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THE GRADED REPRESENTATIONS OF AN AFFINE LIE
ALGEERAS

V.M.Futorny

Introduction. Let A :(af-‘}):;d be a generalized Car-
tan matrix which satisfies the follow1ng condltlons

I) a(,L = 2 L i n

2) ac}ez, Qi €O, (4},

3) A is symmetrizable i.e. there exists a diagonal
matrix D= (014,..., OLM) with non-zero entries such that DA
is symmetric.

4) All proper principal minors of DA are positi-
ve and dd‘.A=O .

The complex affine Lie algebra g’ ?(M is gene-
rated by €4 ..., €y, ‘gi,. gu, ﬂli
with following defining relatlons [3] : [{'Lh QC}‘] 01()

C ke &3] = -y {j [Qc,m‘él &J g .
(ad €)' ™ Mepy = (ad )7 (4)) =0 H&.

Denote by H a Cartan subalgebra generated by ﬁq,..., gn,

Let [\ Adenotes the ,Set of roots, m= {0(1,..., Aul
be some base of A , A =1 Z Kidi | Ki€ Z§  the lattice
of roots, A (n) the set of posn:lve roots with respect
to T .

We have a root space decomposition of ? with res-

pect to H : %= H@J%Ag*' vhere %L‘{aeg'l

[(\;3] c‘((a)?' for all ZEHB
Let A™ = {k® [keZ {0} Y the set of imaginary
roots, where 5' is a minimal positive imaginary root.

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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The universal enveloping algebra U( %‘) isa Q@ -
graded algebra: U(?) =0(®Q(& (Z[) . g— -module V is called
€

@ —graded if V=d®£a Vo(_ ) U.,((%})Vf, < \/,ujs

for a11 &, €A . Let K denotes the category of all 4 -
graded } -modules. It is clear that Verma modules and ge-
neralized Verma modules [4] .y for example, belong to K .
The obJjects of K constructing by parabolic induction
were studied in [51 . In this paper we construct the new
families of irreducible objects of K which aren’t quoti-
ents of generalized Verma modules but have many analogous
properties. The first examples of such modules were built in

[1] .

I. The graded irreducible g ~modules.
A subset F< /A is called closed if oL+ p € F
for all roots o, B € F such that A7B€/ . Denote by
< F> the closed subset generated by F . A closed
subset P < A such that PU-P=A we called a parabo-
lic subset. The classification of all parabolic subsets in
affine case is ccntained in [2 1.
Let F #FcA , g’F = <.°3—,,()v(€F> , HF =
= {&éH Io((&)=0 for all a(.eF}/Z- , where Z < H is
a center of 4 and Hg =H .
We say that g -module v is graded irreducible
if V hasn’t a -graded 3‘ -submodules.
Let X c 9 | V'  is graded ¥} -module,
V“’ {‘l-"e V, XV=0 for al11 XeX 3 , For any parabo-
lic subset P we denote by K(B) the subcategory of
K of graded ‘? -modules V such that VﬂP\(—P) # O.

Definition. Any element Ve V %p\ P is called
-primitive. .
1r P=A (7[') then we have the well-known defi-
nition of primitive element.
Let P be a parabolic subset, E ¥ A. ,



THE GRADED REPRESENTATIONS OF AN AFFINE 157
LIE ALGEEBRAS

I = U(g)‘gp\ -F) ARVACHY

Proposition I.I. (I) P~ -P) is a closed
subset in A .
(2) I is the ideal in Uo (%) .
3 U (3)/:[ = UO(%P{\"P) ® U(HP(\-P) .

Proposition I.2. (I) If W is an irredusible
Uo (‘gfn_E)@)U(Hm_}—module then there exist the unique

graded irreducible g' -module VG K(P) such that V;tw
(2) 1r VeK(P)is the graded irreducible ‘ZJ— -module, A€ a’

0+ U¢ Vo( N V%p\(-P) then V,( is the irreducible
Uo (ﬂ'pn_P) ® U(H Pﬂ-PB -module.
Proof. Let W be the irreducible U, (SP{'\-PB(&U(HP!\*P\)—
module. Then we may consider W as Uo (gj) -module de-
fining LW =0O for all W€ W . Let M(P,W) =
= U(?) ® w . Then M(P, W)o =~ W as Uo(g)—
Uo ()

modules. The module M ( P, W) has unique maximal gra-
ded submodule and thus we have the graded irreducible quoti-

ent L (P, W) such that L(P) W) =W More

over, 3P\(-P) L(P,W)°=O and L(P,W) € K(P).

Ir L is another irreducible module such that Lo =W
then there exists epimorphism f ° M (P, W) — L.

mus L = L (P, W) . It proves (I). The point (2)
follows from proposition I.I.

The universal module ™ (P) W) is very "big"
with complicated structure. More convenient to have the
"smaller" universal module. Now we shall construct such ‘3— -
modules generated by P ~primitive elements. The first con-
struction 1is analogous to the construction of generalized
Verma modules.

Let Rpn-p = LT K |iePN-P kiez},
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V be an irreducible a Qpn-p -graded U(gpn_P\) -

module, ) € HE(\'P ) -A:L = U(‘g}m_P) t U(H{Jn-P) *

“U(%pip), Ma(PV) =U@E V,

where ?P\('P) =0 ?\17 = /\(lt) v for all \Kv,

ke Henp .
It’s easy to prove. A
Proposition I.3. (I) Mi (P, V) is Q -
graded gr -module. A
(2) The element 427 ts P -primitive and My (P, V)

is genera)‘ted by one for any V¢ Vv
3) Mg (P V) . has unique maximal graded submodule My

A
and Li (P) v)=M, (P,V)//mi is graded irreducible quotient.

@ Ly (P V)€ K(P) ena |} (PV)¥em = V.
Now consider another construction of g -module
generated by P -primitive element.
L e H , =
A Honp Ao =Uo(Fon o) *

f u(HPr\'P) * U('gp\(-p)\; Mi <P» W) = U(‘c’,’)j(’\DZW )

where W is the irreducible ./\2 -module, such that
w = , w = ’l f 11 ’l
9P‘(-P) & h Alh) W or a € HP(\*P’

we W \
Proposition I.4. (I) M2 (P, W) is Q -
graded 5 -module. \
(2) The element 1®W is f -primitive and Mz (P, W)
is generated by one for any W €& W
(3 M;‘ (P, W) has unique maximal graded submodule W,
L;\_ (P, W) ‘—N2 (P)W)/’MZ is unique graded irreducible quo-
tient.
W MW, =W ama M) (AW)cM] (BR)PED
The next result shows the universal nature of modules
M(PRW), MI(P V), M)(P, W)
_Theorem I.5. Let A€ Hpn-p o€ Apn-p,
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(1) 1f V be the graded irreducible U(gPﬂ‘E> -module

ana V, #0 then L (P, Vi) = L'\ (e, V) = Li (P,v»(),
ho =ah) v, veVe, he Hepop.
2 1t U is graded irreducible ?’ -module and Ux

contains a £ -primitive element WU , such that hu =AU
for all ﬁ- € Hpn_P thep U x L'; (P, Uo() .

The proof of the theorem follows from propositions
I.2-I.4.

Remarks. (I) There exist epimorphisms Wi M(P V)

— My (B, V) M(P, Vi) = M7 (P V),

‘?3:M,_(P V-L) - Mi(P) ) .

@ 1t 8¢ POP  tnen L (P v, L (e, V),

I—z P, oL are irreduc:.ble modules and in "ge-
neral position" they aren’t quotients or Verma modules or
generalized Verma modules if P A (7') vV <- -n'>
for any 7T T'eT .

Like that we have the constructions of irreducible
graded g -modules with .P -primitive elements. The next
theorem gives the characterization of modules without P -
primitive elements in particular case 9 = A .

(1) Theorem I1.6. Let V  is the irreducible graded

4 -module without P ~primitive elements for any pa-
rabolic subset L . Then Vg # O for any #€ Q@ |

Hypothesis. The theorem 1.6 is correct for all af-
fine Lie algebras.

2. The structure of the subalgebra %P/\ -p - Let

' P be a parabolic subset and Pn ~P il 3.
Theorem 2.I. (I) If ©€ P\ (-P) then
gpn -p is a finite dimensional semisimple Lie sub-

algebra in ‘Z}

()1 Se PN-P then P(\P ‘316‘)3
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where " is an affine Lie algebra, rank Ay &
tank &, G, < Fpm  emd 4, @ (’;’]-Atm f\%i)=gA(m.
It’s easy to prove
Lemma 2.2. Let 7r=2’0(1)¢2)_”’0Cn5 , LeT
‘X‘p € ‘gu\p . Then .
@ gg e L L X, X ) | - 5R Y

@1 [Xe,, X, J#0  smen [OXg, x.1,X]%0.

The proof of the theorem 2.I is based on compu-
tations for every affine Lie algebra and used the lemma 2.2.

The next table containes all kinds of the subal-
gebra %,  for different P .

% B4
D W) < K<
An-i AK_L , 2¢Ksn4
(1) (1) 1) (1)
Bh-i AK—L ) ZSth—i, CZ ) BK_L ) hek <-4
8 Y D
Cus Ay , 2<kemd, Cpy | 3<Kend
(1) (€Y (1)
Dys DAL, 2ckend, Dy | SeKksnd
) (3) (€8]
G, 9, Ay
(L) (1) (1) [\ ) )
FL' Ai ) AZ ) CZ ) C3 » 63
) 8} 0 q
Ep, €=6%°¢ Ax-4 25Kl Dy y | Sek<l, Ef(), 6<k<l-4
(2) [€N) (2)
Azn-z /-\K‘1 2¢Kksmd A, L zekcnd
(2) (€Y - (2)
2, Al , 2¢Ksmd | Dy 3<K<n4d
2) (4) (2) 2)
Asns Ay, 2sKkent Ay d¢kenda, Dy
) €Y ) @) . () (3]
EG A'l > AZ ) %3 ) @l{ ) AS
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