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A QUATERKIONIC TREATMENT OF NAVIER-STOKES EQUATIONS 1)

Klaus Giirlebeck / Wolfgang Sprossig

1. Formulation of the problem

The aim of our considerations is to give a quaternionic
approach for solving the time-independent NAVIER-STOKES
equations:

A S .1 g 2
-Au + = (u-grad)u + — grad p = = f } . (&D)
. M i
K 1 diva =0 in G (2)
aao onr' ’ (3)

where O means the velocity of the tluid and p the hydrosta=-
tical pressure. Furthermore ¢ denotes the density, 7 the
toughness and f the vector of the outer forces. Let G be a
bounded domain and [’ its smooth boundary. CeW. OSEEN

showed that in the case otf a ball approximative solutions of
good quality may be obtained if the convection term

C(3) = 2 (G-grad) G is replaced by % (V.grad) 0 where ¥
denotes the solution of the corresponding STOKES probleme.
Based on this idea we intend to solve NAVIER-STOKES equa-
tions by reduction to a sequence or STOKES problems.

Denote by 1,e1,e2,e3 the quaternionic units which satisfy
the properties
ejey + ejey = -2sij i,j = 1,2,3

1) This paper is in final form and no version of it will be
submitted for publication elsewhere.
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3 3 3
Let £ = £ -g fie; 5 u = uo+f‘;uiei and D = tg‘niei.

Then the system (1)=-(2)=(3) admits the following hypercom-
plex notation

DDu+ % M(u) + % Dp=0 § in G (4)
Re Du =0 (5)
u =0 on T (6)

with M(u) = M*(u) = f = Re(uD)u - f, where DIRICHLET's
problem
- A u, = 0 in G
uo a 0 on [

has been added. lote that Re u D = 0. For each k €N vio} the
quaternionic versions of the spaces Wg(G) are denoted by

k o) . R R .

WQ’H(G), where WZ,H will be identified with I’2,H'

2. Some preliminary Statements .

We may introduce in I, H(G) considered as a real vector
9

space, the inner product

3
[u,V] = _STI' vdéc with U = R --Zuie:.l . (1)
G 1=4
Obviously [u,v]eH (skew=field of quaternions). So the valu=-
es of [u,v] are not necessarily real numbers, but [u,u]zo.

Proposition 1 [GS“

The HILBERT space L2 H(G) admits the orthogonal decomposi-
9

tion

Ly,4(6) = ker DaL, () @D #] ,(6)

where @ denotes an orthogonal sum according to the inner
product (7).

Corollary 1
There exist two orthoprojections? and @ with
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P 1, y(6) 222 ker DL, 4(6) (8)

Q=1-P &1, (@) 2% p W] ()T, (&) (9

Eroof.

This is a direct consequence of Proposition 1 . "

Corollary 2
Let u € W) ,(G). Then there holds the differentiation rule
9

DQu=Du

Proof.
We have DQu = D u = D Pu. The definition of the projection

P yields the assertion. "

iow it is necessary_ to introduce some integral operators.
Let be e(x) =-3 x.|x|-3e « Then we are able to give
Wy i i

the following denotations

(Tqu) (x) 2= fe(x-y)u(y)dy

G

) (@) 1e = [ empatnu@aly , x¢r
r‘

(8pu) (x) 3= =2 Sre(x—y)o((y)u(y)d y » x€l

where o (y) denotes the unit vector of the outer normal at
the point y on "'« & (y) may be written by o« (y)= t-“iei
T; is the 3-dimensional analogue to the complex i=1
T-operator (ct.[V]). F. can be seen as a 3-dimensional ana-
logue to the plane CAUCHY-type integral operator. The opera=-
tor S, is represented by a singular CAUCHY integral.

For the following it is necessary to put together some
essential properties of these operators.

Proposition 2 [GS 1)
1° Let 1<¢p<ew , k = 0,1,000 » Then we have
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K . k+1
T ¢ wp,H(h)'_'_’ wp,H(G) .

2% Let 1<p< o , k = 1,2,e4s o Then it holds

k=14 K q
FP : Wp,H (r —— WP’H(G)n ker D .

3% The operator tr TG FF is an isomorphism in the pair of

k=% . . k+% . 1
spaces WZ,H N imE., WZ’H n imQ. , where P, = ?(I+Sr)

and Qp = % (I-Sr). The trace operator tr means the
restriction on the boundary r.

4° The orthoprpjections Y and Q have the algebraic represen=-
tations
-1
P = Frltr T,F.) 'tr_%‘G
Q = I = Fr(tr TGBF) trTG
50 The operators P and Q are acting within thne space
VIIk (G) N 1<p<°° 9 k= 1,2,.0. .
p,H

6° It is clear that | PJ = 1al =1,
L(Lz,H) L(L2’H)
3e_About the Solution of NAVIER-STOKES' Eguations

By the aid of the introduced operators the problem (4)-=(5)-
(6) admits a certain advandageous forme.

Proposition 3 [G]

Let fel, H(G), pewg(G). Every solution of system (4)=(5)-
H
(6) may be represented by

T % 7, QT M(u) - ,1-1 T, Qp (10)
Re%QTGM(u)+-;]-lRer-O. (11)

Now it arises the question if the systems (10)=(11) and (4)=-
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(5)=(6) are equivalent. We have the following result:

THEOREM 1 (Equivalence)

Let u ¢ W;’H(G) s P eL2(G) a solution of system (10)=(11).
Then 0 = Im u is a weak solution of system (4)=(5)=(6).
Conversely, if u is a weak solution of system (4)=(5)=(6)
then there exists a function.;)eLz(G) such that the pair
{u,p} with u = 0 solves system (10)=(11)

Proof.

For the proof we note that a weak solution of the system
(4)=(5)=(6) is given if there is fulfilled the following
identity

U 3
s 3 (erad uy, grad vp) + 3 (aDyu,) = (£,v)

o .
and v € ker divrxw; (G)s With (u,v) we denote the product
]

3
(u,v) = § J u;v; dGe By the help of partial integration a
is4 G

straightforward computation we get the wanted result. %

THEOREK 2 ("Almost"-a=-priori Estimate)
Let {u,p}é \?I; H(G) N ker div x LZ(G) be a solution of system
9
(10)=(11)« The inequality
A Y, 1
1 z 1 Y 8 .

e ULy + 2 Qpll, <243 [Tgu(wl (12)

T+3, | nWz,H n Lom n'G Ly 1

is valide A denotes the smallest eigenvalue of the problem
{-Au = lu, tru -0}.

Proot,
Representation (10) leads to

Du +-% Qp = Z— Q Tghi(u) (13)
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0o
It is clear that u W, 4(G), DueimQ, Re Du = O and
b}
Im p = U. Thence it follows

Re [Du,@p] = Re [Du,p) - Re [Du,Pp] =0 (14)

as Du€im@® and Re Du = 0. From (13) and (14) we deduce
the identity
2 2
2 1 e S .
puff  + 5:1Q 5l = 3 |QTau(w)]
“ hLZ,H oy 2 1Q%¢ Lo,n

and therefore

2 (lpuly, 3 1Qely, ) s% bl

Using POINCARE's inequality it is possible to obtain that
llDuIIL 2 c"1l] uHL , where c¢ = inf $ihe)y
2,1 2,H ‘ i=1,2,3;P;2G
and P is a right parallelepiped with the length of the edges
(1)(G), i=1,2,3 « Together with Corollary 4.2 in [(}Sd_]
we gain

Y,
1 2
"Du"I‘E,H? (T—"'—;\-;) I u]lw% i

9did

and so our statement. *

Remark

Inequality (12) has the same structure as the a-priori
estimate for STUKES' equations. Indeed, it is not an a-
priori estimate for the solutions of NAVIER-STOKES equa-
tions, but it is without doubt very important with respect
to rurther considerations. Making use of (12) one may
estimate the term of the hydrostatical pressure Q p by the
velocity u and the right-hand side f.

Prggosition 4 [G]
Let uew2 II(G) 1<p< 3/2 « Then
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* 2
“M (u)“L < C1 I u“W1
Pyl 2,H

Remark
T'he constant C1 may be estimated by the inequality

)
¢, €9 g |

[LE,H’Lq,H]
where q<6 and p = 2%%3 . Using results in [ Sm] one can get
tfor any q< 6 the estimate

-fy Vg

—i+ % EvAm 4% 2
2 a -

g (diam G) 2 T

1% "[L2 ,

H,Lq,}i]

THEOREM 3 (Existence and Iteration procedure)

System (10)-(11) has a unique solution {u,p}c_ ‘W2 H((’) n

N kerdiv x LZ(G) (p is unique up to a real constant) it the
right-hand side 1 satisfies the condition

,7311 £, LS (16K%c )"
. "lf TGu[Lz x0inQ Wz 1 “ G"[ p,H? T2 1l .
For any tunction uogﬁg,n(c)n kerdiv  with

| Jull < min(R)(‘/qKC.1)+W)

(R = (2kC)™", W =[(4Kc,)™2- 9nflle’H/(7c1)] &
the iteration method

un P, ;Zg- TGQ TG M(l;]n_1)- -;!1- TGQ pn n—1,2,... (15)
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4/,(Re Q P, = - % Re QTG M(un_.]) " (16)
converges in ;IQ’H(G) X L, (G)

Proof.

For the proof we remark that we reduce the NAVIER=-STOKES
problem in accordance with (15)=(16) to a sequence of
STOKES!' problems. Several estimates yield the essential
. . ‘e s e
inequality [lu | w:.usﬂun_.]“wzc ,+ BANACH's fixed-point

theorem finishes the proof. “A detailed discussion of the
proof is given in [G] . +
Corollary
Under the suppositions of Theorem 3 we have

. “ -1

(1) Pulyn < C(4kc)™'-w

2,H
. ‘ n vov=1
(ii) flu~ullgs €L [(41{L,1) -W] R
2,H
where L =1~ 41{C1W <1 . 2*

THEOREM 4 (Regularity)
Let fewlé 4(®) a> % . Then the solution {u,p} of the

] ; et k+2 o1 . k+1
system (10)-(11) belongs to Wq,H(G)n w2,H((")qu (G).

Proof.

We confine our considerations to the case fe€l ,H(G)' In
the general case the proof is practicable by the same
techniques First we consider the STOKES problem

v 4 -}i TG@,g - ;l?- ’.L‘G@ M(u) 17
o -2-1 Rng--%Re QTGM(U) . (18)

Using Theorem 3 and the representation of the solution of
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STOKES' problem (cte [GS 1]) we get v = ueWS H(G) and
g = peVV(G), 8 <,/’. By help of HOELDER's 1nequality and
embeddlng theorems we gain M (u) GL4t H(G) for all t < 3.
Now let q <3, m(u)eLt (G

Then, by analysis of problem (17)=(18) we find ue;,wt H( )
and p €w1(G). Renewing this procedure over and over again
we may achleve M*(u)eL H(G) for r <., So it follows
M(u)eELq H(G). A new reilectlon of STOKES problem (17)-(18
leads to the wanted result.

Remark

The hypercomplex investigation of NAVIER-STOKES problem ha
following advantagess

1° With a unified method may be solved all essential ana=-
lytical problems as existence, uniqueness, regularity
and "almost"-a-priori estimate,

Approximative methods may be chosen within the same
calculus,

3° It is not necessary to use monotony principles.

4” Approximative solutions u, for the exact solution u in
W;,H strongly converge. Most of the other methods only
deliver a weak convergence or the strong convergence of
a subsequence.

5° There are good possibilities for the judgement of the
quality of the approximative solutions.

6° our procedure enables us to connect the canputations wi
a suitable boundary collocation method.

4. Numerical Solution of Boundary Value Problems of
NAVIER~-STOKES Equations

85

)

B

<]

th

In this section we intend to demonstrate the numerical so-
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lution of elliptical boundary value problems by the help of a
discrete function theory. In this connection we shall deal
with boundary value problems of STOKES' equations and then
consider an iteration method of solving NAVIER-STOKES equa-
tions.
Elements of a discrete generalized function theory were
developed in the paper [GS3]. We will use the same
denotations here and that 1is why we define only some
essential subjects. We introduce the equidistant lattice
RO={(ih,jh,kh), i,j,k integer, h>8 real}) and G, =GNRD.
The translation of xe Rg by *h in the x,-direction shall
be denoted by Vfﬁhx. Then we can define generalized discrete
CAUCHY-RIEMANN operators by

(D-f)(x) +): e. [f(V" hX)- f(x)]/h=ZE(:D.;,]c)(x

iz4
and a discretization of the Laplacian by
AL Dh h-DhDh .
If we denote by E the fundanental solution of {-[&h,tr}

h
(constructed in [GS1,GS3]), then h-DhEh are fundamental
solutions of D; and Dh’ respectively. Additionally define
some denotations

QGh = {xe Gh:dist(x,co Gh)sﬁl/zh}

%y, o = (xe36:3ie(1,2,3), with V] x¢6,)
- . i i +
Gy = {erGh-31€{1»2’3}» with Vi, nx ¢ Gp)

LY
96

%h,1,1,5 h,1,i7 %%h,1,3
- : N PO
BGhilpi’jnk _aGh;lain aGhﬁl)jnOGhilxk I,J,ke {1'2,3}

and introduce discrete analoga to the operator TG by

(ThEX(x):= 3 el (x-y)E(y)h°- 5 S ef(x-yE(yS +

= {xe QGh:Vi,hxéGh} , i=1,2,3

—-— . + : q -
hr,i - (X€ DG M x¢Gh} , i=1,2,3
naG

=96 i,je {1,2,3}

Ye&,u 36, ;1;4 O
]
> e;:(x-v)t’(y)h3
Y€3G“,L' ik

|¢J¢K
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- - 3
(T £)(x):= g e (x-VE(YR®- 3 _ > e <x-y>f<y>h +
h Ye&,0%6,, O

d*l YE?G,, '3 X

+ ; h(x—y)f(v)h3
Ye h.',;njnx

Further we define the quaternionic-valued inner product
<£,g>= 7: £ g(xh’

and h(G ) by the help of the induced norm <f,f>.
h(G ) allows the orthogonal decomposition

h(G )Y=ker Dh(lnt Gh)C-DDh(H h(G )) (see [GS3]).

If we introduce an analogue to the operator q. by
Fif = £ - T;D;f
then we have a discrete version of BOREL-POMPEIU's formula
and it can be shown that F;f is uniquely determined by the
boundary values of f. The orthoprojections onto
ker D;(int G,) and D;(ﬁ%:;(Gh)), respectively, are given in
the following manner:
+_.+ -t -1 - +_o ot
Ph-Fh(tr ThFh) tr Th’ Qh—I Ph .
A straightforward computation shows the following properties
pr-1, ptaei=pt
h h h*h™"h’
Some further results shall be given here without proof.
Lemma 1: [GS1]

For 1<p<3 and q<§%§ the operators
Thilp, n,0C®n = Lgq n,u¢Cy)
are continuous. ¥
Lemma 2:
Let ue W; h, H(G > and g<8. Then it holds
“u“Lq,ﬂ'l.H (G ) £ C“u“w
Broof .,

It is clear that D;]ue,L2 h,H’ whence follows

“Uﬂq’h’H < "ThDhu“Q,h,H £ C“D u"z h,H =~ C“uu“

In this case we made use of the dlscrete BOREL-POMPEIU
formula and Lemma 1. , *
In the discrete case it is also possible to deduce a relation
between the smfllest eigenvalue Al’h(Gh) of {-[&h,tr} and
the norm of Th' A simple galculation vields

Lenma 3:

- -1/ 2
NTREly oy € Ay p(Gp)

UEll, b g Vf e in Q;
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- 1/2 . +
Nt £ll, LhH S (FA L (@) \lfuz_h’H V£ € im Q .

p)- Then <D;f,g> = <£,Dpg> .

The functions f and g may be extended by zero into the
domain co Gh' Therefore the definition of D;f and D;f
does not cause any difficulties in points on aGh

P iti E .

Let fgeNZhH(G)

In the following we shall briefly write Re<',~>=:[-,-]h. Now

Then Re<D;Re f,g>=Re<f,Re D g>.¢ (19)

we define
* viz 3
gradh f: —(D1 h’DZ h? 3 h) s d1v 2 4D1 Wi -

Identity (19) may be written in the form

[gradh u, v]h— [u,-div, v]h,
where - u,ve W17 (G,) u:G—>RY, v:6—>R3. Thence
Ve Wy n,uCh) o U » VE :

.k _ -
(gradh) = dlvh
and consequently we obtain

- +.1
ker leh = (im gradh) s

where the orthogonality is to be understood with respect to
the scalar product (19).
Proposition 7

Let ue w1 hu(Gy) Nker divy, peL with Im p=0.

2,h,R¢Cn’
There is valid [Dhu,th]h= @

Broof .

Because of D;u €im Q;, Re D;lu= and Im p=@ we get

- At o _catn- I -
[Dhu’ghp]h—[qhbhuJp]h—[Dhuﬁp]h_g- “
THEOREM 5

For each f e L there exist H-valued functions

2,h,H
u € H h(G YN\ ker d1vh and pé L2,h,R with Im p=0 such
that

@ 4.+, _ -
n@RTRE = Dpu + Joto . (28)
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Broof.

Obviously hold D;]ue im Q;, Q;pe im Q;. With respect to the
validity of Proposition 7 it is necessary to show that the
relations

- +..+ _ °1, .
[Dhu,QhThf]h—ﬁ for ue Wz,h,H(Gh)r\ker dlvh

(Qfp,Q;T}£1,=8 for pel with Im p=@

2,h,R
imply f=0. First we obtain

[D;u,Q;T;f]hz[D;u,T;f]h=[u,f]h=@ and therefore f=grad’

h?
with Im g@=@. On the other hand, we have HQ;qﬂz hu?

+ _
whence gradh q-Dthq-Z and £=0. #

The operator T; applying to representation (28) then
follows, by making use of the discrete BOREL-POMPEIU formuls,
the existence of a decomposition of the funct;pn T;Q;T;f
into the sum

-t -t
u+ %Thth = MTLQRTHE
with suitably chosen discrete functions

uew

%:;,H(Gh)lﬁker div,, pe LZ,h,R) ker Im p=0

Summarizing we may formulate for the solution of the discrete
STOKES* problem.

THEQREM 6

The discrete boundary value problem

—Z&hu + %grad; p = %f in int Gh (21)
div;u =0 in int G (22)
u=2©0 on DGh (23)

has for every fe€ LZ,h,H a solution {u,p}, where u .and
p are uniquely defined (p up to a real constant !).

Broof ., .

The existence has already been shown. Formula (20) and
Proposition 7 yield

T 1 (ot g2
LN PRl L RN - A LML I
whence

- 1.t 1/2q+nt : N
“Dhullz,h,ﬂm, (N PRPRIES il 6 8  PUS (24)
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This a-priori estimate leads us to the uniqueness of u.

Assuming the existence of two solutions (u,pl) and (u,pz),

thus it immediately implies pl—pzéker Q:l , therefore
+,.

pl—pze.ker Dh(lnt Gh) and pl-pz=const.e Rl.

#
Corollary 4
There is valid the a-priori estimate
1/2 1.,+ 1/2y, o+ .8
Broof. -
It may be proved by using Lemma 2 and Lemma 3. #

Remark

The treatment of the discrete STOKES problem points out a
wide correspondence with the continuous case. This relates to
both the method of consideration and the concrete formulation
of the results.’

Remark

The discrete boundary value problem (21)-(22)-(23) may be
interpreted by & scheme of finite differences. That means
the presented application of discrete function theory can be
seen as a new approach to the construction and sanalytical
investigation of finite difference methods.

In a simple way a-priori estimates, for instance (24) allow
the investigation of stability problems.

Now we shall deal with DIRICHLET ‘s problem for NAVIER-STOKES
equations. Considering the latter formulated results for the
STOKES problem, the non-linear term M*(u)=,%(u,grad)u re-
mains to be discretisized in a proper way.

Define
H:’_(u):= ,v%(u,grad"l;)u and MB(u)::M:"-(u)" ,%f so it
holds 3 .
X, - P - p _ _
“gﬂh (U)"p,h,ﬂi"%; ;05 he5e5 05, 0 %41‘1101,,;13 I
=i > lu,(y)D; ,u (y)lph3g§2’:uu.up (p; ,u.j® <
i.]!{ 7&&1 1 ljh J ilj"‘ 1 q‘h,ﬂ l,h J Z,h,H
> P p .. P Py 2P
S%f: “uiuz,l,h,ﬂujiz,l,h,ﬂigc uu“Z,l,h,H
29

with q<3, p=2+q . To obtain this estimate, we used Lemma 2
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and HOELDER's inequality for sums. Consider the boundary

value problem

< - e . . .

-Z&hu + %grad; p + i(u,gradh)u = af in int Gh (25)
divh u=20 in int Gh (28)

u=-29 on ?Gh (2n

Applying the discrete generalized VEKUA's theory we obtain
the following equivalent problem

u = -T;Q;'r:‘n;](u) - ,‘,]"T;Q;p in G, (28)

Re @yTyM: (u) = 1 Re @) in 6 (29)
Consider the following iteration procedure:

Uy = _T;Q;T;M;(un—l) - # TBQ;pn (30)

Re QpTyH;(u ) =‘% Re Qyp_ _ (31)

u eul nHCG) Nker divy , n=1,2,3,

It is known from Theorem 6 that the STOKES problems

(36)-(31) have a solution in each case. Therefore the
iteration procedure may be carried out. Since the norms of
T Tps
in the continuous case, the whole proof of convergence of
iteration is to be carried out analogously.

+ -
Qh and Hh can be estimated in a similar manner as

4
THEOREM 7
System (30)-(31) has a unique solution {u,p}, where
lleﬁ;:;,H(Gh)l\ker div;, pel?,h R (p is uniquely defined up

: e -1

to a real constant) if M“f“p hH < (16K 1, h) (32)
For every function .- u ewl ‘h, H(Gh)iwker dlvh with
Nagly 4, h,H < By oy - (33>
the procedure (38)-(31) converges in Hz’h(Gh)XL2 h.H t°
the solution of the problem (28)-(29).
Proof .
For the proof we refer to the continuous case. "
Remark

There hold the following relations for the constants used.

K, =111 (oot T4 pTi
h holLg p,u Nim QW5 huw? Bl p uelz, n,H]
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_ ol/p. &
c, = 9/Pc, &
-2 -1.1/2
Wy = (CaKCy 72 - eaen opac, o7h
-1
Ry = (4K, Cy )

An analysis of the proof of Lemma 1 shows that the norms
1T and IT; | (similarly [T]ID
‘ h [Lth'LLhH] h|[Lzmu’LqAM] l h

can be uniformly estimated with respect to h. In this way
the embedding constant Cl,h' is also to be bounded uniform-
ly. Using the monotony property of the eigenvalues
Al,h(Gh) in case of the embedding in a larger domain (for
instance, in a described cube), we finally can find a uniform
estimate for Kh and later also for Rh.

If f is RIEMANN-integrable, then Ilf“L converges

(G)
p,h,H
such that "h is uniformly bounded. These facts allow to

formulate Theorem 7 in such a way that the right-hand sides
contain only terms which do not depend on h. The exact
formulation will be omitted here. '

Corollary S
(i) There holds
-1
Wally o p,p € 4KCy )77 - Wy
(ii) Let L, =(4K,C, h)’1 - 4K,C, W . Then we have

n
Wup-ully 3 g < Lplug-ully ) by
If u°=0 , then is wvalid

1y

Wu -ully y poy € LR{CAKLCy (D7 W ) .
Now we can finish our considerations of the discrete boundary
value problem for NAVIER-STOKES equations.

For every h>8 the question of existence and uniqueness was
clarified, an a-priori estimate of the solution could be
given, and the speed of the convergence was defined. The
fixed-point priciple ensures the stability of the introduced
iteration procedure. For the discrete STOKES problems which
are to be solved in each step of the iteration method we
could prove the unique solvability. For all constants which

occurred explicit bounds could be found. Now we shall turn to
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the numerical realization of the proposed method.
THEQOREM 8 [GS1]

N 1 ot
Set vh—TthTth(u)+ u + - Tthp.

If fe Lp,H(G) then

> @ for h--->0.

v
h #
Our next aim is to find an error estimate in the space
o -
";:h,H(Gh)' We prove the following result.
THEOREM 9
Let fe®RNL, . Then there is valid
fu - u,_[lly4 >@® for h—>0.
h "Lmu(Gh)
Broof .
Theorem 8 and Theorem 3 yield
- + PR S S M-

D} (u-u, ) +”11Qh(p—ph) = QpTY My (u)-Mp(u,)) + w, .. (34)
Acting D; on (34) it follows Re D;w=8 . Furthermore we
have

+ot o+ +,+

W, = QhThDh"h = QhThgh .
Denote Hh(u) - Mh(uh) + gh with f
given in the form

h then (34) can be
- + _ Attt
Dy (u-uy) + AQp(p-p,) = QpTyE,
Therewith (u—uh,p—ph) are solutions of a discrete STOKES
problem. Proposition 7 and Theorem 5 yield the orthogonality
- +
of Dh(u-uh) and M h(p-Ph)- R
Scalar multiplication of this equation with Qh(p—ph) leads
to
1o+, 2 = —ID (u— o=
alap(e-pOl5 |y = -[Dy(u-u),@ (P-pp )]y +

+ (LT (M) (u)-H(up)),QpCp-py )], + [w,,Qp(e-py)]y <

< (hapTy My Cad-MpCup 0y ooy + Mwplly o u G-l oy
and therefore

1unt ot - s
"'“Qh(p-ph)ﬂz,h,H £ “QhTh(Mh(u) Hh(uh))“z,h,H + “wh“Z,h,H .
The identity :

- _ =ty - -+

u-u, = -TQTH(u) %Tap + THAPTIM Cu) + ATIar,

vields
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_ _matmty 1 _m—nt
“u uth,l,h,HSlTQTM(u) TthThHh(u) + ﬂ(TQp Tthp)nz,l,h,H +

oot - - 1l,m-nt
+ "TthTh<"h<“)‘“h<“h)>'z,1,h,u + quTth<p—ph>H2,1,h,H <

TR -
<Uvplg g n,p * W@ THCHp Cd=HpCup )y 4y 4

. 1
41

-1 \1/2,.+
(1A ) |lah<:.>—ph>ll2_h,H <

1/2

A

-1 ot - -
Uvplly o p,p * 2C1AAT D7 Sy Ty (M Cd-Mp oy D, oy +

+

-1 .1/2
(WA )7 U lly oy <

|A

K lwplly poy t

+ 2K, Cy ylu-uply gy pClally gy el W)

With the condition %<p<% immediately follows

Vu-uplly 4 by &

-1
< 2K Vwply opl1-2K,Cy plialy oo pHllaglly )y 0)

Supposing (32) and (33) we have

-1
““h“2,1,h,u < (4KCy 1) - Wy (35)

and for u Corollary 3 yields

-1
Wull, | g < (4RCHTT -

These two inequalities, the possibility of a uniform qstimate
of Kh and Cl,h and the RIEMANN-integrability of u and
Diu (i=1,2,3) ensure that for sufficiently small h it
uniformly holds with respect to h

1-2K,Cy pllally ooy ogtluply g p,m) > ¢ @

Now we can describe the convergence uh-——éu in dependence
on the properties of Yh which we have already considered. #
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