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LIFTINGS OF 1-FORMS
TO THE p’-VELOCITIES BUNDLE

Mariusz Gasowski

Our starting point are notions introduced by Morimoto [2],[3] and the classifica-
tion of liftings to the higher order tangent bundle made by Gancarzewicz and Mahi
[1]. We want to classify all linear liftings of 1-forms to p"-velocities bundle. We
deduce that every lifting is linear combination over R of Morimoto’s liftings and o,i-
liftings(introduced in this paper). Further we will assume that all considered objects

are smooth (of class C*).

1. Preliminaries

In this section we present the definition of lifting of 1-forms and some related basic
facts.

Let M be a smooth manifold. Denote by T\"?) M the set of r-jets at 0 € R? of
mappings from R? to M. It forms bundle over M called p’-velocities bundle. The
mapping 7: T("P) M — M is the bundle projection.

7(357) = 7(0).

Every chart (U, 2°) on M induces the chart (v=}(U),z"*) on T("P) M, where i is an
integer number between 0 and dim(M), v is an element of N? such that |v| < . The
induced chart is given by

(11) 2 (35) = 30" (= 0 1))

Now we present the definition of lifting of 1-forms to the p"-velocities bundle.

Definiton 1.2. A mapping ‘

£: X*(M) — X*(TCP)(M)),

OThis paper is in final form and no version of it will be submitted for publication elsewhere.
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where X*(M) and X*(T("?)(M)) are the modules of 1-forms on M and on T""P)M,
is called lifting of 1-forms from M to T"P) M if following conditions hold:
(a) C is linear over R, that is, for every 1-forms w, w! on M and every real numbers
a, b
L(aw + bw!) = al(w) + bL(w?)
(b) L is local, that is, for every open subset U C M and for every 1-forms w, w! on M
such that wy = Wiy
L(w)x-1y = L(@Njx-2(v),
(¢) C is natural, that is, for every diffeomorphism ¢:U — V of open sets UV C M
and for every 1-form w
L(p*w) = (T"Pg)* L(w),
where * denotes the pull-back of 1-form, ]
(d) L is regular, that is, for every open set K C R* and for every smooth mapping
w:K x M — T*M, the induced mapping

K x TP M 3 (t,p) — (Lwi)(p) € T* (TP M)
is smooth.
The proposition below is the simple conclusion from Definition 1.2.
Proposition 1.3 Let £ be a lifting of 1-forms from M to T"P) M. For any 1-form
w and for any vector field X on M

L(Lxw) = Lyxc(Lw).

Let define notion of (\)-lifting(see: [2]). Let f be a function defined on M, f €
C®(M). (A)-lifting of f(denoted by f(1)) is a function on T("?) M given as follows:

., 1
(14) FO(§7) = 33Da(f 0 1)(0).
Immediately from (1.1) and (1.4) it’s clear that

(1.5) 2 = (")),

Lemma 1.6 For any A € N? : || < r there ezisis one and only one mapping
Ly: X*(M) — X*(T'\"P) M) satisfying the following condition

Li(fdg) =Y f*"dg-"),

v<A
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where v < X means, that for any i =1...p v; < X;, Proof of Lemma 1.6 is analogous
to considerations in [2]. The mapping constructed in Lemma 1.6 is called (A)-lifting
of 1-forms. Ly(w) will be denoted by w(*).

Theorem 1.7 For every A € NP such that |A| < r the mapping
A): X 3w —uMe X‘(T("’)M)

is a lifting of 1-forms to T"P) M in meaning of Deﬁniti;:n 1.2
Now we define just another type of liftings to T("P)M. Let 71,i be a projection
from T("P) M to TM defined as follows

(1.8) 71:(ja7) = %(0)),
where ¥: (—¢,€) — M is a curve derived from v by formula

3(t) = 7(0,...,t,...,0).

For any 1-form w on M and for any integer number { = 1,...,p we can define 1-form

w* by
(1.9) W =d(won] ;).

Theorem 1.10 For every 1,...,p the mapping
0 X*(M) 3 w — w* € X* (TP M)
is a lifting of 1-forms from M to TC"P) M.
Proof: Directly from (1.9) the mapping ()° is linear, local and regular. For every
open sets U,V C M and for every diffeomorphism ¢: U — V we have:
dpon], =1}, 0T(rPg,

Therefore by standard check the mapping ()°* is natural.

2. Classification of liftings to the p"-velocities bundle

In this section we formulate the main result . It is classification of all liftings from
M to the p"-velocities bundle. We present several lemmas and propositions useful for
proof of the main theorem.
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Lemma 2.1(see: [1]) Let f: R* — R be a differantiable function.
(a). If f satisfies the condition

k 8}

=1
then f is constant

(b). If f satisfies the condition
LY’
D Vg =0
i=t
then f is identically zero on RE.

Lemma 2.2(sce: [1]) Let (U,2°) be a chart on M and 2o be a point of U. If w is
a closed 1-form on M, then there ezists a vector field X on M such that

(2.3) w = Lx(dz?)
tn some neibhborhood of zo.

Lemma 2.3 Let (U,2°) be a chart on M. We denote by (x~2(U), 2"*) the induced
chart on TC"P) M. Then

a).
L, o dz* = §,d2,
ost

).

.8 .

(@ 5=)0= 3 e,
lulgr

¢c). for every function f on x=1(U)

of

3o dz*" + & fdzi.

L(,,-#)c(fdzk’") = z i
lulgr

Proof:
ad a). The local vector field 2/ 807 is generated by the one-parameter group of
transformations 1, given by

$i(2) =47 (="t 42,2,
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where (¢, U) is a chart on M, ¢ = (2,...,2").
Lios oye(de*) = lim 3(d2* — (), (d2") =
= Jim %(dz" ~dz* o dy_y) = lim %(dz" — d(—~tI6, + 2*)) =
= im %(ts;;dzi) = flde

ad b). The mapping T(""P)¢); is the one-parameter g-roup of transformations of
(27 3%)C. Let j5(7) be an element of T""?) M.

TP (ig7) = G571 (0N ot + o ™),

where v* = (4 07)%. Let calculate value of 2** on the above jet. From (1.1) we have
A= j i n 1 v ' L
@@t + ) = 2D+ 18y =

1 i 1 v(ad v(zr i Joviar ’
= gD (M + 165D () = 2 (ig) + ti”* (i)

The (k,v)-coordinate of T("P)y, is equal z** +t6;;zj"' and if i # k this coordinate
doesn’t depend on t, therefore

.8 .8
(5= 2
lul<r

ad c). Let f be a function on 7~1(U).

L(zi #)C(fdzk’”) =

L(z;’ ;%)c(f) . dzk"' + f . L(zj ;s_.,)c dlk’”

From Proposition 1.3

L(z’ #)cdzk"' = (L #dzb)(').

Using a). and (1.5) we obtain
Ligi g cdzt’ = §de™”

Now we calculate L ,; ﬁ?)c(f)'

L(z:’;%)c(f) = df((t’ -8%)0) =
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.8
(S eyt 5 L

lul<r lul<r

Now the proof is finished.
The proposition below provides classification of liftings for closed 1-forms on M.

Proposition 2.4 Let M be a manifold. If L is a lifting of 1-forms to the p’-
velocities bundle, then there ezist real numbers c,, where v € N?:|v| < r such that for

every closed 1-form w on M

L(w) = Z c,w®).

vi<r

Proof: Let (U,2') be a chart on M. Then 1-form £(dz!) on T("?)M in local
coordinates is given by

(2.5) L(de') = Z Y aryde*,

k=1|v|<r
where a;,, are functions on #~!(U). From Lemma 2.3 a)
(2.6) L, T:__dz" = §jdz’.
Using Proposition 1.3 we obtain
(2.7) - S L(de') = L(,,,';%',)cﬁ(dz").
For k =1 from (2.7) we have |
§1L(de?) = Ligi 2, £(dz")

Next from (2.5) the following formula is valid

n

$16(de) = 3 3 Lo gy (anpde®®).
k=tljgr
Applying Lemma 2.3 ¢) to f = a;,, we obtain

§1L(def) = Z Y. (X zwa"" 2 de*” + Sias,, d2?) =

k=1|v|<? |u|<r
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(2.8) = Z (Y 42 4 fa,, )l

=1|v|<r |ul<r

From (2.8) and (2.5) we have

8akv
(2.9) Stany = ) @5 +6lai,.
|ulgr

Fori=j=k=1it gives

8a,,,
(2.10) P
e 02

Applying (2.8) toi=j #1, k=1 we obtain

(2.11) > 00 _ o

W< Bz
i<

Formulas (2.10) and (2.11) together give the following condition

OIS
zl s
j=1|ulgr
According to Lemma 2.1 a,,, is constant for every v € N?. From (2.9) fori #1, k=

.0
-2 a::,: =0

lul<r

j =1 we obtain

Let denote by ¢, the constant value of a1,,. Then from previous considerations we
can write £(dz*) in the form

L(dz*) = Z ¢, dz"
vigr
From Lemma 2.2 for every closed 1-form w there exists a vector field X such that
w = Lx(dz'). Therefore
L(w) = L(Lxdz') = Lxc(L(dz!)) =

=Lxe(Y edz")= Y e, Lxc(de)) = Y o, (Lxde)") =

Ivl<r visr vl

= Z c,w®).

Ivi<r
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Now the proof is finished.

The main result can be expressed in the following theorem.

Theorem 2.5 Let M be a manifold such that dim(M) > 2. If L is a lifting of
1-forms from M to the p"-velocities bundle then L is a linear combination over R of
(A)-liftings and o,i-liftings, that is, there ezist real numbers c,, v € N?:|v| < r and
Coi, i=1,...,p such that for every I-form w on M we have

P
L(w) = E e, + Zc,,;w""

i< i=1
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