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THE WEDGE SUM OF DIFFERENTIAL SPACES

Wiesaw Sasin -

ABSTRACT. In this paper we study some geometric properties
of the wedge sum [10] of differential spaces in the sense of
Sikorski [7],[8]. In Section 1 we review some of the standard
facts on Sikorski’s differential spaces. In Section 2 we de-
scribe some basic notions and facts concerning the singularity
which is obtained by taking the wedge sum of differential
spaces.,

1. PRELIMINARIES. Let M be any set and let C be any non-
empty set of real functions on M. By Tb we shall denote the

weakest topology on M in which all functions from C are con-
tinuous. For any subset ACM, let CA be the set of all real
functions fa on A such that, for any peA, there exist an open
neighbourhood UeTb of p and a function L€ C such that

PlAf\U =o[AnU. By scC we shall denote the family of all real
functions on M of the form we(ely,..., o )€C, where wEEn,
olqserey ol €C, neN, and E = COAR™).

A set C of real functions on M is called a differential
structure on M if C = Cy = scC [8]. The pair (M,C) is said to
be a differential space; the family C is then a linear ring[S]
and its elements are called smooth functions on M. For a. set

Co of real functions on M, the set (scCo)M is the smallest
differential structure on M containing CO. A differential
space (M,C) is said to be generated by C  if C = (scC,)y.

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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If (M,C) is a differential space and A is a subset of M,
then (A,CA) is also a differential space, which is called the
differential subspace of (M,C). By a tangent vector to (M,C)
at a point péM we shall mean any linear mapping v: C — R
which satisfies the condition

v(el-B) = v(a) PP + L (PIV(PI for o,pec,
By T M we shall denote the linear space of all tangent vectors
to (M,C) at peM, called the tangent space to (M,C) at peM.

Let (M,C) and (N,D) be differential spaces. A mapping
f: M—> N is said to be smooth if f*(cl):= ol°feC for every
ol €D, A mapping f: M —> N 1is said to be a diffeomorphism of
(M,C) onto (N,D) if f is a smooth bijection and =1 is smooth.

If f: M —> N is smooth and veéT M, then the formula

(f‘pv)(oé) = v(tef) for <€D,
defines a vector f*pv tangent to (N,D) at f(pd.

Let TM:= he TpM be the disjoint union of tangent spaces
to (M,C) and let 71: TM —> M be the canonical projection. We
denote by TC the differential structure on TM generated by the
set JoloT :o(eciuida( :oleC}, where dol: ™M —> R is given by

(det)(v) = v (atd for veTM.

Let X (M) be the C-module of all smooth vector fields
tangent to (M,C). Every vector field X€X¥(M) is a smooth
section of jr: ™M —s M [7],[8].

We shall denote by éﬁk(M) the C-module of pointwise smooth
k-forms (see[ZJ). Every element © of «Ik(M) is a smooth map-
ping @ : TM@...®TM —> R such that the restriction
elTpM XoeooX TpM is a k-linear form for each péM.

A sequence w1,...,wne X (M) is said to be a vector basis of
the C-module X (M) if for every point peM the sequence w1(p),
«eey W (P) is a basis of T_M. We say that the differential
space (M,C) is of constant differential dimension n if every
point péM has a neighbourhood UGTC such that there is a vector
basis of X(U) composed of n vector fields. A point p of (M,C)
is called regular if there exists a neighbourhood Vé'l.'C of p
such that the differential subspace (V,CV) is of constant
differential dimension. A point péM is called singular if p
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is not regular.

Now, 1let ¢ be an equivalence relation on (M,C)[4]. A func-
tion feC is said to be consistent with ¢ if xQy implies
f(x) = £(y) for any x,yeM. We denote by Ce the set of all feC
consistent with g. One can easily show that C is a differen-
tial structure on M. Let M/f denote the set of all equivalence
classes of ¢ and let 7e: M —> M/p be the canonical mapping.
We denote by C/¢ := (W55 '(C) the differential structure on M/¢
coinduced on M/¢ by the mapping Te [11],[4]. It is easy to
show that 7Y§I(C/§): C/f —> Cg is an isomorphism of algebras,
A subset ACM is called g-saturated if T¢ (Tg(A)) = A. Let
us observe that the mapping M/¢ DA L 7r€1(A)CM is a bijec-
tion between the family of f—saturated sets in M and the fami-
ly of all subsets of M/g . Let us put Mg := EUETb:U=7Q;kﬁ§(U));
It is easy to see that M = I(Tc/g) , where ‘tc/§ is the
quotient topology in the set M/¢ and Ty, = I(Tb/) , where
‘FC/% is the weakest topology on M/f sucﬁ that all functions
belonging to C/g are continuous. We have Tc/f = er/ if and
only if ?ng- ch . Moreover, ang- 'TC iff for any U€97 and
for any peU thgre is a function ‘féCg such that f(p)= 1 and
$IM - U =0,

2. MAIN RESULTS. Let (Mi,Ci), i=1,...,k, be differential
spaces and let pieMi, i=1,...,k, be arbitrary points. Let

k k
(N,D) = ([__J Mi,[__{ci) be the disjoint union [10]. By definition
i=1 1 i1

feD iff fIMEC; for i = 1,...,k. For a family f;€C;, i=1,...,k,
we denote by f1LJ...L.lfk the real function on N such that
(f1LJ...LJfk)|Mi = f; fori = 1,...,k.

Let ? be the equivalence relation on (N,D) identifying
the points PysevesPpe We denote by pyx the equivalence class
containing the points PyseeesPye Of course equivalence classes
different from p, are one-element,

The quotient space (N/Q,D/f) is called the wedge sum of
the differential spaces (M1,C1),...,(Mk,ck) and it will be
denoted by (M;ve..vM,Cv..vC). It can be seen that
Dg = ifeD: fl§p1,...,pk§ = const} .
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LEMMA 1. Tp/¢ = T, .

Proof. Let Ue’mg. It suffices to show that for any point
peU there exists a function ‘{’e:D< such that
(M C(p) =1 and ¥(g> = 0 for qeU.,

Assume that pe{p;,...,p 3. For any i€§1,...,k$, there
exists a function fieci such that f;(p;) = 1 and filMi-(UnMi).
=0 (see [8] for instance)..lt is evident that the function
¥ = fyl ... HIf, is consistent with ¢ and satisfies (1).

Now let p;(ipv...,pk% and let peUr\Mj for some jei1,...,k3.
There exists a function géC, such that g(pd> = 1, g(pj) =0
and gle-(UnMj) = 0, Let £: N —> R be given by
(2) YIM, =g and fIM, =0 for i 4 j, i€f1,...,ki. It is
clear that feDe and ¥ satisfies (1). This finishes the proof.

Now for je§1,...,k§ and fEC'j let £: N —> R be the function
defined by
_ f(q) for quj’
(3) f(q) =

N f(pj) for q¢Mj',\

Of course f is co(risistent with§ . Let f€D/q be the function
corresponding to f by the isomorphism )T;}(D/Q)t D/¢ —> De .
f satisfies the condition
(4) f - tem, .

Now one can prove
PROPOSITION 2. Let (Mi,Ci) be a differential space generated
by a set Cf, i = 1,...,k. Ehen the wedge sum (M1v...VMk,c1v...vclg
is generated by the set Uﬁf fecg§ .

i=
Proof. Let féD/¢ be an arbitrary function. It suffices to

show that f smoothly depends on a finite number of functions
k

from the set Ui? fecgi, in a neighbourhood of p,.
i=1

For i€§1,...,k} let U € ’I,‘Ci be an open neighbourhood of p,

such that there exist functioné"f%,...,fiécci), eiégn satisfying
f"ﬂglUi - eio(f%,-.o,fi)lui.

k
Clearly the set U:= ’1T§'1(U Ui) is an open neighbourhood of P
i=1
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It is easily seen that
k ; i k=1 . . .
i 2 2
£1U =(i§_;1 XTSI o g‘v el(f’;(pi),...,f;(pi)))lv.

From Proposition 2 we deduce
COROLLARY 5. If (M;,C)), i = 1,...,k, are differential spaces
locally finitely generated [3], then _(M1v...VMk,c1v...vck) is
locally finitely generated.
PROPOSITION 4. For ie§1,...,k§ the restriction WflMi is a dif-

feomorphism onto its image and
k

T_ (N/e) = M, T M.

px( /s iez(ﬂﬁl l)*pi p; i

Proof. It is clear that TlelM; is bijective for i€§1,...,k2.
Let q/i:wf(Mi)_—)Mi be the inverse of 7\'€lMi for i = 1,ec0,k &
It is easy to see that

f°‘4’i -7 I‘)Tg(Mi) for any feC,, i = 1,...,k.
So U}'i is smooth for i = 1,...,k.

Now let weTp{N/ﬁ‘) be an arbitrary vector. For iei1,...,k?
let vy Ci —> R be the mapping defined by
(5) V(o) i= w (&) for A EC; .

It is easy to verify that vieTp Mi for i = 1,...,k.
i

One can check that every function geD/¢ can be represented
as a sum '

(6) g = ilgo(ﬁ/gi\l"li) - (k-1g(py,
i=

where gﬁrgl\Mi) is the function defined by (4) .
From (5) and (6) it follows that

wig) = gvi(go(ﬂ‘ell"li)) = iiﬂ[(n‘qllvli)*pivi](g)
for any geD/g . Hence .
(7) w = §1(“<,Mi)*pivi .
It remains to show the uniqueness of the decomposition (7).
Note that for any veTpiMi and B €Cy, i,3€§1,.0.,k8, if 1 43,

then
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(8) [(ﬂglmi)*piv} ()= o.

) M, XeoeoxT M be a sequence of vectors such
Let (u1, ,uk)e’_[‘p1 g X eX Py " q c
that

k
(9) W o= g(nflmi)*piul

Now from (7)-(9) it follows that

w(p)-u (?)=v (3) for any }’Becj, J o= 1,000,k
Hence u, = v, for j o= 1,...,k.

In the sequel we denote by ;¢ TpEN/?) — T
the projection defined by
(10d gl(w) = v, for w€T (N/(J),
where vieTp Mi is deflned by (b).

piMi, i=1,...,k,

LEMMA 5. For any Xex(N/g) there exists a unique sequence
(XqpeeesXy) € X(M)xeox¥ (M) such that
(1) X@ '(’ri"Mi)*uyi(q)Xi(‘h(q’) for qemp(M) - b, ,i=1,...,k,

k
(12 X(p) = g—;(n-iji)*piXi(pi)‘

Proof. For i€§1,...,k} let X,€X (M) Dbe the vector field
defined by
(13) X (et -x(oo (7"§IM) for ol €05,
where & is the function defined by (4).
It can be seen that X,,...,X, satisfy (11) and (12). The
uniqueness of the sequence X1""’Xk is a consequence of the
uniqueness of the decomposition (7).
COROLLARY 6. If P; is not an isolated point in (Mi, 'Z“C> for

i

i =1,...,k, then X(p,) = 0 for every Xe3X(N/¢).

Proof. Let (X1,..., k)éI(M Y. XX (M) be the unique
sequence satisfying (11) and (12). We will show that X, i(Pd=0
for i = 1,...,k.

Fix i€§1,...,k3. From (11) it follows that

X (X)e T | My -gpag =0 for «€C,, § 4 i, JEST, v uu, k3,
Since p; is not isolated in (M;, T, ) X (L) T'gle = 0 for

3651,...,k§ j #i. Of course X(oL)° geDf Thus X(o()-ﬂ‘?(pi)n
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and, by (8), X;(p;d(%) = 0. We have thus proved that X,;(p;)= O

for i = 1,...,k. Hence (12) gives X(p,) = O.

REMARK 7. From Lemma 5 and Corollary 6 it follows that if Py

is not isolated in (M, TC) for i = 1,...,k, then the D/¢ -mo-

dule f(N/g) is isomorphi% to the D/§> - module %O(M.l,...,Mk):-

$(Xps e GIEX (MY Xu XX (MYt X;(py) = 0 for i = 1,...,k3.

In the sequel the vector fieldXE}é(N,/f) corresponding to a se-

quence (X1,...,Xk)€ %o(MV""Mk) will be denoted by X;¥...*X,.

Clearly, for any sequence (f1,...,fk)€C1X...XCk such that

f1(p1) =,,.= fk(pk) there exists a unique function f1*...*fn€

D/f satisfying the condition

(18D (f1*...*fn)°(7\’glMi) = f, fori =1,...,k.

It is easy to verify that the mapping ‘Y:i(f1,...,flgéc1>‘...7‘ck:

f(P) = «uv = fk(pk)} —)D/f ,‘Y(f1,...,fk) = %% fy, is

an isomorphism of linear rings over R,
The following equalities hold:

(15> fu*..xfy X*eooxXy = f1X1*...*f X

’
(16) (X % . xX)(f v oovf)) = X1f1*...*thi,
(17)  Xy»o.ox X + Y1ar...*‘_Yk = (X, + Toweson(X, + Y
(18)  [XymeoovX,Toxeoonly ] = [X, Y [xiox[X, Y],
for any (X;,..0, %), (Yyseee, TIEX (M, .00, M) and (£1900ey £y
CyX..uxCy such that £,(py) =.ce= £ (P,
Now we can prove

PROPOSITION 8. Let P be a regular and non-isolated point in
(Mi,Ci) for i = 1,...,k. If ¥ is a covariant derivative [6]
in the C,-module %(Mi), i =1,...,k, then the mapping
Vi X(Ne)x X(N/ed —> X (N/p) defined by

4

k
(19) VX1ﬁ...*XkY1“'“*Yk = v)(1Y1*”"’&7)(1(1’1{

for any (X1,...,Xk),(Y1,...,Yk)é"XO(MP...,Mk),' is a covariant
derivative in the D/¢ -module X(N/¢) . Moreover, if Ry,...,Ry
4 3
is the curvature tensor of V,...,V respectively and T1,...,Tk
are the respective torsion tensors, then the curvature tensor
R and the torsion tensor T of V satisfy:
(20)  R(X %o v X, Y o%ee Y ) Zoxu o o¥ B = Ro(X,, Y )Z,%0 $R (X, Ty ) 2
(21) T(x1"'"“Xk'Yf"“”Yk) = T1(x1’Y1)*"'*TK(xk’Yk)'
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for any (X1,...,Xk),(Y1,...,Yk), '\'z1,...,zk)e’an(M1,...,Mk).

Proof. Since p; is a regular point in (M;,C;) and X;{pd= 0
1 =
for i = 1,...,k, (inYi)(pi) = Vxl{pi)Yi

1 X _
Thus (VX1Y1,..., VXkYk)e ¥,(My,...,M) and ¥ is well defined.

=0 for i =1,.,..,k.

Using the formulas (15)-(17) .it is easy to verify that V is

a covariant derivative in the D/¢ -module X{N/y') . The proof
of (20) and (21) is straightforward.

COROLLARY 9. If (Mi,ci) for i€§1,...,k?, is a C®- manifold,
then on the wedge sum (M1V...\-’Mk,C1v...VCk) there exists a co-
variant derivative.

x fr

M 3 of

smooth pointwise T-forms let w: T(N/S‘)éb...@T\N/S‘)—ﬁ R - be
the r-form defined by

For any sequence (&)1,...,‘43}()6_‘{@\1‘41) Xoue

\

(22) Q(WqseeesWy) =

k
E&)i(fl(wi)) if ﬂr(W1,.--,Wr) = DPus
= / rdo . - . )
wi\(q/i)* w19---,LL+i)*Wr> if 7¥r(w1,...,wr):);§(mi) - }pﬁg'
L a1k,

where 7173 T(N/¢)@...0T(N/g) —> N/¢ is the canonical projection,
fi is defined by (10) and ‘-Pi is the inverse of JT';lMi for

i=1,...,k.

One can verify that @ is a smooth r-form on ('N/S,D/S).
It is enough to prove the smoothness of «w in a neighbourhood
of the point p,. For 1651,...,1(} let Ui be a neighpourhood of
p; such that there exist smooth functions f%,...,frlleci, 6165%

satisfying

-1 . . . _
(23) ;| 7;'(U) = @io(dfﬁ,...,dfrll,f}oﬂi,...,f:loni)]rri‘(Ui),
for i = 1,...,k.

From (22) and (23) it follows that

k As A A A
Y o i i 21, i
(24) @1V = 22 60(dTy, ... a8, Ty Ty eee, Tiem)|U
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where U:= ( ) 50 2 T{N/g) —_— N/§ is the canonical

i=1
projection.

In the sequel the r-form corresponding to 601,...,u3k) by
means of {22) will be denoted by LT LU

Now one can prove

PROPOSITION 10. If g is a riemannian metric on (Mi,Ci) for
i=1,...,k, then Eq%eeo¥gy is a riemannian metric on the
wedge sum (M1V...ka,C1v...VCk) . Moreover, if’(Miici) is of

constant differential dimension for i = 1,...,k, ¥V is the
Levi-Civita connection corresponding to 84 [8] then the tor—
sion tensor T of the connection V corresponding to Y7,...,V’
by {19) is equal to O.
Proof is straghtforward.
EXAMPLE. Let Mi -i(t,i): téRZCRZ, i = 1,2, be equipped with the
standard differential structures C, and C, generated by 37,3
and }TZ% respectively, where Ti: Mi —> R is defined by
T (t,i) =t for teéR, i = 1,2.

Let us take the point p, = {0,1) and P, = {0,2). It can be
proved that the wedge sum \M sz,C VCZ) 1s diffeomorphic to
’ NZM) of 'R ,.« ) where
M:= i(x,y)éﬂz Xy = 0? One can verify that the mapping
A M1VM2 —> M given by

yilt,11) = (t,0) for t¢R,
(25) > ([t,2]) = (0,t) for t¢R,
is a diffeomorphism. One can see that the C vC2-modu1e3{M sz)

is free with the basis §v v i, where V, = T *0- gT ,
1

the differential subspace (M

. 0xd
V2 = O')V”L’2 0*drz .
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