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Knit P r o d u c t s of Graded L ie Algebras and Groups 

P E T E R W. M I C H O R 

Institut für Mathematik 
Universität Wien 

Austria 

Abstгact. If a graded Lie algebгa is the diгect sum of two gгaded sub Lie alge-
bras, its bгacket can be written in a foгm that mimics a "double sided semidiгect 
product". It is called the knit product of the two subalgebras then. The integгated 
veгsion of this is called a knit product of gгoups — it coincides with the Zappa-
Szép product. The behavior of homomorphisms with гespect to knit products is 
investigated. 

Introduct ion 

If a Lie algebra is the direct sum of two sub Lie algebras one can write the 
bracket in a way that mimics semidirect products on both sides. The two rep-
resentations do not take values in the respective spaces of derivations; they sat-
isfy equations (see 1.1) which look "derivatively knitted" — so we call them a 
derivatively knitted pair of representations. These equations are familiar for the 
Frölicher-Nijenhuis bracket of diífeгential geometry, see [1] or [2, 1.10]. This pa-
per is the outcome of my investigation of what foгmulas 1.1 mean algebraically. 
It was a surpгise for me that they describe the general situation (Theorem l. ). 
Also the behavior of homomorphisms with respect to knit products is investigated 
(Theorem 1.4). 

The integrated version of a knit product of Lie algebras will be called a knit 
product of groups — but it is well known to algebraists under the name Zappa-
Szép product, see [3] and the references therein. I present it here with different 
notation in order to describe afterwards again the behavior of homomorphisms 
with respect to this product. This gives a kind of generalization of the method of 
induced representations. 

1. Knit products of graded Lie algebras 

1.1. Defìnit ion. Let A and B be graded Lie algebras, whose grading is in 
Z oг Z 2, but only one of them. A derivatively knitted pair of representations 
(a, ß) for (A, B) are graded Lie algebra homomorphisms a : A —> End(Б) and 
ß : B -> End(A) such that: 

M*)[buЪ2) = K a ) Ь ь ò 2 ] + ( - l ) l a П 6 l l [ ò ь a ( a ) 6 2 ] -

- ((-l)l a l l 6 lЦ/?(&i)a)Ь 2 - ( - l^ l^ l+I^DI^Ia^òз )^^! ) 
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ß(b)[aua2] = røaьajl-K-l)1*11"1!^,^^]-

_ ( ( - i J I M I - i l ^ a j ) ^ -(_l)(l»l+l«i l) l-»l / ? (a(a 2 )6)a 1 ) 

Heгe \a\ is the degree of a. Foг (non-graded) Lie algebras just assume that all 
degrees are zero. 

1.2. T h e o r e m . Let (a,ß) be a derivatively knitted pair of representations for 
graded Lie algebras A = 0 Ak and B = фBk. Then A B : = Ø м ( - 4 f c ф Bi) 
becomes a graded Lie algebra A (a,/?) B with the following bracket: 

[ (a i ,6 i ) , (a 2 ,6 2 ) ] :=^^^^ 

[ Ь ь b 2 ] + a ( a i ) 6 2 - ( - l ) l a 2 H 6 l l a ( a 2 ) 6 i ) 

The grading is (A © B)k : = Ak ф Bk. 

Proof: Obviously this bracket is graded anticommutative. The graded Jacobi 
identity is checked by computation. | 

We call A ®(a,ß) B the knit product of A and B. If ß = 0 then a has values in 
the space of (graded) derivations of A and A 0 is an ideal in A (a,o) B and we 
get a semidirect product of graded Lie algebras. Note also that [(a,0), (0, 6)] = 
((-l)\b\\a\ß(b)a,a(a)b). This is the key to the following theorem. 

1.3. T h e o r e m . Let A and B be graded Lie subalgebras of a graded Lie algebra 
C such that A+B -= C and AПB = 0. Then C as graded Lie algebra is isomorphic 
to a knit product ofA and B. 

Proof: For a Є A and 6 Є B we write 

[ a , 6 ] = : a ( a ) 6 - ( - l ) l a H 6 l / 3 ( 6 ) a 

for the decomposition of [a, 6] into components in C = B + A. Then ß : B —• 
End(Л) and a : A —* E n d ( Б ) are linear. Now decompose both sides of the graded 
Jacobi identity 

[a, [61,62]] - [[a,Һ],Ь2} + ( - l ) | в | , ' l | [ 6 i , [a,b2]} 

and compare the A- and i?-components respectively. This gives equation 1.1 
for a and that ß is a graded Lie algebra homomorphism. The rest follows by 
interchanging A and B. Now we decompose [ai + 61, a2 + 62] and see that C = 
A@(aìß)B. | 

1.4. Now let Ф : A (a,/?) B —> A! @(a',ß') B' be a linear mapping between knit 
products. Then Ф can be decomposed into Ф(a, 6) = : (f(a) + ф(b),д(b) + ip(a)) 
for linear mappings ҷ> : A —•__", ф : B —> A\ f : A —> A\ and g : B —• B''. 
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Theorem. In this situation $ is a graded Lie algebra homomorphism if and only 
if the following conditions hold: 

<f([ai,a2}) = [<p(a1),ip(a2)} + a'(f(a1))'p(a2) 

_ ( _ l ) M M a ' ( / ( « 2 ) M a i ) 

rP([h,h}) = mbi)Mh)} + P'(g(bi))4>(h) 
-(-l)«h^P'(9(h))i>(bi) 

Mb)J(a)}=f(P(b)a)-P'(9(b))f(a) 
-(-l)laIIH(V»(a(a)6)-/3'(V(a))V'(6)) 

[g(b)Ma)}=<p(l3(b)a)-a'W(b)Ma) 

-(-l)l°H6l( f f(a(a)6)-a'(/(a)) f f(6)) 

f([ai,a2}) = [/(ai),/(a2)] + ^(¥3(ai))/(a2) 

-(-I)^^l3'(f(a2))f(ai) 

9([h,h}) = [g(bi),g(h)} + a'(^(b1))g(h) 

-(-l)MMa'(il>(b2))g(1n) 

Iff and g are graded Lie algebra homomorphism the last pair of equations obvi
ously simplifies. 

Proof: A long but straightforward computation. | 

This theorem can be used to build representations of C out of representations 
of A and B. 

2. Knit products of groups 

2.1. Definition. Let A and B be groups. An automorphically knitted pair of 
actions (ay/3) tor (A, B) are mappings a : B x A —• A and (3 : B x A —> B such 
that: 

(1) a : B —> {bijections of A} is a group homomorphism, so a\)l o a&2 = a&162 

and ae = Id A , where a&(a) := a(6,a). 
(2) /? : A —• {bijections of B} is a group anti homomorphism, i.e., /?ai o /?a2 = 

(3a*ai and /?c = IdBy where /?a(6) = f3(b,a). 
(3) a6(aia2) = a6(ai).a/5«l(6)(a2). 
(4) /8a(6162) = /3^-W(61).^(62). 

2.2. Theorem . Let (a,/3) be an automorphically knitted pair of actions for 
(A, B). Then Ax B is a group A X(a,/j) B with the following operations: 

(ai,h).(a2,b2) :-'(ai.a6l(a2),/?
a*(&1).&2) 

(a,6)-1:=(a6-.(a-1),^-l(6-1)). 
Unit is (e,e). A x {e} and {e} X B are subgroups of A X(Q)i3) B which are 
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isomorphic to A and B, respectively. If â = ЫA then {e} x B is a normal 
subgroup ofA X(a>ø) B aлd we have a semidirect product; similarly ifß = Idв-

If A aлd B are topological groups or Lie groups aлd a, ß are continuous or 
smooth, then A X(Qyß) B is also a topological group or Lie group, respectively. 

The proof is routine. 
We will call A X(a,ß) B the knit product of A and B in analogy with section 

1. In algebra, with diŕFerent notation, this product is well known under the name 
Zappa-Szép product. I owe this гemark to G. Kowol. 

2.3. T h e o r e m . Let G be a group, let A and B be subgroups such that G = A.B 
aлd AП B = {e}. Therí G is isomorphic to a knit product ofA and B. 

Pгoof: Let б.a = a(b,a).ß(Ъ,a) be the unique decomposition of б.a in G = A.B. 
Then 

aibia 2& 2 = aiû.(6i,a2)/?(bi ,a2)b2 = (aiaò l(a2)) . ( /? aҶ6i)6 2 ). 

So it remains to show that (a,ß) satisfies the conditions of 2.1. Obviously we 
have a(e, a) = a, /?(e, a) = e, a(Ъ, e) = e, ß(b, e) = 6. Comparing coeíficients in 
the law of associativity of G gives two equations. Setting suitable elements in 
these equations to e gives all conditions of 2.1. | 

2 .4 . Let Ф = (Фi,Ф 2 ) : A X(aìß) B —> A( X(a/)/?/) B' be a mapping between knit 
products of groups. We put 

(1) / ( a ) : = Ф 1 ( o , e ) , д(b) := Ф2(e,b) 

(2) V ( 6 ) : = Ф 1 ( e , 6 ) l ф(a):= Ф2(a,e) 

Then we have f : A —> A'ђ g : B -* B\ ip : B —> A', ф : A -+ B'. Ф is a group 
homomorphism if and only if 

Í $ i ( a i a 6 l ( a 2 ) , ^ 0 2 ( 6 i ) 6 2 ) = * 1 ( a 1 , 6 1 ) . a ' * a ( B l > t . ) ( * 1 ( a 2 , 6 : 

\ *2(aiabl(a2),Pa*(bi)b2) = ^l(tt2M(^2(ai,b1)).^2(a2,l 

h)) 
b2). 

Now we set in (3) suitable elements to e, use (1) and (2) and get in turn 

b2) = f(ai).a'Hai)(<p(b2)) 

b2) = PMb2)(rp(a1)).g(b2) 
(e) 

í * i ( a i , i 

\ <ř2(ai,J 

(f) 

(4) 

ř <p(hb2) = >f(bi).a'g(bi)(<p(b2)) 

U ( a i a 2 ) = ^ " ' ( ^ M d , ) 

* i(a» l (o 2 ) ,/3--(6 1 )) = <f(bi).a'g{bl)(f(a2)) 

^ ( ^ . ( o j ) , / ? - - ^ ! ) ) = f3,í(a*Xg(h)W(a2) 
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f(aia2) = /(ai) .a ' v , ( o i ) (/(a 2 ) ) 
(g) 

9(bib2) = (3"fi('*)(9(bi)).9(b2) 

If / and g are homomorphisms of groups then (g) implies: 

(g') 
(/(«-) = <-«..)(/(«-)) 

P"*hi)(g(bi)) {9(bг) = 

Now we decompose the left hand sides of (4) with the help of (e) and get: 

r /(«6 l(o2)).a^aM(sj))(V(/3-»(61))) = <p(bi).«'9(bl)(f(a2)) 

{/3MtaHbl)\4>(abl(a2))).g(l3*>(b1))) = 0'fM(g(bi)W(a2) 

2.5. T h e o r e m . Let Ax(a^ B and A' X( a /^) B' be knit products of groups and 

let f : A —» A'', g : B —• B', <p : B —> A', tp : A —* B' be mappings such that (f), 
(g), and (h) from 2.4 hold. We define $ = ( $ i , $ 2 ) : -4 x ( a j / ? ) B -> A' x ( a/^/) B' 
by 2.4.(e), then $ is a homomorphism of groups. If f and g are homomorphisms, 
then we may use (g') instead of (g). 

Proof: It suffices to check (3) of 2.5. This is a difficult computation using 2.4 
(a)-(h). | 

For topological groups and Lie groups all the expected assertions about conti
nuity and smoothness are true. 

This theorem may be used to construct representations of A X(a)p) B out of 
representations of A and B — a sort of generalized induced representation pro
cedure. 

Starting from the equations 2.1 for a knit product of Lie groups and deriving 
the equations of 1.1 for their Lie algebras is a very interesting exercise in calculus 
on Lie groups. 
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