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3-MANIFOLDS AND RELATIVISTIC KINKS 

Peter Zvengrowski 

§1. Introduction 

By M we shall mean an orientable, compact, connected 3-manifold 

without boundary. We say that M has type 1 if it admits a degree 1 map 

onto RP3 (written P3), otherwise M is said to have type 2. For example P3 

has type 1 and S3 type 2. Type was first studied in [9] in connection with 

the classification of relativistic kinks, and we explain this connection briefly in 

§2. We then summarize a few more recent results which help to determine 

the type of M. These were obtained by A.R. Shastri and the author [10], and 

are illustrated in §3 by determining the types of many 3-manifolds (Table 

3.1). The main theorem (2.5) relates the type of M to Hi(M;Z). Details of 

the proofs are largely omitted and can be found in [9] and [10]. 

Most of this material was presented in a lecture at the 11th Winter 

School in Geometry and Physics in Srni, Czecho-Slovakia. A number of 

interesting questions were posed there. In §4 these questions are 

mentioned and in most cases answered. 

§2. Relation of Type with H.(M:Z) and Relativistic Kinks 

In relativity theory one is interested in the homotopy classification of 

Lorentz metrics over the space-time manifold M x R. Finkelstein and Misner 

were the first to consider this [4] (for M = S3) and used the term "kinks" to 

represent non-homotopic classes. It is not difficult to show, using the 

parallelizability of M [12] and hence also of M » K, that the homotopy classes 

of Lorentz metrics are equivalent to [M,P3], the homotopy classes of (pointed) 

maps of M into P3. 

Since P 3 is a topological group [M,P3] has a natural group • structure. 

One then can take advantage of the fibration Z2 —• S3 *--» P3, the inclusion 

p3 j_, p<-̂  a n (j p r o v e the following. 

2.1 Theorem: 

(a) There is a short exact sequence of groups 

E : [M,S3] >-&> [M,P3] - « * » [M.P0], 

(b) [M,S3] « Z, classified by Brouwer degree, and 

[MtF
w] « H1(M;Z2) since P" is an Eilenberg-MacLane space. 

(c) [M,P3] is abelian. 
It follows that the calculation of [M,P3] depends only whether E splits, 

and this is where the type of M is critical. 



[M,P3] » 

158 PETER ZVENGROWSKI 

2.2 Theorem: The following are equivalent: 
(i) E is does not split. 

(ii) M is of type 1. 
(iii) There is an element x € H*(M;Z2) with x3 # 0. 

2.3 Corollary: Let Hi(M;Z2) « Z2, m > 0. Then 

Z e Z2
m~l , M type 1 

Z © Z2 , M type 2 

As mentioned in §1, details of 2.1 - 2.3 all appear in [9]. We now turn 

to results that help determine the type of M, for details of which we refer to 

[10]. 

2.4 Proposition: £or the connected sum Mi # M2, one has 

type (Mi # M2) = min{type Mi, type M2}. 

It follows that it suffices to determine the type of irreducible 

3-manifolds. 

2.5 Theorem: 

(a) If M has type 1 then Hi(M;Z) admits Z2 as a direct summand. 
2 

(b) If Hi(M;Z) admits Z2 but not Z2 as a direct summand then M 

has type 1. 

Our final result helps to determine the type of M = S3/G, where G is a 

finite subgroup of S3 (in case Theorem 2.5 does not suffice). 

2.6 Proposition: M = S3/G has type 1 if and only if the cohomology 

of the group G contains a class y 6 H^GjZ^ with y3 # 0 (here H^GjZ^ is 

with the trivial action on Z2). 

§3. Applications to Specific Manifolds 

We now list a number of examples of 3-manifolds M (or families of 

such) together with 7Ti(M), Hi(M;Z) = 7Ti(M)ab, and type M. Examples 

(1)—(10) are taken from a list of 3-manifolds of interest in relativity theory 

[5]. In every case the knowledge of Hi(M;Z) together with Theorem 2.5 

suffices to easily determine the type, except for Example (7) which is dealt 

with by Proposition 2.6. Before listing these examples the notations and 

definitions of the manifolds will be specified, and following the examples some 

further details as to the proofs are given. It is also worth noting, in case 

Hi(M;Z) « Zn, that Z2 will be a direct summand if and only if n = 2(mod 4), 

in which case Z2 will not be a direct summand. 
2 

As far as the spaces, S(n) = S3#(S- * S2)#...#(S- * S-) is a sphere 

with n handles, L(m,n) is a lens space (cf.[ll],p.88), E represents a 
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m o d 2 h o m o l o g y 3-sphere and T a fixed point free invo lut ion o n S, and M 

is the to ta l space o f a principal S--bundle S 1 —> M —» V, where V is an 

orientable surface o f genus g. As far as the groups, F n is the free group on n 

generators, Q 4 n , P 2 4 , P 4 8 , P 1 2 0 , Z n , D k (k > 2), and P ' k (k > 1) are 
( 2n+l) 2 g»3 

well known finite subgroups of S 3 (cf.[7]) of order ind icated by the subscript 

and w i th presentat ions as fo l lows: 

Q4n = < x,y : xn = y 2 , x y x = y > ; 
p 24> p 48> p i20 = < x , y : x 2 = ( x y ) 3 = y--,x4 = 1 >, m = 3,4,5 respectively; 

k n+1 
D v = < x , y : x 2 = y 2 = 1 , x y x - 1 = y-- > 

( 2 n * l ) 2 K 

P ' k = < x , y , z : x 2 = ( x y ) 2 = y 2 , zxz*- = y, zyz" 1 = xy, z 3 = 1 > ; and 
8 * 3 

H = < z,x l r ,x ,y l r ,y : [z,xj = [z,yj = 1 , II [x^yj = z» >, 
g l<i<g 

where n is the chern number of bundle. From this table and using Corollary 

2.3 the classification of the kinks [M,P3] is immediate. 

3.1 TABLE 

M 7T t(M) Ht(M) Type 
(1) SЗ 0 0 2 

(2) PЗ z2 z2 
1 

(3) St « s 2 z z 2 

(4) T3 = S1 x S l x S1 z3 ZЗ 2 

(5) S(n) ғn 
Zn 2 

j-m = l(mod2) Zш zm 
2 

(6) L(m,n) m = 2(mod4) zm zm 
1 

m = 0(mod4) zm zm 
2 

rn = l(mod2) Z4 2 

(7) SЗ/Q4n 
n = 2(mod4) <І4n z2 2 

•n = 0(mod4) l\ 1 

(8) Sз/P24 P24 Zз 2 

(9) SЗ/P48 P48 z2 
1 

(10) SЗ/P1Î0 ^120 0 2 

(11) SЗ/D v , k> 2 
V ' ' (2n«l)2-

D k 
(2n*l )2 к 

z2

k 2 

(12) Sз/P' , k > 1 P' k Zзk 2 
8*3- 8*3 

(13) E/T not unique Z2 f inite abelian 
gгoup of odd oгdeг 

1 

(14) 1 «g h Zn Z2g 
í l ,n = 2(mod4) 
\2,nj.2(mod4) 
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Remarks 

To handle example (7) Theorem 2.5 suffices when n is odd but not when 

n is even. Here we apply Proposition 2.6 and compute the ring structure of 

H (Q4n;Z2) using first an explicit free resolution X of Z over A = ZQ4n given 

in [2], p.253, and then computing a A-chain map X —* X « X to determine 

products. The details appear in [10]. Example (13) arises in the thesis of 

Medrano [3], who shows that there are infinitely many non-homeomorphic such 

3-manifolds and claims (without proof) they are all type 1. As in all the 

examples except* (7), Theorem 2.5 proves this claim immediately. Example 

(14) arises in the study of Yang-Mills equations over a Riemann surface [1]. 

It is interesting to ask whether necessary and sufficient conditions for 

type 1 can be determined from Ht(M;Z) using Theorem 2.5. This is not the 

case, for Example (7) with n = 2(mod4) shows 2.5(a) is not sufficient, while 

the case n = 0(mod4) shows 2.5(b) is not necessary. 

§4. Further Questions and Observations 

4.1 Question: Can M be generalized from a 3-manifold to a more 

general space. 

We answer this by first observing that the exact sequence E in Theorem 

2.1(a) is valid for M replaced by any connected CW-complex of dimension < 3 

(cf. [9], Prop. 4.2 and its Corollary). For 2.1(b), (c), the definition of type, 

and Theorems 2.2 - 2.5 to hold, it should suffice that M is a 3-dimensional 

Poincare duality space. The manifold case is of course the interesting one for 

physical applications. 

Before turning to the next question, note that the definition of type 

generalizes to any connected, closed, orientable odd dimension manifold M2-1*1 

with P3 replaced by P2n*i (p2n i s non-orient able so leads to a very different 

situation). The case P 7 is clearly of special interest. 

4.2 Question: What happens if P3 is replaced by P7? 

The answer is that for M a closed connected orientable 7-dimensional 

manifold, all of 2.1 - 2.5(a) hold with the same proofs as in the 3-dimensional 

case, except that it must also be shown [M,P7] is associative since P 7 is only 

an H-space with inverses (and not homotopy associative [6], [8]). 

To see this one uses the same idea as in proving [M,P7] (or 

[M3,P3]) commutative. Namely, consider E: Z = [M,S7] >^L» [M,P7] & » 

[MjP00] = Hl(M;Z2) as a short exact sequence of monoids with inverses. Let 

d:[M,P7] —» Z be the degree homomorphism, and note drj#:Z —• Z is 

multiplication by 2. 
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If aAl <- [M,P7], then j#((a/?)7) = j#(a(/57)), so ((al5)7)(a(/57))-i = zn 

for some n, where z = ?7#(1) generates Im?7# = Kerj#. Then 

0 = d[((a/3)7)(a(/37))-i] = d(z«) = 2n gives n = 0 and (a/3)7 = a(/37). 

For the 7-dimensional case, however, 2.5(b) no longer is true. An 

obvious counterexample would be M = P5 x S2 (or P3 x S4). Here 

H^MjZ) = Z2, but M clearly is not type 1. 

4.3 Question: What happens in Example (14) if "prindpal" is omitted 

in the bundle £S-- - * M - * V. 

In this case we lose the exact knowledge of the fundamental group, for 

the extension 

^(Si) = Z >—> xt(M) » TT̂ V) 

need no longer be central. However, the same result connecting type M with 

c(f) is still true, as we now prove. 

4.4 Proposition: Let ^S 1 —• M —» V be a fibre bundle over a closed 

orient able surface V of genus g. Then Ht(M) « Zn © Z-g, where n = c(£) (Z0 

is to be interpreted as Z here). 

Proof: Consider the homology spectral sequence, .which will have simple 

coefficients since M is orientable (it is an orientable fibration in the sense of 

[11], p.476). The only possible non-sero differential is 

d :Z = H (V;Z) = E2 -» E2 = H (V;H (SO) = Z. 
2 2V ' 2,0 0,1 o v r " 

Then d2 is multiplication by n, and clearly n = c(£). One then has E00 = 
0,1 

Z and E00 = Z2g, from which H/M) » Zn e Z2s. 
n 0,1 i \ / n 

Corollary: type M = 1 iff n = 2(mod 4). 

4.5 Question: Does TT^M) determine type M? 

A partial answer is that type M = 1 implies the existence of y € 

Hi(7r1(M);Z2) with y3 # 0. This is readily proved by attaching cells to M in 

dimensions 3,4,... so as to obtain an inclusion M -^ Y = K(7r1(M),l), and 

noting that i* is an isomorphism in dimension 1. 
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