local chart (V;xl,...,xn) on M such that p € V & U’, the vector fields XI =
Fa(dxz)....,Xk = Fa(dxk) form a regular base of M*(V) and X‘j(cct|V) =0 for
i=1...m and j = 1,...,k. It remains to prove that ma(V) is involutive.
Indeed, if X,Y € ma(v). then for Z = [X,Y] we have

(3.5) Z («") = 0 (i = L...,m) for x € V.
Note that for each x € V the set
i, _ .
={ve T M: vie) =0 (i =1,..,m}

is a linear subspace of TxM and dim Lx = n-m = k because the differentials

d al,...,dxam are linearly independent. Since for each x € V the vectors
Xx,...,Xi form a base of the linear space 8: and 8"?; < Lx' it follows that

8: = Lx. Hence and from (3.5) we get Z € F(8a|V) = !llla(V) (Corollary 3.5), which
means that M2(V) is involutive. This completes the proof that p € rega F.m

By applying this theorem we get A

3.16. Corollary. Let F be a bicontravariant tensor field on M and let F|U =
Zijfij(a/axi)s(a/axj) be the expression of F in a local chart (U;xl,...,xn)bon
M. If pe U is a left (right) strictly regular point of F and k = GF(p)
(k = 6g(p)), then there exists an open neighbourhood V of p in U such that the

system

n
¥ tYx)eaaxd) = 0 1
J=

1,...,n)

noij i
(¥ tYm6asaxh) = 0
i=1

1,...,n))

of differential equations on V has maximally k differentially independent solu-
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tions al,...,ak e C*(V). Moreover, if o € c®(V) is an arbitrary solution of this
system, then there is a function ¢ € Cm(le) such that a = (po(al,...,ak). n

Let F be a bicontravariant tensor field on M. We say that p e M is a left
(right) coregular point of F in case 6;(p) =0 (Sg(p) = 0). Since 6: (62) is a

lower semicontinuous nonnegative function, it follows that the set

coreg® F = {x e M: Bg(x) = 0} (coregb F={xeM: Bg(x) o})

is closed in M. We call F left (right) coregular in case t:or'ega F=M (coregb F
=M). If F is left and right coregular simultaneously, we say shortly that it is
coregular.

An F-biderivation (-,-)F of C®(M) is said to be left (right) nondegenerate in
case fPa(F) =0 (ipb(F) = 0). If (-,-)F is left and right nondegenerate simulta-
neously, we call shortly it nondegenerate.

It is seen that if F is an arbitrary bicontravariant tensor field F on M, then
F is left (right) coregular if and only if (°,')F is left (right) nondegenerate.

Hence and from Proposition 3.14 and Theorem 3.15 we get

3.17. Proposition. Let F be an involutive bicontravariant tensor field on M.
Then the following conditions are equivalent:

(a) F is left (right) coregular;

(b) (°,°)F is left (right) nondegenerate;

(c) F is coregular;

(d) (°,°)F is. nondegenerate;

(e) F is quasi-nondegenerate. m

Observe that the assumption of this proposition is essential. Indeed, the
bicontravariant tensor field F on IR3 from Example 3.13 is left involutive but
not right involutive. Moreover, F 1is not quasi-nondegenerate and not left

coregular but it is right coregular.

4. The category of vector-derived manifolds

As we know, any bicontravariant tensor field F on a differentiable manifold M
determines the canonical left derivation F? of the algebra Cm(M). Conversely, if
A is an X(M)-valued derivation of C”(M), then there is a unique bicontravariant
tensor field F on M such that F? = A. Thus, the assignment F - F? defines a
one-to-one correspondence between bicontravariant tensor fields on M and X(M)-
valued derivations of C(M). Let 3: X(M) — D(M) be a fixed C(M)-linear isomor-
phism. Note that any such isomorphism can be of the form Qb for a unique bico-

variant tensor field & on M, namely defined by &(X,Y) = <3Y,X> for X,Y € X(M).
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If F is a bicontravariant tensor field on M, then the composition SoF? defines a
D(M)-valued derivation of C*(M). In particular, if ($,F) is a conjugate pair of
2-tensor fields on M and if 3 = Qb, then this composition equals the exterior
derivative d on C”(M). Note that every D(M)-valued derivation of Cc”(M) is of the
form 30F? for some bicontravariant tensor field F on M.

H.-J. Kim [5] called a pair (M,D) derived manifold in case M is a differen-
tiable manifold and D is a D(M)-valued derivation of C™(M) such that DeD = 0
(integrable condition) where D: Aka(M) - AkHD(M) (1 s k = dim M) is uniquely
defined by the conditions

Dd + dD = 0 and D(£ A ) = D) A 1 + (-DXE A D(n)

for € € AkD(M) and 0 € ALD(M). More precisely, his definition of derived mani-
fold is formulated in the case of complex-valued forms on M but it has a real-
valued analogue as above. By analogy, we define a vector-derived manifold,
shortly called an X-derived manifold, to be a pair (M,F) where M is a differen-
tiable manifold and F is a bicontravariant tensor field on M called an X-derived
structure on M, as well. Note that if 3: X(M) — D(M) is an arbitrary c®(M)-
isomorphism, then the D(M)-valued derivation D = ':Sol?il of C”(M) need not satisfy
DoD = O, i.e. (M,D) need not be a derived manifold. In this sense our definition
of vector-derived (X-derived) manifold is more general than that of derived
manifold (we do not require any integrable condition for F).

Let f: N — M be a smooth map of differentiable manifolds. Denote by X f(M) the
C”(N)-module of all f-vector fields on N tangent to M. We have the C™(N)-linear
map f*: AN) — If(M) defined by (f'X)(a) = X(f'a) for a € C*(M). Similarly, we
define the map f; for bicontravariant tensor fields. If K is an arbitrary tensor
field on M, then by f#K = Keof we denote the pullback of K via f. In particular,
for any X € X(M) we have f#X € frf(M).

4.1. Theorem. Let (M,F) and (N,G) be X-derived manifolds. If f: N > M is a

smooth map, then the following conditions are equivalent:
@) G &, f*n) = F'FE) for all € € DM);

(b) (f*a,f*B)G = f"(a,ﬁ)F for all a,8 e CO(M);

(c) f’oG;*a = f#F: for each a € C*(M);
(d) f*oG;-B = f#F;; for each B € C(M);

(e) f‘oGaof' = 7%
(6) £,o6 5" = £UF%;
(@ f,G = 'F.
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Proof. Our proof will run according to the scheme (a)s3(b)a(c)s(e)=(g)=(a).
This is sufficient because the complemented scheme (a)s(b)s(d)s(f)s(a) of impli-
cations can be proved analogously.

The implication (a)=3(b) is trivial.

(b)=(c). For any «,8 € c”(M) we have

a

f

a

(F,°G3s,)B) = GLs (£°B) = (FTaf"B); = fM (@B

- _ (AHa
=Ff Fa(B) =(f F“)(B).
(c)s(e). Since all homomorphisms of the left diagram of (4.1) are local opera-
tors, it suffices to show (e) for a system of local generators of the c®(m)-

module D(M), that is, for differential forms da (a € c®(M)). We have

a

a a * # _a #_a
(f‘°G of )da) = f.°G (df o) = f'OGf*a =f Fa = (fF)(da).

(e)s(g). For any a,8 € C*(M) we have

»* #* a * a
(f'oG)(da,dB) = G(df a,df B) = Gf*a(f B) = (f‘on*a)(B)

= (£, °Ger")(da))(B) = (F*F) @) = £ (F(da)(8)
= £*Fdo,dB) = (F*F)(da,dB).
Finally, note that the last implication (g)»(a) is trivial, which completes
the proof. m

Note that conditions (c) and (d) of Theorem 4.1 mean that the following diag-

rams are respectively commutative:

f ' f

™ —5 ™™ ™ —5 ™
a a b b
el T
f f
N— M N— M

Similarly, conditions (e) and (f) of this theorem mean that the following ones

are respectively commutative:

f#l-'a f#Fb
D(M) —— :’If(M) D(M) —— flf(M)
4.1 st £, st £,
G2 c®
D(N) —— X(N) D(N) —— X(N)

Finally, note that the last condition of Theorem 4.1 means that the following

diagram is commutative:
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N——>M

By a morphism f: (N,G) — (M,F) of X-derived manifolds, or shortly, X-derived
morphism we shall mean a smooth map f: N — M such that at least one from the
equivalent conditions of Theorem 4.1 is satisfied. We get a category which is
called the category of vector-derived (X-derived) manifolds. An X-derived mani-
fold (M,F) is said to be symmetric (antisymmetric) if so is F. A Poisson mani-
fold (M,F) is defined to be an antisymmetric X-derived manifold such that the
(alternating) Schouten-Nijenhuis bracket [F,F] equals O (see [2]). We have the
categories of symmetric (antisymmetric) X-derived manifolds and of Poisson
manifolds which are defined to be full subcategories of the category of X-
derived manifolds. Clearly, the category of Poisson manifolds is a full subcate-
gory of that of antisymmetric X-derived manifolds.

We say that (N,G) is an X-derived submanifold of (M,F) if N is a differen-
tiable submanifold of M and the inclusion map i: N & M defines an X-derived
morphism from (N,G) to (M,F). In this case G is uniquely defined by F and we
call it the X-derived structure on N induced by F. Note that by condition (g) of
Theorem 4.1 we can regard that G = F|N.

Let f: (N,G) — (M,F) be a morphism of X-derived manifolds. For a point p € N
let us consider a local chart (U;xl,...,xn) on N containing p and a local chart
(V;yI,...,ym) containing f(p). We can additionally assume that f(U) € V. Clear-
ly, f(x) = (wl(x),...,¢m(x)) for x = (xz,...,xn) e U, where goi e C°(U). As we

know (Section 2) G and F have the following expressions in U and V respectively:

n s s . .
G, = I g (x)878x )e(8/8x7);

i,Jj=1
m
F.= ¥ rf(yarayFelarayh).
Y ok 1=1
From condition (g) of Theorem 4.1 it follows that fan = Ff(x) for x € U. Hence
and from the above expressions we get
2oij i j
£,6,= L g’xr (a/ax Jof (3/8x7)

i,Jj=1

oy ™k, ky T l
= T g9 T (89 rax N asay Nel T (89 /8xT)8/8y"))
i,j=1 k=1 1=1
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mr ki ij 1, j k 1
= ¥ (¥ Bpsaxhgx)ee rax))8/0y )el8/8y") = Frixy
k,1=11,j=1

which means that
n
e = ¥ (op
i, j=1

k/axhigtx)(apt/8x)) for x € U (K1 = 1,...,m).
The last equality implies
4.2. Corollary. Let (M,F) be an X-derived manifold.

() If f: (N,G) — (M,F) is a morphism of X-derived manifolds, then pF(f(x))
= pG(x) for each x € N.
(2) If (N,G) is an X-derived submanifold of (M,F), then pG(x) = pF(x) for each

X € N. In particular, reg Fn N Sreg G. m

Give attention that if (M,F) is an X-derived manifold and N is an arbitrary
differentiable submanifold of M, then the X-derived structure on N induced by F
need not exist in general (Corollary 4.3 and Example 4.8). If there exists such
a structure, we say that N admits the X-derived structure induced by F. Note
that if (M,F) is a symmetric (antisymmetric) X-derived manifold or if it is a
Poisson manifold, then every X-derived submanifold of (M,F) is again such a
manifold.

Let M be a differentiable manifold. For any subset S of M we put Cm(M;S) =
{a € C(M): «|S = O}. Clearly, C"(M;S) is an ideal of the algebra C (M). A
vector field X € X(M) is called tangent to S if X(Cw(M;S)) < Cw(M;S).' Denote by
X(M;S) the set of all vector fields from X(M) which are tangent to S. It is seen
that X(M;S) is a submodule of X(M). Note that from condition (b) of Theorem 4.1,
or equivalently, from conditions (c) and (d) of this theorem we get

4.3. Corollary. If f: (N,G) — (M,F) is a morphism of X-derived manifolds,
then F:,F': € X(M;£(N) for all « € C°(M). =

This corollary and statement (1) of Theorem 3.6 imply

4.4, Corollary. If f: (N,G) — (M,F) is a morphism of X-derived manifolds,
then MA(F) U TMO(F) € TMF(N)).

Let (M,F) be an X-derived manifold '‘and let f: N — M be a smooth map of dif-
ferentiable manifolds. Note that the above corollary gives a necessary condition
for f to be a morphism f: (N,G) — (M,F) of X-derived manifolds for some X-
derived structure G on N. It is seen that for any open subset U of M the pair
(U,F|U] is an X-derived manifold called the X-derived submanifold of (M,F)
defined by U. Clearly, the inclusion map i: U & M defines an X-derived morphism

from (U,F|U) to (M,F). We have the following theorem which is partially converse
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to Corollary 4.3.
4.5. Theorem. Let (M,F) be an X-derived manifold and let N be a dif ferentiable
submanifold of M. If FZ,F; € X(M;N) for all a,B € Cm(M), then N admits the X-

derived structure induced by F.

#FZ and FglN = t#Fb are vector

B

fields on N for all «,8 € Cc®(M) where i: N & M denotes the inclusion map.

Proof. Clearly, we can regard that F:|N =i

Moreover, note that
a a b b
(4.2) (F_IN)B|N) = F_(B)|N = FB(a)IN = (FB|N)(oc|N).

For any A € C”(N) we have the vector fields Gi and G; on N which are well-
defined by »

’ b "
G4(B|N) = (Fg|N)) and Gj(a|N) = (FZ|NQ).

Note that the assignments G’/: A G;‘ and G”: A G; are X(N)-valued deriva-
tions of the algebra C”(N). This implies that there are uniquely defined
C”(N)-linear maps G’ and G” from D(N) to X(N) such that G’(dA) = G;‘ and

G”(dA) = G; for A € C®(N). We have thus defined the bicontravariant tensor

fields G’ and G” on N by
G’ (£,m) = <n,G’&> and G”(£,7) = <€,G"np>
for £,m € D(N). One can see that G’ = G”, or equivalently,
G’(&,m) = G"(&,n) for all £, € D(N).

To prove this equality it suffices to show that it is satisfied for a system of
local generators of the C”(N)-module D(N), that is, for € = d(oc|N) and
n = d(BlN) where a,B € Cc®(M). Indeed, from (4.2) we get

—, , b
G’ (dla|N),d(BIN)) = G \(BIN) = (Fg|N)(a|N) = (Fo |N)B|N)

= GgIN(alN) = E”(d(a’IN)’d(BlN))
b

Thus we can set G = G’ = G”, which implies that G* = G’ and G° = G”.
To prove that (N,G) is an X-derived submanifold of (M,F), or equivalently,
that the inclusion map { defines an X-derived morphism from (N,G) to (M,F) it

suffices to show, according to condition (b) of Theorem 4.1, that

(aIN,BIN)G = (a,B)F|N for a,8 € C°(M).

Indeed, we have (oc|N,B|N)G = GE|N(a|N) = (F:|N)(B|N), = (a,B)FlN.' Consequently, G

is the X-derived structure on N induced by F. =

This theorem and Corollaries 4.3 and 4.4 immediately imply
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4.6. Corollary. Let (M,F) be an X-derived manifold. If N is a differentiable
submanifold of M, then N adn_tits the X-derived structure induced by F if and only
if

a b

FoFg € A(M;N) for all a,8 € C”(M),

or equivalently, M3(F) v mb(F) < X(M;N). m

An X-derived manifold (M,F) is said to be nondegenerate (quasi-nondegenerate)
if so is the bicontravariant tensor field F. Note that Corollary 4.6 implies

4.7. Corollary. Let (M,F) be a nondegenerate X-derived manifold. If N is a
differentiable submanifold of M, then N admits the X-derived structure induced
by F if and only if it is an open subset of M. m

It turns out that if (M,F) is a quasi-nondegenerate X-derived manifold, then
the assertion of Corollary 4.7 can be satisfied (Example 4.8) or not satisfied
(Example 4.9).

4.8. Example. Consider the X-derived manifold (IRZ,F) where

F = (x2+y2)(3/8x)e(3/3x) + (3/3y)e(8/3y).

It is seen that reg F = reg"' F = IR2 \ {(0,0)}, and so, F is quasi-nondegenerate.
Let N be a differentiable submanifold of IR2. If N is an open subset of IRZ, then
it obviously admits the X-derived structure induced by F.

Conversely, suppose that N admits the X-derived structure G induced by F, i.e.
(N,G) is an X-derived submanifold of (IRZ,F‘). If dim N = 2, then N .is obviously

an open subset of IR2. By Corollary 4.2 we have
2 = pp(x) = p.(x) = dim N for x € N\ {(0,00},

which leads to a contradiction in case dim N = 1. Finally, if dim N = O, then
the above-mentioned corollary implies

1= pl_.(x) = pG(x) =0 for x € N,
a contradiction. =

4.9. Example. Consider the X-derived manifold ([RZ,F) where

F = x(8/8x)e(8/3x) + y(8/3y)e(8/38y).

It is seen that F is quasi-nondegenerate and reg F = reg* F = IRZ \ K where K =

{(x,y) € R%: xy = O}. Let us set M = R x {O} and N = {0} x R and consider the
X-derived manifolds (M,F’) and (N,F”) where F’ = x(8/8x)®(8/8x) and F” =
y(8/8y)e(8/8y). Note that (M,F’) and (N,F”) are l-dimensional X-derived submani-
folds of (IRZ,F). Moreover, one can see that the O-dimensional submanifold

{(0,0)} of [R2 admits the X-derived structure induced by F which is given by the
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zero bicontravariant tensor field. m

Let now F be a left (right) involutive bicontravariant tensor field on M of
constant rank k. From the Frobenius theorem it follows that the distribution
Qa(l-‘) (Qb(l’)) is integrable, and so, it defines a foliation- of M of dimension k
called the left (right) F-foliation of M. If F is involutive and balanced, then
the left F-foliation of M coincides with the right -one, and we call such a
foliation the F-foliation of M. Give attention that if F is involutive, . then the
left and right F-foliations of M are different in general. The simplest example
of such F-foliations is defined by the bicontravariant tensor field
F = (8/8x)e(8/8y) on IRZ.

We say that an X-derived manifold (M,F) is left involutive, right involutive,
tnvolutive, balanced and of constant rank, respectively, if so is the bicontra-
variant tensor field F.

Let (M,F) be a balanced involutive X-derived manifold of constant rank. If L
is a leaf of the F-foliation of M, we conclude from the Frobeniﬁs theorem that
every vector field from M3(F) or mb(r) is tangent to L. Hence and from Corol-
lary 4.6 we get

4.10. Corollary. Let (M,F) be a balanced involutive X-derived manifold of
constant rank. If L is a leaf of the F-foliation of M, then L admits the
X-derived structure induced by F. m

Let (M,F) and (N,G) be X-derived manifolds. Consider the Cartesian product
M x N of di.fferentiable manifolds. For any q € N (p € M) let iq: M—>MxN
(jp: N — M x N) be the smooth map defined by iq(x) = (x,q) (jp(y) = (p,y)).
Define the bicontravariant tensor field H on M x N by

H(p,q) = iq!Fp + jp!Gq'
We call H the flat product of F and G and write H = F o G. The X-derived mani-
fold (M x N, F o0 G) is said to be the flat product of (M,F) and (N,G) which will
be also denoted by (M,F) o (N,G). Let n (1(2] be the projection from M x N onto
the first (second) factor of M x N. Note that L and n, define X-derived mor-
phisms from (M x N, F o G) onto (M, F) and (N,G), respectively. One can see that
the biderivation (-,~)H of the algebra Cc”M x N) is a unique biderivation of

this algebra satisfying the following conditions:

(nIa’ ,n?ﬁ’)H n;(a’ ,B')F for all o’ B’ € Cm(M);
* " » 4 * ” " ” "
(1:20:’,1:2!3' )H = nz(a B )G for all a”,8” e C*(N);

(nIa’ ,n;a”)H = (u;a”,n;a.’ )H =0 for all a’ € Cm(M), o’ € CU(N).
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The following example shows that in general (M x N, F o G) is not a product of
(M,F) and (N,G) in the category of X-derived manifolds.

4.11. Example. Let M = N =Rand F = G = (3/9x)®(8/8x). Then (M x N, F o G) =
(IRZ,H) where H = (8/8x)®(8/3x) + (8/8y)e(8/8y). On the other hand, H’ = H +
(8/8x)®(8/8y) is also an X-derived structure on IR2 such that the projections L
and n, deflne X-derived morphisms from (R ,H’) onto (R,F) and (R,G), respective-
ly. If (IR ,H) would be a product of (R,F) and (R,G) in the category of X-derived
manifolds, we conclude from the universal property of such a product that the
identity map of IR2 defines an X-derived morphism from (IRZ.H') to (IRz,H), which
is impossible. =

We shall regard the flat product o as a bifunctor from the category of pairs
of X-derived manifolds to the category of X-derivéd manifolds. One can see that
this bifunctor makes the last category to be (relaxed) commutatively monoidal
(see [9]) with respect to the identity object given by an arbitrary one-point
X-derived manifold (E,0) and the following list of canonical X-derived isomor-
phisms:

((M,F) o (N,G)) o (P,H) = (M,F) o ((N,G) o (P,H));
(E,0) o (M,F) = (M,F) = (M,F) o (E,O);
(M,F) o (N,G) = (N,G) o (M,F),

where (M,F), (N,G) and (P,H) are arbitrary X-derived manifolds. We think to be
clear the sense of these isomorphisms and remark only that they are .defined by
the canonical bijections for the corresp;)nding Cartesian products of underlying
sets. Note that if

f: M,F) —» (M’,F’) and g: (N,G) — (N’,G’)

are morphisms of X-derived manifolds, then the assignment (x,y) — (f(x),g(y))

for (x,y) € M x N defines the X-derived morphism
fog (MF)o (NG) —» (M ,F') o (N',G').

If in addition f’: (M’,F’) — (M",F”) and g’: (N’,G’) — (N”,G”) are morphisms

of X-derived manifolds too, we have

(f o g'le(f og) =(f"f) o (g eg).

One can see that the category of symmetric (antisymmetric) -I—derived manifolds
and the category of Poisson manifolds are monoidal subcategories of the category
of X-derived manifolds. A class M of X-derived manifolds is said to be monoidal
in case (M,F) € # and (N,G) € M involve (M,F) o (N,G) € M. It is seen that M is

monoidal if and only if it defines a full monoidal subcategory of the category
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of X-derived manifolds.

An X-derived manifold (M,F) is said to be nondegenerate, quési-nondegenerate,
regular, left (right) strictly regular, strictly regular, left (r;ight) strictly
coregular and strictly coregular, respectively, if so is F (Section 3). Note
that if M is a corresponding class of such manifolds, then it is determined by
properties of dimension functions. This means that an X-derived manifold (M,F)
belongs to M provided that the dimension functions pF. 6:’., 6:., t:, and 'r: have
distinguished properties.\For example, if M is the class of all left strictly
regular X-derived manifolds, then an X-derived manifold (M,F) belongs to M
provided that r;(x) = dim M for each x € M (Theorem 3.15).

By an easy verification we get

4.12. Proposition. If (M,F) and (N,G) are X-derived manifolds, then for each
(x,y) € M x N the following conditions hold:

1) pFnG(x;y) = pl_.(x) + pG(y);

3

(2) 83 ;06y) = 8360 + 83y) (5D (x.y) () + 30;

momTmo

a a a b b
(3) rFDG(x,y) = 'rF(x) + 'I:G(y) (anG(x.y) =1 (x) + tG(y)). [

This proposition immediately implies

4.13. Corollary. The classes consisting of all X-derived manifolds which are
nondegenerate, quasi-nondegenerate, regular, left (right) strictly regular,
strictly regular, left (right) strictly coregular and strictly coregular, re-
spectively, are monoidal. m

As we know, there are monoidal classes of X-derived manifolds which are not
determined by properties of dimension functions, namely, such classes are repre-
sented by symmetric (antisymmetric) X-derived manifolds and by Poisson mani-
folds, respectively. Moreover, one can see that there are other ones, for exam-
ple, the classes consisting of all X-derived manifolds which are left (right)

involutive, involutive and balanced, respectively.
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