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VECTOR-DERIVED MANIFOLDS 

Broníslaw Przybylski 

1. Introduction and preliminaries 

In recent years, Poisson manifolds have become a main subject of interest of a 

large group of mathematicians and physicists working in theoretical mechanics 

and differential geometry. Such manifolds were for the f irs t time considered by 

Lie in some non-explicit form (see [11]) and introduced by Lichnerowicz [8] as a 

generalization of symplectic manifolds which play a crucial role in theoretical 

mechanics. Recently, one can observe an increasing significance of the concept 

of Poisson manifolds in connection with the development of the theories of 

Poisson-Lie groups and of quantum groups. 

By definition, a Poisson manifold is a pair (M,F) where M is a differentiable 

manifold of finite dimension and F is a bicontravariant tensor field on M such 

that the Schouten-Nijenhuis bracket [F,F] equals 0. The condition [F,F] = 0 is 

regarded to be an integrable condition for F, which allows to introduce some 

differential operators for a complex of cochains of antisymmetric vector fields 

on M (see [8]) and a complex of chains of differential forms on M (see [7] and 

[3]). Moreover, this condition is equivalent to the fact that the linear space 

C (M) is a Lie algebra under the Poisson bracket. One can ask whether there 

exists a symmetric analogue of the notion of Poisson manifold, as well as a 

complex one. An answer to this question is presented in [10] where the problem 

of finding an integrable condition for the corresponding bicontravariant tensor 

field is the most interesting. On the other hand, it i s ' also interesting to 

consider such analogues together with the notion of Poisson manifold from the 

one point of view. In the case of real manifolds, this is the aim of the paper. 

More precisely, we introduce the concept of a vector-derived manifold as a 

This paper is in final form and no version of it will be submitted for 

publication elsewhere. 
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generalization of that of Poisson manifold. This generalization contains a 

symmetric analogue of the notion of Poisson manifold (Section 2), however, we do 

not take into consideration any corresponding integrable condition. For this 

reason our definition of such an analogue is based on the notion of Poisson 

manifold. 

In this paper we accept the terminology and notation from [6] unless otherwise 

stated. By a differentiable manifold we shall always mean a paracompact C 

manifold of finite dimension. If M is a differentiable manifold, we adopt the 

following notations: 

C (M): the algebra of all real smooth functions on M under the pointwise 

operations; 

TM: the tangent manifold (bundle) of M; 

T M: the tangent vector space of M at x; 

T M: the cotangent manifold (bundle) of M; 

T M: the cotangent vector space of M at x; 

X(M): the C°°(M)-module of all vector fields on M; 

Z)(M): the C°°(M)-module of all differential forms on M. 

The module X(M) (JD(M)) will be regarded as the C°°(M)-module of all smooth 

sections of the tangent (cotangent) bundle TM (T*M). If X € X(M) (£ e D(M)), 

then by X (£ ) we denote the value of X (£) at x € M. If in addition a € C°°(M), 

then by X(a) (da) we denote the action of X on a (the differential of a). More­

over, we set d a = (da) for x € M. For any X € X(M) and £ € D(M) we denote by 

<£,X> the differential pairing of M which defines the C (M)-bilinear map from 

D(M) x X(M) to C (M). This pairing is uniquely defined by the condition <da,X> 

= X(a) for all a € C°°(M), X e X(M). 

For any X,Y € X(M) we denote by [X,Yl the usual bracket of vector fields on M. 

It is known that the linear space X(M) equipped with this bracket is a Lie 

algebra called the Lie algebra of vector fields on M and denoted by (X(M),[•,•]) 

or by X(M), as well. 

Let J be an almost complex structure on M, that is, J is a module automorphism 
2 

of X(M) satisfying J = -1 where 1 denotes the identity map of X(M). We denote 

by J the module automorphism of D(M) adjoint to J, which means that 

<J*€,X> = <£,JX> for all X € X(M), £ 6 D(M). It is seen that J* 2 = -1* where 1* 

denotes the identity map of D(M). 

We shall denote by ® TM («>T*M) the tensor product TM ® TM (T*M ® T*M) of the 

tangent (cotangent) bundle of M by itself, as well as the total manifold of this 
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bundle. The bundle will be called the bitangent ibicotangent) tensor bundle of 

M. By a bicovariant {bicontravariant) tensor field on M we shall mean a smooth 

section of this bundle. If * (F) is such a field, then by * (F ) we denote the 

value of * (F) at x € M. We say that * (F) is nondegenerate at a point x of M if 

the associated bilinear map 

* : T M x T M — > R ( F : T *M x T * M —> R) 

X X X X X X 

is nondegenerate. If $ (F) is nondegenerate at each point of M (an open subset U 

of M), we call it nondegenerate (on U). It is known that every bicovariant 

(bicontravariant) tensor field $ (F) on M can be regarded as a C (M)-bilinear 

map 
*: X(M) x X(M) —> C^M) (F: D(M) x D(M) —> C°°(M)). 

We shall denote by * T (FT) the transpose of $ (F) defined by $T(X,Y) = *(Y,X) 

for X,Y € X(M) (FT(€,T)) = F(TI,€) for £,T> € X>{M)). Call $ (F) symmetric if $T = $ 

(F = F) and antisymmetric if $ = -$ (F = -F). 

If / : N —> M is a smooth map of d i f fe rent ia te manifolds, we denote by 

/ * : ®kUM) —> ®kD(N) 

the pullback of the map / for covariant tensor fields of degree k --. 0, where 

d^ZXM) (®k2)(N)) denotes the C^Mj-module (C°°(N)-module) of all k-covariant 

tensor fields on M (N). In particular, for k = 0 we have / : C (M) —> C (N) 

where / a = a©/. In turn, we denote by 

fm: ®kTN —> ®*TM 

the differential of the map / of degree k -t 1, where ® TN (® TM) denotes the 

k-tangent tensor manifold of N (M). Throughout this paper we can res t r ic t our 

attention to the case k -s 2. 

2. Conjugate pairs and J-connected pairs 

Let M be a differentiable manifold and let $ (F) be a bicovariant (bicontra­

variant) tensor field on M. We define the C (M)-linear maps $ : X(M) —-> D(M) and 

* b : X(M) —> D(M) (F a : Z)(M) —> X(M) and F b : Z)(M) —> X(M)) by' 

*(X,Y) = <*aX,Y> = <*bY,X> for all X,Y € X(M) 

(F(£,T)) = <€,FDT)> = <7),Fa£> for all £,T) € D(M)). 

This means that $ and $ (F and F ) are mutually adjoint operations with 

respect to the differential pairing of M. Thus, we can write $ = * and $ = 

* a (F a* = F b and F b * = F a ) . Clearly, $aX = i v $ = $(X,0 and *bY = i <&T = *(«,Y) 

(Fa£ = i^F = F ( £ , 0 and F T) = i F = F(•,?))). Moreover, note that 
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$ x * = $TX ^ d F
x * = F

T X for x = a,b. 

By an easy verification we get 

2.L Proposition. Let $ (F) be a bicovariant {bicontravariant) tensor field on 

M. Then the following conditions are equivalent: 

(a) F b o $ a = 1; 

(b) F a o $ b = 1; 

(c) * b o F a = 1*; 
, ,. . a „b , * 

(d) $ ©F = 1 ; 

(e) <**XtF*£> = <£,X> for all X € X(M), £ € 2)(M); 

(f) <$bX,Fb€> = <€,X> for all X e X(M), £ € 2)(M). • 

By a pair of 2-tensor fields on M we shall mean a pair ($,F) where $ (F) is a 

bicovariant (bicontravariant) tensor field on M. Such a pair is called conjugate 

if it satisfies at least one from the equivalent conditions of Proposition 2.1. 

Note that if ($,F) is a conjugate pair of 2-tensor fields on M, then both $ and 

F are nondegenerate. Moreover, the maps $ and $ (F and F ) are C (M)-linear 

isomorphisms from X(M) onto 2)(M) (from 2)(M) onto X(M)). Clearly, Proposition 2.1 

implies 

2.2. Corollary. Let ($,F) be a conjugate pair of 2-tensor fields on M. 

(1) ($ ,F ) is conjugate. 

(2) If a,|3 € C°°(M) and a/3 = 1, then (a*,|3F) is conjugate. In particular, so is 

(-$,-F). • 

Let $ (F) be a bicovariant (bicontravariant) tensor field on M. By definition 

$ (F) is symmetric if $ = $ (F = F), or equivalently, $ = $ (F = F ) and 

antisymmetric if $ = -$ (F = -F), or equivalently, $ = -$ (F = -F ). From 

Proposition 2.1 we obviously get 

2.3. Corollary. Let ($,F) be a conjugate pair of 2-tensor fields on M. Then $ 

is symmetric {antisymmetric) if and only if so is F. • 

If $ (F) is a nondegenerate bicovariant (bicontravariant) tensor field on M, 

then there is a unique nondegenerate bicontravariant (bicovariant) tensor field 

$ ( F) on M such that ($,$ ) (( F,F)) is a conjugate pair of 2-tensor fields on 

M. Namely, $ ( F) is defined by 

M^,))) = «;,($*)" V = <T),(*VV for C,T) e 2)(M) 

(~F(X,Y) = <(Fb)_1X,Y> = <(Fa)_1Y,X> for X,Y € X(M)). 

Clearly, the assignments $ i-> $ (F i-> F) are mutually inverse, that is, 

~($~) = * ((~F)~ = F). Thus we have 
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2.4. Corollary. The assignment $ i—> $ (F h-> F) defines a one-to-one corre­

spondence between nondegenerate bicovariant (bicontravariant) tensor fields on M 

and nondegenerate bicontravariant (bicovariant) tensor fields on M. Moreover, 

these assignments are mutually inverse, m 

Let F be an arbitrary bicontravariant tensor field defined on a different iate 

manifold M. For any a € C (M), we define the canonical left (right) F-vector 

field of a to be the vector field F a = Fa(da) (F = F (da)). It is seen that the 
h ha a * 

assignment F#: a i-> F (F^: a H F ) is an X(M)-valued derivation of the algebra 
C°°(M) called the canonical left (right) F-derivation of C°°(M). Clearly, we have 

Fa(0) = <(da)®(d|3),F> and FbO) = <(da)®(d0),FT>, and so, Fa(0) = Fb(a) for all a a a p 
a,0 € C°°(M). 

Note that if ($,F) is a conjugate pair of 2-tensor fields on M, then 

*(X,Fa) = <*aX,Fa(d^3)> = <d£,X> for X € X(M), 0 € C°°(M). 
P 

Similarly, we have 

$(Fb,Y) = <$bY,Fb(da)> = <da,Y> for Y € X(M), a € C°°(M). 

a b 
By putting X = F and Y = FR in the above equalities we obtain 

$(Fa ,Fa) = <dp\Fa> = F(da,d0); 
(2.1) a P a 

$(Fb,Fb) = <da,Fb> = F(da,d/3). a p p 

From the last equalities and Proposition 2.1 we get 

2.5. Proposit ion. Let (*,F) be a conjugate pair of 2-tensor fields on M. 

(1) *(Fa£,F%) = $(Fb€,Fb7j) = F(€,T)) for all £,7) € D(M), or equivalents, 

(Fa®Fa)* = (Fb®Fb)* = F. 

(2) F U S S ' S ' ) = F(*bX,*bY) = *(X,Y) for all X,Y € X(M), or equivalently, 

(*a®*a)F = ($b®$b)F = $. • 

By an easy computation we get 

2.6. Proposition. Let (*,F) be a conjugate pair of 2-tensor fields defined on 

M. Let * |U = Z. .<f>. .(dxl)®(dxJ) (F|U = Z. f l J(a/3x l)®(a/axJ)) be the expression 
lJ lJ j n 

of $ (F) in a local chart (\J;x x ) on M. Then the matrices \<f>. .[• and 
£ / T T £ / l J 

\f \ , or equivalently, \<J>. .J- and *jf [• are mutually inverse, i.e. 

\fki<t>kj = ^k^jk = <dxi>d/dxJ> f°r W = h2,...,n. 

Moreover, the following equalities hold: 

(1) **X = -SjjXl0t .dxJ> *bX = Z( .XJ<t>t .dx1; 

(2) FaC = Z oiif
iJ(d/dxJ)t F b ^ = Z. .a f^O/dx1); 

(3) F a = Z. . O a / a x V J 0 / a x J ) , Fb = Z. .(doc/dxJ)fiJ(d/dxi); 
a i j a ij 
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where X = Z.\l(d/dxl), £ = S .a .dx1 and CC,OL.,\1 € C°°(U) for i = l,...,n. m 

If M is a differentiable manifold, then by a biderivation of the algebra C (M) 

we shall mean an R-bilinear map (•,•) on C (M) satisfying the following 

conditions: 

( r , a0) = 0(y,a) + a(y,/3); 

(ap\ r ) = 0(a,y) + a(0,y). 

One can see that for every biderivation (•,•) of C (M) there is a unique 

bicontravariant tensor field F on M such that (a,0) = F(da,d0) for a,0 € C (M), 

called the representative tensor field of (•,•). Conversely, if F is such a 

field, then the formula 

(a,£)F = F(da,d0) 

defines a biderivation of C (M) called the F-biderivation. In the sequel the 

term an F-biderivation of C (M) will always mean a biderivation of C (M) with 

its representative tensor field F. Note that an F-biderivation of C (M) is 

symmetric (antisymmetric) if and only if so is F, i.e. F = F (F = -F). Let now 

$ be a nondegenerate bicovariant tensor field on M. In this case the 

$ -biderivation will be c 

From (2.1) it follows that 

(a ,0) . = $~(da,d/3) = *(($~)a,(*~)*) = $((*~)b,(*~)b) for a,|3 e C°°(M). v a p a p 

If (M,a>) is a symplectic manifold, then the w-biderivation of C (M) is called 

the Poisson bracket on C (M) and denoted by {a,0> = (a,0) . It is known that 
0) 

this bracket is antisymmetric and it satisfies additionally the Jacobi identity, 

which means that the linear space C (M) is a Lie algebra under multiplication 

given by the Poisson bracket. Furthermore, for any a € C (M) the vector field 

X = (c<> ) is called the Hamiltonian vector field of a. These vector fields play 

an essential role in theoretical mechanics [11. Let us set X = (w ) = -X for 
a a a 

a € C (M). It is seen that 
w(X , X J = w(X",X") = {a,0> for a,0 € C°°(M). a p a p 

Moreover, the Jacobi identity implies that the assignment a h-> X (a i-> X~) 

defines a Lie algebra antihomomorphism (homomorphism) from (C (M),{•,•>) to 

(X(M)f[ • . • ] ) . 

Let now (M,g) be a pseudo-Riemannian manifold. By the pseudo-Riemannian brack­

et on C (M) we shall mean the g-biderivation (a,j3) = (a,|3) . Clearly, this 

bracket is symmetric, that is, (a,0) = (|3,a) for a,0 € C°°(M). If a € C°°(M), we 

define the pseudo-Riemannian vector field of a to be R = (g ) = (g ) . It is 

$ -biderivation will be also called the ^-biderivation and denoted by (•,•),„. 
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g(R , R J = (a,ß) for a,ß є C (M). 
a p 

We shall regard the algebra C (M) to be partially ordered by the relation -t, 

where a -t 0 means that a(x) -t 0(x) for all x € M. We write a > 0 (a » 0) in case 

a -t 0 and a * 0 (a(x) > 0(x) for all x € M). If An addition g is positive-

defined, that is, (M,g) is a Riemannian manifold, we obviously have 

(a,a) -t 0 for all a € CC°(M); 

(a,a) > 0 if and only if da * 0; 

(a,a) » 0 if and only if d a * 0 for each x € M. 

In this case the vector field R is called the Riemannian vector field of a, as 
a 

well. 

It is easy to verify 

2.7. Proposition. Let (M,J) be an almost complex manifold. Let $ (F) be a 

bicovariant [bicontravariant) tensor field on M. Then the following conditions 

are equivalent: 

(a) *(JX,JY) = $(X,Y) for X,Y € X(M) (F(J*€,J%) = F(€,7>) for €,T> 6 2)(M)); 

(b) (J*®J*)* = * ((J®J)F = F); 

(c) J**aJ = * a (JFaJ* = Fa); 

(d) J**bJ = * b (JFbJ* = Fb). . 

Under the assumptions of Proposition 2.7, we say that $ (F) is J-invariant if 

at least one from the equivalent conditions of this proposition is satisfied. 

Let (M,J) be an almost complex manifold. If $ and ¥ (F and G) are arbitrary 

bicovariant (bicontravariant) tensor fields on M, we set $ = (J ®1 )$ and * = 

(1*®J*)¥ (FJ = (J®1)F and JG = (1®J)G). Clearly, we have 

$J(X,Y) = $(JX,Y) and J¥(X,Y) = ¥(X,JY) for X,Y € X(M) 

(FJ(£,77) = F(J*€,T>) and JG(Cfij) = G(€,J%) for £,*) € SD(M)). 

By an easy verification we get 

2.8. Proposition. Let (M,J) be an almost complex manifold. 

(1) The assignments $ i-> $ and * i-> * (F i-> F and G i-> G) are mutually 

inverse bijections for J-invariant bicovariant (bicontravariant) tensor fields 

on M. 

(2) These assignments define a one-to-one correspondence between antisymmetric 

and symmetric J-invariant bicovariant (bicontravariant) tensor fields on M. • 

It is easy to prove 
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2.9. Proposition. Let (M,J) be an almost complex manifold. Let $ and V (F arid 

G) be J-invariant bicovariant (bicontravariant) tensor fields on M. Then the 

following conditions are equivalent: 

(a) ФJ = Ф ( F J = G); 

(b) JФ = Ф ( JG = F); 

(c) ФaJ = = Ф a ( F a J * = G a ) ; 

(d) Фa = J*Ф a ( ғ a = JG a ) ; 

(e) J*ФЬ = ФЬ (JF Ь = І G Ь ) ; 

(f) Фb = ФЬJ ( F Ь = G Ь J*). 

Let (M,J) be an almost complex manifold. By a J-connected bicovariant 

(Ыcontravariant) pair on M we shall mean a päiг (Ф,Ф) ((F,G)) satisfying a t 

least one fгom the equivalent conditions of Pгoposition 2.9. If in addition Ф 

(F) is antisymmetгic and Ф (G) is symmetгic, we say that (Ф,Ф) ((F,G)) is a J-

connected bicovariant (bicontravariant) superpair on M. A J-connected bico-

vaгiant (bicontгavaгiant) paiг (Ф,Ф) ((F,G)) on M is said to be nondegenerate if 

both Ф and Ф (F and G) are nondegeneгate. It tuгns out that foг an aгbitгaгy 

almost complex manifold (M,J) theгe aгe nondegeneгate J-connected bicovaгiant 

(bicontгavaгiant) supeгpaiгs on M. Indeed, we can choose a J-invaгiant metгic 

tensoг g on M, and note that ( g,g) (( (g ),g )) is such a supeгpaiг. 

It is seen that Pгopositions 2.1 and 2.9 imply 

2.10. Coгollaгy. Let (M,J) be an almost complex manifold. Let (Ф,F) arid (Ф,G) 

be conjugate pairs of 2-tensor fields on M. Then (Ф,Ф) is a bicovariant J-

connected pair (superpair) if and only if (F,G) is a bicontravariant one. More-

over, if (Ф,Ф) is a J-connected pair on M, then F = JG and J F Л = GQ for all 
OĹ a p p 

a,ß є C°°(M). • 

This coгollaгy immediately implies 

2.11. Coгollaгy. Let (M,J) be ari almost complex manifold. Let (w,g) be a J-

connected bicovariant superpair on M where w (g) is a symplectic form (pseudo-

Riemannian metric) on M. Then 

X" = JR arid JX 0 = R 0 for all a,ß є C°°(M). • 
a a ţs p 

Let (M,J) be a complex manifold, i.e. an almost complex manifold satisfying 

the following integгable condition: 

[JX,JY] - [X,Y] - J[X,JY] - J[JX,Y] = 0 foг all X,Y є X(M). 

A nondegeneгate J-connected bicovariant supeгpaiг (w,g) on M is said to be 

integrable if so is w, i.e. ы is a symplectic foгm (dw = 0). Such a supeгpaiг 
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defines a nondegenerate complex bicovariant tensor field on M which is regarded 

to be a complex analogue of the symplectic s tructure w (see [101 for details). 

Moreover, if (w,g) is an integrable nondegenerate J-connected bicovariant super-

pair on M, then g can be regarded as a symmetric analogue of u>. It turns out 

that the above analogues can be considered more generally for complex manifolds 

equipped with J-invariant Poisson structure. 

3. Regular and str ictly regular points 

Let M be a differentiable manifold. Let & be an assignment which sends each 

point x 6 M to a vector subspace & of T M. Let us set 

T{&) = -JX € X(M): X € & V x € M(-

and note that T{&) is a C°°(M)-submodule of X(M). We say that & is a distribution 

on M if for any p € M and v € & there is a vector field X € T{&) passing 

through v, i.e. X = v. If £ is a distribution on M, we define the dimension 

function 8~ on M by S~(x) = dim & . One can see that this function is lower 
6 e> X 

semicontinuous. We say that p € M is a regular point of & if 8p is locally 

constant at p. Denote by reg & the set of all regular points of &. By an easy 

verification we get 

3.1. Lemma. If & is a distribution on M, then reg & is an open and dense 

subset of M. • 

Let U be an open subset of M. A distribution & on M is called regular (on U) 

in case reg & = M ( U S reg &). We say that & is of dimension k (on U) in case 

5g(x) = k for each x € M (x € U), and write dim & = k (dim &\U = k). Clearly, if 

M is connected, then every regular distribution on M is of constant dimension. 

Let F be a bicontravariant tensor field on M. We associate with F the left 

{right) distribution £ a(F) (£b(F)) of F on M defined by 

g a(F) = Fa(T*M) (£b(F) = Fb(T*M)). 

Note that in any local chart (U;x ,....*: ) on M the field F has the expression 

F|U = Z. flJ{d/dxlMd/dxJ). 

This implies that equalities (2) and (3) of Proposition 2.6 are satisfied for F 

too. For each x € U, we define the rank p.-,(x) of F at x to be the rank of the 
. . F 

matrix -j f * (̂x) }>. Clearly, the definition of PF(x) does not depend from a chosen 

local chart containing x. Thus we can regard that the rank-dimension function 

p„: x i-> PF(x) is well-defined on M. Moreover, it is seen that for each x € M we 

have 
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pjx) = dim Fa(T*M) = dim Fb(T*M), F x x 

which implies that p F = 8->&.-. = 3p,b,F*. Therefore p F is a lower semicontinuous 

function on M because so are 8pa(v. and S^b...... By a regular point of F we shall 

mean a point p € M such that the function p F is locally constant at p. The set 

of all such points will be denoted by reg F. Since p F = d~,a..v. = S^b,..*, we get 

reg F = reg £a(F) = reg £b(F) . 

This and Lemma 3.1 immediately imply 

3.2. Corollary. If F is a bicontravariant tensor field on M, then reg F is an 

open and dense subset of M. • 

Let U be an open subset of M. We say that F is regular (on U) in case reg F 

= M (U Q reg F), which means that F is locally of constant rank (on U). It is 
a b 

seen that F is regular (on U) if and only if so are & (F) and & (F) simulta­

neously. We write rank F = k (rank F|U = k) if PF(x) = k for each x e M (x € U). 

Let us set 
t reg F = -jx € M: pp(x) = dim M\ 

t 
and note that reg F is an open subset of reg F. Clearly, F is nondegenerate if 
and only if reg F = M. We say that F is quasi-nondegenerate if reg F is a 

t 

dense subset of M. In this case we obviously have reg F = reg F. 

Let U be an open subset of M. If JP is a family of vector fields on M, we adopt 

the following notation: 
y |u = <(x|u: x e <f\. 

By a module of vector fields on U we shall mean a C (U)-submodule of X(U). If 31 

is such a module and if y is a system of generators of 31, we write 

n = iinc.o(u) y. 

Let 3J1 be a module of vector fields on M. For an open subset U of M we denote by 

3JUU) the C°°(U)-module generated by the family 3J1|U, i.e. 3Jt(U) = l -n c « ( u ) (3Jl|U). 

Moreover, by 3JL (U) we denote the localization of 3J1 to U. This means that 

3J1. (U) is a module of vector fields on U consisting of all X € X(U) satisfying 

the following condition: 

for each p e U there are an open neighbourhood V of p in U and a vector field 

Y € 3H such that X|V = Y|V. 

We say that 3)1 is local on U in case 3J1. (U) = 3J1(U). If 3J1 is local on M, i.e. 
loc 

3J1. (M) = 3R, we shortly say that it is local. Clearly, if 3JI is local, then it is 

local on each open subset of M. A family y S 3)1 is said to be a system of local 
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generators of 3J1 if for any X € 3J1 and p € M there is an open neighbourhood U of p 

in M such that X|U € lin oo (.y|U). We say that a family if Q 3J1 is a system of 

locally neighbourhood generators of 3J1 if for each p € M one can find an open 

neighbourhood U of p in M such that 3IUU) = lnyoo.... (.y|U). Clearly, every system 

of locally neighbourhood generators of 3JI is a system of local generators of 3J1. 

If U is an open subset of M, then by a system of generators (base) of 9JI on U we 

shall mean a system of generators (base) of the module 3JUU). 

On principle we deal with local modules of vector fields on M. For example, if 

& is a distribution on M, then the module T(&) is clearly local. By applying a 

locally finite smooth partition of unity we get 

3.3. Lemma. Let 3J1 be a module of vector fields on M. 

(1) A finite system of local generators of 9JI is a system of generators of 3J1. 

(2) If 3H is finitely generated, then it is local, m 

Let 3H be a module of vector fields on M and let p € M. We call 3J1 pseudoregular 

at p in case there is an open neighbourhood U of p in M such that the module 

3J1(U) is finitely generated. Clearly, the set of all pseudoregular points of 3J1 is 

an open subset of M. We say that 3H is pseudoregular if it is pseudoregular at 

each point of M. 

Let 3R be a module of vector fields on M and let U be an open subset of M. A 
I k I k base X X of 3JUU) is said to be regular if the vectors X X are x x 

linearly independent for each x € U. By a regular point of 3JT we shall mean a 

point p € M such that there is a regular base of 3J1(U) for some open 

neighbourhood U of p in M. Clearly, the set reg 3H of all regular points of 3J1 is 

an open subset of M. We say that 3J1 is regular on U in case U £ reg 3H. If reg 3J1 

= M, then 3H is called regular. 

It turns out that a free module of vector fields on M need not be regular in 

general. For example, let X = x(d/dx) be a vector field on LR and consider the 

module 3J1 = linr<». . -jx}-. Clearly, 3H is free. But for any open neighbourhood U of 

0 in IR every base of 3H(U) consists of one nonzero vector field on U which van­

ishes at 0, and so, 3J1 is not regular at 0. 

Let IH be a module of vector fields on M. By the distribution of 3J1 we shall 

mean a distribution &(JR) on M defined by 

&(m) = -(X : X € 3J1)». 

It is seen that 3J1 is a submodule of T(&(Jfl)). For example, consider the vector 

field X = x2(d/dx) on IR. Let us set 3JI = Hncoo R j -|X|» and & = g(3Jt). We have 

&x = TxIR for x * 0 and &Q = 0. Moreover, note that the vector field x(d/dx) 
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belongs to T{&) but it does not belong to 3H. 

Let & be a distribution on M. A family if £ T{&) is said to be a system of 

smooth generators of & if it is a system of generators of the module T{&). 

Similarly, we define a system of local {locally neighbourhood) smooth generators 

of &t as well as a system of smooth generators {base) of & on an open subset of 

M. We say that & is pseudoregular at a point p € M if so is the module T{&) at 

p. By a pseudoregular distribution on M we shall mean a distribution which is 

pseudoregular at each point of M. It is easy to verify 

3.4. Lemma. Let 3J1 be a module of vector fields on M and let & = £(3Jl). 

(1) If if is a system of generators of 3J1, then for each p € reg & there are an 
1 k 

open neighbourhood U of p in M and vector fields X X € if such that 
1 k 

•{X |U,...,X \V\ is a regular base of 3J1 on U. In particular, 
reg 3JI = reg &t 

and so, reg 3J1 is an open and dense subset of M. 

(2) For each p € reg 3Jt there is an open neighbourhood U of p in M such that 

3JUU) = r (g |U) . In particular, if 3JI is regular, then a family if Q W is a system 

of local {locally neighbourhood) generators of 3J1 if and only if it is a system 

of local {locally neighbourhood) smooth generators of &. * 

This lemma immediately implies 

3.5. Corollary. Let 3J1 be a local module of vector fields on M and let & -

&{W). If U is an open subset of M and U £ r eg 3H, then 3K(U) = T{&\U). In particu­

lar, if 3H is regular, then 3J1 = r{&). u 
a b 

Let F be a bicontravariant tensor field on M. As we know F and F are 

C°°(M)-linear maps form 2)(M) to X(M). This implies that 3Jta(F) = Fa(2)(M)) and 

3JI (F) = F (2)(M)) are modules of vector fields on M called the canonical left and 

right modules of F, respectively. Let us set «(Fa}> = <(Fa: a € C°°(M)}- and <(F \ 

= <|Fb: a € C°°(M)}, 

3.6. Theorem. Let F be a bicontravariant tensor field on M. 

a b 
(1) The family <(F )> («(F }•) is a system of locally neighbourhood generators of 

3Jla(F) (3Jlb(F)). 
a b 

(2) The module 311 (F) (3J1 (F)) is pseudoregular and local. 

(3) If in addition M is connected, then 3Jla(F) (3Jtb(F)) is a finitely generated 

module by IF*} (<{Fbp. 

Proof. By reason of symmetry, it suffices to show this theorem for -JF V and 

3J1 (F). For convenience, we adopt the notations 3Ha = 3Jla(F) and 1 F a | V } - = *JFa}>|V. 
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(1). Let us take p € M and consider a local chart (U;x , . . . , x ) on M contain­

ing p. Since F is a local operator, we can accept F (£|U) = (F|U) (£|U) = 

(Fa€)|U for £ € 2)(M), which implies Fa(2)(M)|U) = 3Jla|U. Clearly, we have 

x , . . . , .* € C (U), and so, there are an open neighbourhood V of p in U and 

functions a1 ,...,a" € C°°(M) such that a*|V = x l | V for i = l,...,n. Thus da l |V = 

dx |V and since the differentials dx dx form a base of the module 2)(U), it 

follows that the^ differentials da |V,. . . ,dan |V form a base of the module 2)(V). 

Finally, it is seen that Fa(da*|V) = F a l |V for i = l,...,n and Fa(2)(V)) = 3Ka(V), 

whence 

JIla(V) = l i n c « ( v ) (F*l|V Fan|V). 

Consequently, \Y \ is a system of locally neighbourhood generators of 3J1 . 

(2). Observe first that from the prove of Statement (1) it follows that the 

module 3JI (V) is. finitely generated, which means that 3J1 is pseudoregular at p. 

Since p can be an arbitrary point of M, we conclude that 3J1 is pseudoregular. 

To prove that the module 3J1 is local consider a vector field X € 3J1. (M). This 
loc 

means that for any point p € M there is an open neighbourhood U of p in M such 

that X|U € 3Ha(U). Since Fa(2)(U)) = 3Jta(U), there is « € 2)(U) such that 

F ((*>..) = X|U. In turn, there are an open neighbourhood V of p in U and a 

differential form £ V € 2)(M) such that € V |V = wn |V, which implies Fa(£V |V) = X|V. 
V 

Thus there is an open covering V of M and a family *{£ : V € V\ such that 

(3.1) Fa(£V |V) = X|V for each V € 11. 

Let \X : S € S } » be a locally finite smooth partition of unity subordinated to 

. For each s € S we can ch 

differential 1-form € on M by 

V. For each s € S we can choose V(s) € V such that supp X £ V(s). Define the 

« = ̂ s > / ( S ) -

Clearly, we have Fa£ = E X pa£ e 3Jla. It suffices to show that Fa£ = X, or 

equivalently, that for each p € M there is an open neighbourhood U of p in M 

such that 

(Fa£)|U = X|U. 

Indeed, there is an open neighbourhood W of p in M such that the set 

S = « j s € S : W n supp X * a\ 
P s 

is finite. Moreover, the set 

S' = «{s є S: p є supp Л \ 
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is a finite subset of S . Note that p € supp A £ V(s) for s € S' , and so, p s p' 
p| «{V(s): s € S' \ is an open neighbourhood of p in M. Consider the se t 

U = (W n p| *JV(s): s € S' \) \ U <(supp X : s € S \ S' ^ 

and note that U is an open neighbourhood of p in M such that the following 

conditions hold: 

(3.2) U £ V(s) for each s € S'; 
P 

(3.3) U n supp \ = 0 for each s € S \ S'. 

s p 

From conditions (3.1) and (3.2) it follows that Fa(*; s ) | U ) = X|U for each 

s € S'. This and condition (3.3) imply 

(Fa£)|U = S s € S U j U ) F a ( € V ( s ) | U ) = S s € Sv (Xs|U)(X|U) = X|U, 
P 

which completes the proof of statement (2). 

(3). If M is connected, then by the Whitney theorem there exists a smooth 

embedding <p = (<p t...f<p ): M —> LR . It follows that every global differential 

1-form £ on M is a pullback of such a form on IR via <pt i.e. 

€ = ->*ß^ж. а.dx1) = ť£и. ( / a . íV 

where a. € C (IR ). Thus, D(M) is finitely generated by the differentials 

d<p d<p . This implies that the module 571 = F (-Q(M)) is also finitely gener­

ated by the vector fields F (d<p ),...,F (d<p ) . • 

For this theorem one can remark that if M is connected, then the statement (3) 

and Lemma 3.3 imply the statement (2). 

From Theorem 3.6 and Lemma 3.4 we get 

3.7. Corollary. Let F be a bicontravariant tensor field on M. For any 

p € reg F there are an open neighbourhood U of p in M and functions 
1 J 

a a 
fields 

a1 a k € C°°(M) (01 |3k € (T(M)) where k = pp(p) such that the vector 

Fa(da2)|U Fa(dak) |U (Fb(d^)|U , . . . ,Fb(d l3
k) |U) 

a b 

form a regular base of 171 (F) (971 (F)) on U, In other words, there is a local 

chart (\J;x ,...,x ) ((U;y y )) on M containing p such that the vector 

fields 

Fa(dA...,Fa(dxk) (Fb(dyI),...,Fb(dyk)) 

form a regular base of 371a(F) (!JHb(F)) on U. • 

Let U be an open subset of M. A module 3J1 of vector fields on M is said to be 
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involutive on U in case the module 3H(U) is involutive, i.e. if X,Y € 3Jt(U) 

involves [X,Y] € 3JUU). If 3J1 is involutive on M, we shortly say that it is 

involutive. If p € M, we call 3J1 locally involutive at p in case there is an open 

neighbourhood U of p in M such that 3JUU) is involutive. We say that 3J1 is 

involutive at a point p € M in case for any vector fields X,Y € 311 there is an 

open neighbourhood U of p in M such that [X|U,Y|U] € 3J1(U). It is easy to verify 

the following lemmas. 

3.8. Lemma. Let 3H be a pseudoregular module of vector fields on M. Then 3JI is 

locally involutive at a point p € M if and only if it is involutive at p. • 

3.9. Lemma. Let 3JI be a local module of vector fields on M. Then 3JI is 

involutive on an open subset U of M if and only if it is involutive at each 

point of U. • 

By applying Theorem 3.6 and Lemma 3.9 we get 

3.10. Proposition. Let F be a bicontravariant tensor field on M and let U be 

an open subset of M. Let us set 3Jla = 3Jla(F) (3Jlb = 3Jlb(F). Then the following 

conditions are equivalent: 

(a) the module 3Jla(U) (3Jlb(U)) is involutive; 

(b) [F a |U,F a |U] € 3Jla(U) ([Fb |U,Fb |U] € 3JIb(U)) for all a,|3 € C°°(M); 
a P a ° a b 

(c) there is an open covering V of U such that 3J1 (V) (3J1 (V)) is involutive for 

each V € V; 

(d) 3Ila (3Jlb) is involutive at each point of U. • 
This proposition immediately implies 

a b 

3.11. Corollary. Under the assumptions of Proposition 3.10, the module 3J1 (3J1 ) 

is involutive on U if and only if for each point p € U there is a local chart 

(V;x x ) on U containing p such that 

[F^dx^F^cbr7')] € 3Jla(V) ([Fb(dxi),Fb(cbcJ')] 6 3Hb(V)) for ij = l,2,...,n. m 

Let F be a bicontravariant tensor field on M. If p € M, we call F left (right) 

locally involutive at p in case there is an open neighbourhood U of p in M such 

that at least one from the equivalent conditions of Proposition 3.10 is sat is­

fied. We say that F is left (right) involutive at p in case the module 3J1 (F) 

(3H (F)) is involutive at p. Note that from statement (2) of Theorem 3.6 and from 

Lemma 3.8 we get 

3.12. Corollary. Let F be a bicontravariant tensor field on M.and let p € M. 

Then F is left (right) locally involutive at p if and only if it is left (right) 

involutive at p. • 

Let F be a bicontravariant tensor field on M and let U be an open subset of M. 
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We say that F is left (right) involutive on U in case it is left (right) invol-

utive at each point of U, or equivalently, it satisfies at least one from the 

equivalent conditions of Proposition 3.10. If F is such on M, we shortly say 

that it is left (right) involutive. We call F involutive (on U) in case it is 
a b 

left and right involutive (on U) simultaneously. If DJl (F) = UK (F), we say that F 
is balanced. Recall that by definition F is symmetric (antisymmetric) if and 

a b a b a 

only if F = F (F = -F ). Moreover, F is nondegenerate if and only if UJl (F) = 

3J1 (F) = X(M). Hence we conclude that if F is symmetric, antisymmetric and non-

degenerate, respectively, then it is balanced. The following example shows that 

F can be left involutive but not right involutive, and conversely. Clearly, 

every such field is not balanced. 
3 

3.13. Example. For any p = (x,y,z) 6 IR we consider the matrix 

1 1 0 

0 0 1 

0 0 x # 

3 

which defines the bicontravariant tensor field F on LR by 

F = (d/dx)®(d/dx) + (d/dx)®(d/dy) + (d/dy)®(d/dz) + x(d/dz)®(d/dz) 

Clearly, F is of constant rank 2. We have 
Fa(dx) = d/dx + d/dy, Fa(dy) = d/dz, Fa(dz) = x(d/dz); 

Fb(dx) = Fb(dy) = d/dxt Fb(dz) = d/dy + x(d/dz). 

Thus, [Fa(dx),Fa(dy)l = [Fa(dy),Fa(dz)l = 0 and [Fa(dx),Fa(dz)l = d/dz, which 

implies that the module 9JT (F) is involutive (Corollary 3.H), and so, F is left 

involutive. On the other hand, note that [F (dx),F (dz)] = d/dz £ JJ1 (F), which 

means that the module JJt (F) is not involutive, and so, F is not right invol­

utive. Obviously, the bicontravariant tensor field F is right involutive but 

not left involutive. • 

Let F be a bicontravariant tensor field on M. We say that p € M is a left 

(right) strictly regular point of F if p € reg F and if F is left (right) invol­

utive at p, or equivalently, if it is left (right) locally involutive at p 
a b 

(Corollary 3.12). Denote by reg F (reg F) the set of all left (right) strictly 
a b 

regular points of F. Clearly, by definition reg F (reg F) is an open subset of 

M. By a strictly regular point of F we shall mean a point p e M which is a left 

and right strictly regular point of F simultaneously. It is seen that 

reg F = reg F n reg F 

is the set of all strictly regular points of F. Note that if F is the 
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3 a 3 

bicontravariant tensor field on R from Example 3.13, then reg F = reg F = IR 

and reg* F = reg F = 0 . Clearly, we get 

3.14. Proposition. If F is left {right) involutive, then r e g a F = reg F 

(reg F = reg F). In particular, if F is involutive, then reg F = reg F = 

reg F = reg F. • 

If F is a bicontravariant tensor field on M, we define the left {right) polar 

Igebra of 

equalities: 

algebra of F to be the subalgebra 7>a(F) {T (F)) of C"(M) given by the following 

7>a(F) = ker Fb = <{a € C°°(M): (a,/3)_ = 0 V 0 € C°°(M)|» 

= -{a 6 C^M): X(a) = 0 V X € mb(F)}> 

{Tb{F) = ker F a = -J/3 € C°°(M): (a,0)_ = 0 V a € C°°(M)|-

= -|0 € C°°(M): X(|3) = 0 V X € 3Jta(F)|0. 

One can see that the algebra T (F) {T (F)) is closed under composition with real 

smooth functions, which means that if a a e T (F) (a , . . . ,a € T (F)) and 

<p € C°°(IRm), then ^{ct1 am) € 7>a(F) (^(ct* am) € Tb{F)). Moreover, it is 

seen that this algebra is local, that is, if a € C (M) and if for each p € M 
a b 

there are an open neighbourhood U of p in M and a function £ € T (F) (0 € T (F)) 
such that a|U = |3|U, then a € T*{F) (a € Tb{F)). 

l k m 
Let M be a differentiable manifold. We say that functions a a € C (M) 

are differentially independent at a point p of M in case the differentials 
I k * 

d a d a are linearly independent in T M. If U is an open subset of M and 
if these functions are differentially independent at each point of M (U), we 

I k I k call a a differentially independent (on U). Clearly, if a a are 

differentially independent at p, then there is an open neighbourhood U of p in M 

such that these functions are differentially independent on U. 

If A is a subalgebra of C (M) and if x € M, we denote by d A the linear 

subspace of T M consisting of all differentials d a for a € A. Define the left 

{right) polar-dimension function of F to be the functipn 5_: M —> Z (5_: 
+ t b 

M —> Z ) given by 

5a(x) = dim d x? a(F) (5b(x) = dim dx.Pb(F)). 

a b 

It is seen that k = 5_(x) {k = 5_(x)) is the maximal number of differentially 

independent at x functions from 7>a(F) {T (F)). From definition it follows that 

5_ (5_) is a lower semicontinuous function. Moreover, note that these functions 

are locally defined by F, which means that for any open subset U of M we have 

5 a | U = 8*.^ and 5 b | U = 5 ^ . Further, define the left {right) total-dimension 

function of F to be the function Ta: M —> Z+ (T_: M —> Z+) given by 
r r 
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Ta(x) = 5 a(x) + p_(x) (T£(X) = Sb(x) + p_(x)) . 

a b 
Since both the functions 5_ and p_ (5_ and p_) are lower semicontinuous, so is 

F F F F 

T _ ( T _ ) . Clearly, the functions T_ and T_ as well as the function p_ are locally 

defined by F, too. Moreover, note that 

(3.4) p_(x) -s Ta(x) * dim M (p_(x) ^ T£(X) -S dim M) 

for each x € M. 

Let U be an open subset of a differentiable manifold M and let p € M. A 

distribution & on M is said to be involutive on U, locally involutive at p and 

trivoiutive at p, respectively, if so is the module T{&). 

3.15. Theorem. If F is a bicontravariant tensor field on M, then 

r e g a F = <(x 6 M: T£(X) = dim U\ (regb F = «{x € M: Ta(x) = dim Mp. 

Proof. By reason of symmetry, it suffices to show that 

b, a b 
reg F = -jx є M: т (x) = dim M}-. 

D7la(F) and &* = £ a(F). Let p € r eg a F and k = rank F = p p (p) . 

Since p is a regular point of F and F is left involutive at p, we can find an 

open neighbourhood U of p in M such that 371 (U) is regular (Corollary 3.7) and 

involutive (Proposition 3.10). Clearly, dim !ma(U) = k and 3na(U) = r ( £ a | U ) by 

Corollary 3 .5 . Thus & is a regular involutive distribution on U and dim & |U 

= k. From the Frobenius theorem it follows that there is a Ic-dimensional folia­

tion ^ on U such that every leaf of & is a maximal integrable manifold of & | U 

(see [41). More precisely, we can find a local foliation chart (V,y) € ^ such 

that p € V _ U and p(V) = W' x W" _ LRk x Rn'k where n = dim M and W' and W" are 
k n-k 

open disks in LR and R respectively. Let n": W' x W" —-> W" be the projection 

onto the second factor and let <p" - n"°<p. Since every plague p = <p (W x -{c}0, 

c € W" is a k-dimensional integrable manifold of & |V, it follows that each 

vector field from 0JTa(V) = r ( g a | V ) is tangent to p . Thus for each a € C°°(W") the 

function <p" a € C (V) is constant on every such plague, and so, X{<p" a) = 0 for 

each X € !)71a(V) = 3Jla(F|V). In other words, we have ^ ( C ^ W " ) ) £ P V J V ) , which 

implies that for each x e V the linear pullback map <p" transforms T „ . *W" to 

T*T (F|V). Since the smooth map <p": V —> W" is surjective, it follows that <p"* 

is a linear monomorphism, and so, 

5 F | V (x ) = dim T V V | V ) st dim T* / / ( x )W" = dim W" = n-k. 

Since 5 is locally defined by F, we get 6 (x) = 5 . (x) -t n-k for x € V. On the 
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other hand, from (3.4) we get 5_(x) .s n - P-(x) = n-k for x e U, and so, 
h 1". h 

6_(x) = n-k for x € V. Thus T_(X) = 5_(x) + p_(x) = n for x € V, which proves 
a b 

the inclusion reg F _ *jx € M: T_(X) = dim M}>. 

To prove the converse inclusion, suppose that p is a point of M such that 

T_(p) = dim M = n. Since both the functions 5_ and p_ are lower semicontinuous 
b b 

on M, there is an open neighbourhood U of p in M such that 6_(x) - 6_(p) and 
b b 

p_(x) -t PF(p) for x 6 U. But T_(X) = 6_(x) + PF(x) ^ n for each x € M, and so, 
5_ and p_ are constant functions on U, i.e. 5_(x) = 5_(p) = n-k and p_(x) = F F F F ^F 
p_(p) = k for x € U. Consequently, p € reg F and there are functions a , . . . ,a 

€ T (F) (m = n-k) which are differentially independent at p. This implies that 

they are such on some open neighbourhood U' of p in U. On the other hand, 

X(a ) = 0 for X € 3H and since p € reg F = reg 3J1 and rank F|U = k, there is a 

local chart (V ,X- , . . . ,JC ) on M such that p € V _ U' , the vector fields X = 

Fa(dxrI),...,XJC = Fa(dxk) form a regular base of 3na(V) and XJ(a l |V) = 0 for 

i = 1 m and J = 1 k. It remains to prove that 3JI (V) is involutive. 

Indeed, if X,Y € Una(V), then for Z = [X,Y1 we have 

(3.5) Z (a1) = 0 (i = 2,...,m) for x € V. 

Note that for each x € V the set 

L = <(v € T M: v(al) = 0 (i = 1 m)\ 
is a linear subspace of T M and dim L = n-m = k because the differentials 

. . * x x 

d a , . . . ,d a are linearly independent. Since for each x € V the vectors 

X X form a base of the linear space & and & _ L , it follows that 
X X ^ X X X 

g a = L . Hence and from (3.5) we get Z € r (g a |V) = 3Ka(V) (Corollary 3.5), which 

means that 371 (V) is involutive. This completes the proof that p € reg F. • 

By applying this theorem we get 

3.16. Corollary. Let F be a bicontravariant tensor field on M and let F |U = 

I . f i j (a /ax l )®(3 /ax J ) be the expression of F in a local chart (V;x2 xn) on 

M. If p € U is a left (right) strictly regular point of F and k = 5 (p) 

(k = 5_(p)), then there exists an open neighbourhood V of p in U such that the 

system 
Ytf

iJ(x)(doc/dxJ) = 0 (i = 1 n) 
J'1 

( I fij(x)(doL/dxl) = 0 (J = 1 n)) 
i=l 

of differential equations on V has maximally k differentially independent solu-
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tions a , . . . ,a € C (V). Moreover, if a 6 C (V) is an arbitrary solution of this 

system, then there is a function <p € C (R ) such that a = <p°(a a ). • 

Let F be a bicontravariant tensor field on M. We say that p € M is a left 

(right) coregular point of F in case 5a(p) = 0 (6--(p) = 0). Since 5 a (5 ) is a 

lower semicontinuous nonnegative function, it follows that the set 

coreg a F = -jx € M: 5 a(x) = 0|» (coregb F = «{x € M: 5b(x) = O p 

a b 

is closed in M. We call F left (right) coregular in case coreg F = M (coreg F 

=M). If F is left and right coregular simultaneously, we say shortly that it is 

coregular. 

An F-biderivation (•»•).- of C (M) is said to be left (right) nondegenerate in 
a b 

case T (F) = 0 (T (F) = 0). If K O j - is left and right nondegenerate simulta­

neously, we call shortly it nondegenerate. 

It is seen that if F is an arbitrary bicontravariant tensor field F on M, then 

F is left (right) coregular if and only if (*,*)F is left (right) nondegenerate. 

Hence and from Proposition 3.14 and Theorem 3.15 we get 

3.17. Proposition. Let F be an involutive bicontravariant tensor field on M. 

Then the following conditions are equivalent: 

(a) F is left (right) coregular; 

(b) (•»•)-- is left (right) nondegenerate; 

(c) F is coregular; 

(d) (•,•)-- is. nondegenerate; 

(e) F is quasi-nondegenerate, u 

Observe that the assumption of this proposition is essential. Indeed, the 
3 

bicontravariant tensor field F on R from Example 3.13 is left involutive but 
not right involutive. Moreover, F is not quasi-nondegenerate and not left 
coregular but it is right coregular. 

4. The category of vector-derived manifolds 

As we know, any bicontravariant tensor field F on a differentiable manifold M 

determines the canonical left derivation F# of the algebra C (M). Conversely, if 

A is an X(M)-valued derivation of C (M), then there is a unique bicontravariant 

tensor field F on M such that F = A. Thus, the assignment F i-> F defines a 

one-to-one correspondence between bicontravariant tensor fields on M and X(M)-

valued derivations of C°°(M). Let 3: X(M) —> D(M) be a fixed C°°(M)-linear isomor­

phism. Note that any such isomorphism can be of the form $ for a unique bico-

variant tensor field $ on M, namely defined by *(X,Y) = <3Y,X> for X,Y e X(M). 
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If F is a bicontravariant tensor field on M, then the composition 3©F# defines a 

2)(M)-valued derivation of C (M). In particular, if (*,F) is a conjugate pair of 

2-tensor fields on M and if 3 = * , then this composition equals the exterior 

derivative d on C (M). Note that every 2)(M)-valued derivation of C°°(M) is of the 

form 3©F# for some bicontravariant tensor field F on M. 

H.-J. Kim [5] called a pair (M,D) derived manifold, in case M is a differen­

t i a t e manifold and D is a 2)(M)-valued derivation of C°°(M) such that D©D = 0 

(integrable condition) wh 

defined by the conditions 

k k+1 
(integrable condition) where D: A 2)(M) —> A 2)(M) (1 -s k -* dim M) is uniquely 

Dd + dD = 0 and D(£ A T>) = D(£) A TJ + (-\)\ A D(T)) 
k I 

for £ € A 2)(M) and TJ € A 2)(M). More precisely, his definition of derived mani­

fold is formulated in the case of complex-valued forms on M but it has a real-

valued analogue as above. By analogy, we define a vector-derived manifold, 

shortly called an X-derived manifold, to be a pair (M,F) where M is a differen-

tiable manifold and F is a bicontravariant tensor field on M called an X-derived 

structure on M, as well. Note that if 3: X(M) —> 2)(M) is an arbitrary C°)(M)-

isomorphism, then the 2)(M)-valued derivation D = 3©F# of C (M) need not satisfy 

D©D = 0, i.e. (M,D) need not be a derived manifold. In this sense our definition 

of vector-derived (X-derived) manifold is more general than that of derived 

manifold (we do not require any integrable condition for F). 

Let / : N —> M be a smooth map of d ifferentiate manifolds. Denote by X (M) the 

C (N)-module of all / -vector fields on N tangent to M. We have the C (N)-linear 

map fm: X(N) —> X (M) defined by (/0X)(a) = X(/*a) for a € C°°(M). Similarly, we 

define the map / for bicontravariant tensor fields. If K is an arbitrary tensor 
* # field on M, then by / K = Ko/ we denote the pullback of K via / . In particular, 

for any X € X(M) we have /*X € X (M). 

4.1. Theorem. Let (M,F) and (N,G) be X-derived manifolds. If f: N —> M is a 

smooth map, then the following conditions are equivalent: 

(a) G(/*£ , /%) = /*F(J;,T)) for all £,T) € 2)(M); 

(b) (/*a,/*/3)G = /* (a ,0 ) F for all a,0 € C^M); 

(c) / O G S = / * F a for each a 6 C°°(M); 

* / a a 
(d) / O G V = / * F b for each 0 € C°°(M); 

* f P P 
(e) / § o G a o / § = / * F a ; 

(f) / # o G
b o / * = / * F b ; 

(g) / oG = / * F . 
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Proof. Our proof will run according to the scheme (a)-=>(b)=»(c)-»(e)-»(g)=>(a). 

This is sufficient because the complemented scheme (a)=>(b)-=>(d)==>(f)=>(a) of impli­

cations can be proved analogously. 

The implication (a)=>(b) is trivial. 

(b)=»(c). For any a,/3 € C (M) we have 

{f*°Gf**m = G / * a ( / * P ) = ( /*a ' /* | 3 )G = ^* ( a ^V 

= /*Fa(0) = (/*F*)(P). 

(c)=»(e). Since all homomorphisms of the left diagram of (4.1) are local opera­

tors , it suffices to show (e) for a system of local generators of the C (M)-

module D(M), that is, for differential forms da (a € C (M)). We have 

(/#oGao/*)(da) = /0.Ga(d/*a) = f^f*a =• A * = (/*Fa)(da). 

(e)=»(g). For any a,|3 € C (M) we have 

(/#oG)(da,dp) = G(d/*a,d/*|3) = G a * a ( /*0) = </*<>Ca*a)(0) 

= ( ( / # oG a o/*) (da) )0) = ((/*Fa)(da))(p) = /*((F a(da)(0)) 

= /*F(da,d|3) = (/*F)(da,d|3). 

Finally, note that the last implication (g)=>(a) is trivial, which completes 

the proof. • 

Note that conditions (c) and (d) of Theorem 4.1 mean that the following diag­

rams are respectively commutative: 

/ / 
TN —*-> TM TN —*-> TM 

G> ••] , Y 4 , I 
N » M N » M 

-î 

Similarly, conditions (e) and (f) of this theorem mean that the following ones 

are respectively commutative: 

/*Fa Ab 

D(M) > X (M) D(M) > % (M) 

(4.1) 

Y o- Y Y oь Y 
D(N) > X(N) D(N) > X(N) 

Finally, note that the last condition of Theorem 4.1 means that the following 

diagram is commutative: 
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2 * 2 
® TN > ® TM 

, 1' F 

N > M 

By a morphism f: (N,G) —> (M,F) of X-derived manifolds, or shortly, X-derived 

morphism we shall mean a smooth map / : N —> M such that at least one from the 

equivalent conditions of Theorem 4.1 is satisfied. We get a category which is 

called the category of vector-derived (X-derived) manifolds. An X-derived mani­

fold (M,F) is said to be symmetric (antisymmetric) if so is F. A Poisson mani­

fold (M,F) is defined to be an antisymmetric X-derived manifold such that the 

(alternating) Schouten-Nijenhuis bracket [F,Fl equals 0 (see [21). We have the 

categories of symmetric (antisymmetric) X-derived manifolds and of Poisson 

manifolds which are defined to be full subcategories of the category of X-

derived manifolds. Clearly, the category of Poisson manifolds is a full subcate­

gory of that of antisymmetric X-derived manifolds. 

We say that (N,G) is an X-derived submanifold of (M,F) if N is a differen­

t i a t e submanifold of M and the inclusion map i: N <-> M defines an X-derived 

morphism from (N,G) to (M,F). In this case G is uniquely defined by F and we 

call it the X-derived structure on N induced by F. Note that by condition (g) of 

Theorem 4.1 we can regard that G = F|N. 

Let / : (N,G) —> (M,F) be a morphism of X-derived manifolds. For a point p € N 

let us consider a local chart (U;x ,...,x ) on N containing p and a local chart 

(V;y ,...,y ) containing / (p ) . We can additionally assume that /(U) Q V. Clear­

ly, f(x) = (<p (x),...,<p (x)) f o r x = (x x ) € U, w h e r e <p e C (U). As we 

know (Section 2) G and F have the following expressions in U and V respectively: 

n 

~x G = I gVixUд/дx-Ыд/дxJ); 
ІJ=1 

m kl k I 
E = E r (y)(d/dyK)®(d/dyL). 

y k,l=l 
From condition (g) of Theorem 4.1 it follows that / G = F . , * for x € U. Hence 

* x f(x) 
and from the above expressions we get 

n 

/ * G X = E glJ(x)f^(d/dxl)®fm(d/dxJ) 
tj=l 

n . . m . m . 
= E gU(x)( E (d<pK/dxl)(d/dyK))®( E (d<pl/dxJ)(d/dy1)) 

i,j=l k = l 1 = 1 
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= E ( E (dipK/dxÍ)gÍj(x)(dipl/dxj))(d/dyK)^(d/dyl) = F 

n 

ktl=l ij=l 

which means that 

f W ( / (x ) ) = E (d(pk/dxl)giJ(x)(d(pl/dxJ) for x € U (k,i = 1 m). 

U=-
The last equality implies 

4.2. Corollary. Let (M,F) be an X-derived manifold. 

(1) If f: (N,G) —> (M,F) is a morphism of X-derived manifolds, then p p ( / (x ) ) 

-5 p~(x) for each x € N. 
G 

(2) If (N,G) is an X-derived submanifold of (M,F), then p~(x) = p-(x) for each 
VJ t 

x € N. In particular, reg F n N £ r e g G. • 

Give atten t ion that if (M,F) is an X-derived manifold and N is an arbi t rary 

differentiable submanifold of M, then the X-derived structure on N induced by F 

need not exist in general (Corollary 4.3 and Example 4.8). If there exists such 

a structure, we say that N admits the X-derived structure induced by F. Note 

that if (M,F) is a symmetric (antisymmetric) X-derived manifold or if it is a 

Poisson manifold, then every X-derived submanifold of (M,F) is again such a 

manifold. 

Let M be a differentiable manifold. For any subset S of M we put C (M;S) = 

-ja € C°°(M): a | S = 0\. Clearly, C°0(M;S) is an ideal of the algebra C°°(M). A 

vector field X e X(M) is called tangent to S if X(C°°(M;S)) Q C°°(M;S). Denote by 

X(M;S) the set of all vector fields from X(M) which are tangent to S. It is seen 

that X(M;S) is a submodule of X(M). Note that from condition (b) of Theorem 4.1, 

or equivalently, from conditions (c) and (d) of this theorem we get 

4 .3. Corollary. If / : (N,G) —-> (M,F) is a morphism of X-derived manifolds, 

then F a ,Fb e X(M;/(N)) for all a € C°°(M). • 

This corollary and statement (1) of Theorem 3.6 imply 

4 .4 . Corollary. If f: (N,G) —-> (M,F) is a morphism of X-derived manifolds, 

then 57la(F) u UJtV) S X(M;/(N)). • 

Let (M,F) be an X-derived manifold and let / : N —-> M be a smooth map of dif­

ferentiable manifolds. Note that the above corollary gives a necessary condition 

for / to be a morphism / : (N,G) —> (M,F) of X-derived manifolds for some X-

derived structure G on N. It is seen that for any open subset U of M the pair 

(U,F|U) is an X-derived manifold called the X-derived submanifold of (M,F) 

defined by U. Clearly, the inclusion map i: U <--> M defines an X-derived morphism 

from (U,F|U) to (M,F). We have the following theorem which is partially converse 
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submanifold of M. If F a ,F^ € X(M;N) for all a,0 € C°°(M), then N admits the X-
a p 

to Corollary 4.3. 

4.5. Theorem. Let (M,F) be an X-derived manifold and let N be a differentiate 

ibmanifold of M. If F a ,F^ € a p 
derived structure induced by F. 

Proof. Clearly, we can regard that F |N = i F and F A N = i F0 are vector 
oo a ' a p 1 p 

fields on N for all a,|3 € C (M) where i: N <-> M denotes the inclusion map. 
Moreover, note that 

(4.2) ( F a | N ) 0 | N ) = F a (0) |N = F^(a)|N = (F^|N)(a |N). 

For any X € C°°(N) we have the vector fields G' and G" on N which are well-

defined by 

G^(0|N) = ( F £ | N ) ( X ) and G£(a|N) = (Fa |N)(X). 

Note that the assignments G^: X i-> G' and G": X i-> G" are X(N)-valued deriva­

tions of the algebra C (N). This implies that there are uniquely defined 

C°°(N)-linear maps G' and G" from 2)(N) to X(N) such that G'(dX) = G^ and 

G"(dX) = G" for X e CC°(N). We have thus defined the bicontravariant tensor 

fields G' and G" on N by 

G'(£,T)) = <TJ,G'C> and G"(€,TJ) = <€,G"TJ> 

for £,T) e Z)(N). One can see that G' = G", or equivalently, 

G' (€,T>) = G"(C,TJ) for all €,T) € Z)(N). 

To prove this equality it suffices to show that it is satisfied for a system of 

local generators of the C°°(N)-module D(N), that is, for £ = d(a|N) and 

T) = d(£|N) where a,/3 € C°°(M). Indeed, from (4.2) we get 

G'(d(a|N),d(0|N)) = G a | N 0 | N ) = (F^|N)(a|N) = (F a |N)(0 |N) 

= G^ |N(a|N) = G"(d(a|N),d(0|N)). 

— — a b 
Thus we can set G = G' = G", which implies that G = G' and G = G". 

To prove that (N,G) is an X-derived submanifold of (M,F), or equivalently, 

that the inclusion map 1 defines an X-derived morphism from (N,G) to (M,F) it 

suffices to show, according to condition (b) of Theorem 4.1, that 

( a |N ,0 |N) G = (a ,0)F |N for a,0 € C°°(M).. 

Indeed, we have (a |N ,0 |N) G = c £ | N ( a | N ) = (F a |N)(0 |N). = (a,0)F |N . 'Consequently, G 

is the X-derived structure on N induced by F. • 

This theorem and Corollaries 4.3 and 4.4 immediately imply 
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4.6. Corollary. Let (M,F) be an X-derived manifold. If N is a differentiate 

submanifold of M, then N admits the X-derived structure induced by F if and only 

if 

F a , F b € X(M;N) for all a,0 € C°°(M), a p 

or equivalents, !ina(F) u JJ tV) £ X(M;N). • 

An X-derived manifold (M,F) is said to be nondegenerate (quasi-nondegenerate) 

if so is the bicontravariant tensor field F. Note that Corollary 4.6 implies 

4.7. Corollary. Let (M,F) be a nondegenerate X-derived manifold. If N is a 

differentiate submanifold of M, then N admits the X-derived structure induced 

by F if and only if it is an open subset of M. • 

It turns out that if (M,F) is a quasi-nondegenerate X-derived manifold, then 

the assertion of Corollary 4.7 can be satisfied (Example 4.8) or not satisfied 

(Example 4.9). 
2 

4.8. Example. Consider the X-derived manifold (IR ,F) where 

F = (x2+yZ)(d/dx)®(d/dx) + (d/dy)®(d/dy). 

It is seen that reg F = reg F = IR \ «{(0,0)j», and so, F is quasi-nondegenerate. 
2 2 

Let N be a differentiable submanifold of IR . If N is an open subset of LR , then 

it obviously admits the X-derived structure induced by F. 

Conversely, suppose that N admits the X-derived structure G induced by F, i.e. 
2 

(N,G) is an X-derived submanifold of (IR ,F). If dim N = 2, then N is obviously 
an open subset of IR . By Corollary 4.2 we nave 

2 = pF(x) = pG(x) -s dim N for x € N \ -{(0,0)}-, 

which, leads to a contradiction in case dim N = 1. Finally, if dim N = 0, then 

the above-mentioned corollary implies 

1 -s pp(x) = pG(x) = 0 for x € N, 

a contradiction. • 
2 

4.9. Example. Consider the X-derived manifold (IR ,F) where 

F = x(d/dx)®(d/dx) + y(d/dy)®(d/dy). 

t 2 
It is seen that F is quasi-nondegenerate and reg F = reg F = IR \ K where DC = 

2 
-{(x,y) € LR : xy = 0[. Let us set M = R x -J0[ and N = <{0}» x IR and consider the 
X-derived manifolds (M,F') and (N,F") where F ' = x(d/dx)®(d/dx) and F" = 

y(d/dy)®(d/dy). Note that (M,F') and (N,F") are 1-dimensional X-derived submani-
2 

folds of (IR ,F). Moreover, one can see that the O-dimensional submanifold 
2 

-j (0,0)}» of LR admits the X-derived structure induced by F which is given by the 
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zero bicontravariant tensor field. • 

Let now F be a left (right) involutive bicontravariant tensor field on M of 

constant rank k. From the Frobenius theorem it follows that the distribution 
a b 

& (F) {& (F)) is integrable, and so, it defines a foliation of M of dimension k 

called the left {right) F-foliation of M. If F is involutive and balanced, then 

the left F-foliation of M coincides with the right • one, and we call such a 

foliation the F-foliation of M, Give attention that if F is involutive, then the 

left and right F-foliations of M are different in general. The simplest example 

of such F-foliations is defined by the bicontravariant tensor field 

F = {d/dxMd/dy) on R2. 

We say that an X-derived manifold (M,F) is left involutive, right involutive, 

involutive, balanced and of constant rank, respectively, if so is the bicontra­

variant tensor field F. 

Let (M,F) be a balanced involutive X-derived manifold of constant rank. If L 

is a leaf of the F-foliation of M, we conclude from the Frobenius theorem that 
a b 

every vector field from 3JI (F) or 3J1 (F) is tangent to L. Hence and from Corol­

lary 4.6 we get 

4.10. Corollary. Let (M,F) be a balanced involutive X-derived manifold of 

constant rank. If L is a leaf of the F-foliation of U, then L admits the 

OC-derived structure induced by F. • 

Let (M,F) and (N,G) be X-derived manifolds. Consider the Cartesian product 

M x N of differentiable manifolds. For any q € N (p € M) let i : M — > M x N 

(j : N —> M x N) be the smooth map defined by i (x) = (x,q) ( j (y) = (p,y)). 

Define the bicontravariant tensor field H on M x N by 
H, , = i F + J G . (p,q) q* p ^p* q 

We call H the flat product of F and G and write H = F D G. The X-derived mani­

fold (M x N, F D G) is said to be the flat product of (M,F) and (N,G) which will 

be also denoted by (M,F) D (N,G). Let TT {n ) be the projection from M x N onto 

the first (second) factor of M x N. Note that n and ir define X-derived mor-

phisms from (M x N, F o G) onto (M, F) and (N,G), respectively. One can see that 

the biderivation (•••)-, of the algebra C°°(M x N) is a unique biderivation of 

this algebra satisfying the following conditions: 

(7r*a',7r*0')H = 7r*(a',0')F for all a' ,0 ' e CM(M); 

(Tr*a",7r*0")H = 7r*(a",0")G for all a",3" € C°°(N); 

(?r*a',7r*a")H = (7r*a",ir*a')H = 0 for all a' € C°°(M), a" € C°°(N). 
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The following example shows that in general (M x N, F D G) is not a product of 

(M,F) and (N,G) in the category of X-derived manifolds. 

4.11. Example. Let M = N = IR and F = G = {d/dx)e>id/dx). Then (M x N, F D G) = 

(LR2,H) where H = id/dxMd/dx) + id/dy)<s>{d/dy). On the other hand, H' = H + 
2 

id/dx)®(d/dy) is also an X-derived structure on IR such that the projections 7T., 
2 

and TT define X-derived morphisms from (IR ,H') onto (LR,F) and (LR,G), respective-
2 

ly. If (IR ,H) would be a product of (LR,F) and (LR,G) in the category of X-derived 
manifolds, we conclude from the universal property of such a product that the 

2 2 2 

identity map of IR defines an X-derived morphism from (IR ,H') to (IR ,H), which 

is impossible. • 

We shall regard the flat product D as a bifunctor from the category of pairs 

of X-derived manifolds to the category of X-derived manifolds. One can see that 

this bif unctor makes the last category to be (relaxed) commutatively monoidal 

(see [91) with respect to the identity object given by an arbitrary one-point 

X-derived manifold (E,0) and the following list of canonical X-derived isomor­

phisms: 

((M,F) D (N,G)) D (P,H) £ (M,F) D ((N,G) D (P,H)); 

(E,0) D (M,F) = (M,F) = (M,F) D (E,0); 

(M,F) D (N,G) = (N,G) D (M,F), 

where (M,F), (N,G) and (P,H) are arbitrary X-derived manifolds. We think to be 

clear the sense of these isomorphisms and remark only that they are .defined by 

the canonical bijections for the corresponding Cartesian products of underlying 

sets. Note that if 

/ : (M,F) —> (M',F') and g: (N,G) —> (N',G') 

are morphisms of X-derived manifolds, then the assignment (x,y) h-> (/(x),g(y)) 

for (x,y) € M x N defines the X-derived morphism 

fag: (M,F) D (N,G) —> (M',F') o (N' ,G'). 

If in addition / ' : (M',F') —> (M",F") and g': (N',G') —> (N",G") are morphisms 

of X-derived manifolds too, we have 

( / ' D g')o{f a g) = if of) a ig'og). 

One can see that the category of symmetric (antisymmetric) X-derived manifolds 

and the category of Poisson manifolds are monoidal subcategories of the category 

of X-derived manifolds. A class M of X-derived manifolds is said to be monoidal 

in case (M,F) € M and (N,G) € M involve (M,F) D (N,G) € M. It is seen that M is 

monoidal if and only if it defines a full monoidal subcategory of the category 
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of X-derived manifolds. 

An X-derived manifold (M,F) is said to be nondegenerate, quasi-nondegenerate, 

regular, left {right) strictly regular, strictly regular, left {right) strictly 

coregular and strictly coregular, respectively, if so is F (Section 3). Note 

that if M is a corresponding class of such manifolds, then it is determined by 

properties of dimension functions. This means that an X-derived manifold (M,F) 

belongs to M provided that the dimension functions p F , 5 F , 5 F , T F , and T F have 

distinguished properties. For example, if M is the class of all left strictly 

regular X-derived manifolds, then an X-derived manifold (M,F) belongs to M 

provided that T_,(X) = dim M for each x € M (Theorem 3.15). 

By an easy verification we get 

4.12. Proposition. If (M,F) and (N,G) are OC-derived manifolds, then for each 

(x,y) € M x N the following conditions hold: 

( 1 ) p F n G ( x ' y ) = P F ( X ) + p G ( y ) ; 

(2) 5FnG(x,y) = 5F(x) + 5G(y) (s£nG(x,y) = s£(x) + s£(y)); 

(3) TFnG(x,y) = TF(X) + TG(y) (TFnG(x,y) = T£(X) + T£(V)). • 

This proposition immediately implies 

4.13. Corollary. The classes consisting of all X-derived manifolds which are 

nonde generate, quasi-nonde generate, regular, left (right) strictly regular, 

strictly regular, left (right) strictly coregular and strictly coregular, re­

spectively, are monoidal. m 

As we know, there are monoidal classes of X-derived manifolds which are not 

determined by properties of dimension functions, namely, such classes are repre­

sented by symmetric (antisymmetric) X-derived manifolds and by Poisson mani­

folds, respectively. Moreover, one can see that there are other ones, for exam­

ple, the classes consisting of all X-derived manifolds which are left (right) 

involutive, involutive and balanced, respectively. 
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