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ON THE CONFORMAL RELATION BETWEEN 

TWISTORS AND KILLING SPINORS 

Thomas Friedrich 

1, Introduction. 

We consider a Riemannian spin manifold (Mn,g) of dimension 

n -* 3 and denote by S the spinor bundle. The kernel of the 

Clifford multiplication T <g) S—*S is a subbundle of T ® S and 

there exists a projection of T ® 8 onto this bundle given by 

the formula 
1 n 

p(X®*) - X ® V + £ E e<x® e*' X'V ' 
<*=1 

where X-i.^ denotes the Clifford multiplication of the vector X 
by T> . The twistor operator <£) is defined as the composition 

of the covariant derivative y and the projection p 

5 = P ^ 7 : r(s)-2^>rxT®s)J2—->r(T®s) 

(see [l]). Let D by the Dirac operator acting on sections of 

the bundle S. Then we have the following formula for the 

operator £) 
n n 

S»- ZL e ® ( V p \f+ £ e -D V). 
<X=1 * e<x n 

The kernel of the twistor operator is given by the equation 

V x ^ + i X-Dy - 0 (1.1.) 

for any vector XeT. A more symmetric and equivalent form of 

this equation is 
X* V y ^ + Y- 7 X V = | g(X,Y)D\p . 

£)is a conformally invariant operator. In particular, if 

g s ,\g is a conformal change of the metric and ": S —> S 
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denotes the natural isomorphism of the spin bundles, then 1^ 
belongs to the kernel of f) if 
1 

X ijp belongs to the Kernel of £) (see [2J, [15]). On the 
other hand, the equation for Killing spinors is given by 

V XV + 2 x.if = 0 (1.2.) 

where a /-" 0 is a complex number. It is well known (see [7J) 

that if a Riemannian manifold has a non-trivial Killing 

spinor, then it must be an Einstein space with scalar cur­

vature R = rc"" a . If a is a real (imaginary) ..umber, we 

call V a real (imaginary) Killing spinor. Any Killing spinor 

is a twistor spinor, i.e. it belongs to the kernel of the 

twistor operator. In small dimensions we know many spaces 

with real Killing spinors (see [6"J,[7J ,[ 8] ,[_9] , [l0l,[ll~J, 

[12],[13]), and there is a classification of complete 

Riemannian manifolds with imaginary Killing spinors (see [3"), 

L4],[5j). 

On the space Ker(£)) of all twistor spinors we have an 

invariant of order two, namely 

C^ := Re <D\f ,^> 

(see [14]). In this paper we observe that 

Qt> := \V\2 lD*f(2 - C ^ - ^(Re<Dif, e^ Lf>)2 ± 0 
oL'l 

is an invariant of order four on Ker («£)), too. Using the 

first integral on Ker( £)) we show in particular that a 

Riemannian manifold (Mn,g) with a nowhere vanishing twister 

spinor if- is conformally equivalent to a space (Mn,g) with 

non-negative scalar curvature 

Moreover, we study the set Ni» -= jmeMn:Tf(m) = 0J- of all 

zeros of a twistor. It turns out that N ^ is a discrete 

subset of Mn. Finally we investigate the question under which 

conditions a twistor spinor can be conformally deformed into 

a Killing spinor. For example, \^c Ker(5) ) can be conformally 
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deformed into a real Killing spinor if and only if Qi>= 0 and 

Cџ ć 0. Similar characterizations we obtain in the imaginary 

case, too. 

I thank V. Soucek (Prague) for several discussions on the 

twistor equation in autumn 1987. 

2. The first integral Q ^ on Ker(oD ) . 

First we collect some formulas that are valid for any twistor 

spinor lfвKer(5)). A general reference is the papeг jj-
4
].

 A n
У 

twistor spinor satisfies 

OЧ = fe^ (2.1.) 
and 

^x
( D
>

) =
 гfe)

 (
2(ІЬГ)

 X
-

Ric(x
))

вl
f < •

 (2
-

2
-) 

where Ric: T—->T is the Ricci tensor of the space. Moгeover, if 
2 

u = |1|| denotes the square of the length of гf-, wè have 

2 Д u =

 4
(n-l)

 u
 - < D ^ / D l f > . (2.3.) 

We denote by S the (l,l)-tensor 

s ( x
>

: =
 TTЬ" ( 2 T Ъ T

 x
 -Ric(x» 

and we consider the vector bundle E = S © S as well as the 

з f 

1 

connection V in E defined by the formula 

v * ; " 7 x * -a.(x) 

X 
n 

2 ~ ° 

The twistor equation (l.l.) and formula (2.2.) show that 

Vl < D \ > • ° 
holds for any solution of the twistor equation. 

Conversely, if 

?x < ]f ) - o, 
then cy = Dif and ty i s a t w i s t o r s p i n o r . 

Consequently, the t w i s t o r spinors lf<cKer(JD) correspond t o t h e 
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SJ -parallel sections of the bundle E and we obtain in parti­
cular 

Proposition 1: Let (Mn
fg) be a connected Riemannian manifold 

of dimension n = 3. The kernel of the twistor operator cO is 
a — .ace. ^ 

diir.0. Ker(<^) = 2 

In particular, a twistor spinor if is defined by its values 

lf(m ) f Dif-(m ) at some point. 

Remark: We understand the Weyl-tensor W of the Riemannian mani­

fold in the usual way as a 2-form with values in the bundle 

End(S): 

w(x,ү). ц- = 2Z gOvCx.Yb^eJe.-e.. if. 
І/j

 J J 

An easy computation yields now the following formula for the 

curvature tensor R of the connection V 

E
 ^ Aw(x

f
Y).H. 

R (X
f
Y)(^)= I I

 W
(x

f
Y)-9+ g((V

Y
s)(x)-(7

x
s)(Y))-Tf 

Example 1: We consider a 3-dimensional Riemannian manifold 

(M
 f
g). The Weyl tensor vanishes

f
 W =" 0

f
 and consequently we 

obtain the integrability condition 

(V
X
S)(Y)-(V

V
S)(X) = 0

f 

i.e. the space is locally conformally flat (see [16]). There-

fore
f
 if a 3-dimensional Riemannian manifold (M

 f
g) admits a 

non-trivial solution of the twistor equation, then (M
 f
g) is 

locally conformally flat. 

Example 2: Denote by A
n
 the usual Spin(n)-module and consider 

a twistor spinor \p: R
n
— > A on the flat Euclidean space. 

According to equation (2.2.) we have V(Dif-) = 0
f
 i.e. 

D
V = i^1 is constant. Now we integrate the twistor equation 

0 = V
T
lf • 1 T-Dlf = V

T
^ + I T; l^ 

along the line jsx: 0=s=l\ and obtain 
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l f ( x ) - 1 ^ ( 0 ) = - n - X . l f 1 . 

Consequently, the kernel of the twistor equation is given by 

the spinors V: Rn—-> A p 

lf(x) = lfQ - ^ x- Lf.1, xtR n, 

with ty , >.,& A . In particular we have 

HI*1 dim^ Ker(£>) = 2L^J . 

Proposition 2: Let (Mn,g) be a connected Riemannian manifold 

and if-fc 0 a twistor spinor. Then N-J = { m t Mn: lj-(m) = oi is a 

discrete subset of Mn. 

Proof: Suppose i-p(m) = 0. Using formula (2.2.) we have 

V(DLf)(m) = 0. 

With respect to 

(YXu)(m) = 2(Y(VX lf>, ty))W= - 2(Y(X-D^llf/))(m) = 

= -^- (X-Dtp ,Y-D^)(m) = -|g(X,Y)|Dlf (m)|
 2 

n n 

we see that the Hessian of the function u =|<Vl at the point 

me Mn is given by 

Hessm u(X,Y) = -f g(X/Y)|Dl^(m)|
 2. 

n 
In case Dlp(m) t 0, m is a non-degenerate critical point of u 
and consequently an isolated zero point of If- . In case 

Dip(m) = 0, we obtain ty* 0 by proposition 1. 

We consider now a geodesic Y^(t) in Mn and a twistor spinor 7f . 

Denote by u(t), v(t) the functions u(^(t)), | Dif|2( f (t)) . 
Moreover, we introduce the functions 

fx(t) = g(S(f(t)),f<t)) 

f2(t) = ^|s(f(t))|
2. 

Using the twistor equation as well as formula (2.2.) we obtain 
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p 
d-U-_--- = f _ ( t ) u ( t ) + - § - v ( t ) 

d 2 v( t ) 2 d f . ( t ) , v , 
-— = f_(t)u(t)+-í- i ------- +f1(t)v(t)J 

d t - ~ 2 dt dt -1 

( 2 . 4 . ) 

Proposition 3: Let ij-t 0 be a twistor spinor and denote by 
y-: [0,T]-»Mn a geodesic joining of two zero points of if- . 
Then 
a.) Ric(v) is parallel to y- . 
b.) grad u is parallel to yt . 

2 -. ̂  dv n /c/ V\ • ̂  du 
c - ) d i = — g ( s ( r ) ' ^ ) dt • 

2 
-j ^ .... n ( du \2 d.) u-v = -2J- ( ̂  ) . 

Proof: Using the notation introduced before we have 

u(0) = {j"- (0) = & (0) - 0, v(0)> 0 

u(T) . gu (T) - ̂  (T) = 0, v(T)>0. 

Since u(t) and v(t) satisfy the equations (2.4.), we obtain 

__(___ __ f du ) _ (f _ nf. f
2 ) u 

dt^dt 2 rl dt J KT2 2 Ti'u' 
2 „ 

If f2 - TJ— f1 t 0 on the interval C°'T] * we nave 

0_ dv ,_*_ n_ f (T) du (T) r (f _ n_ f
2)> 0 u dt K,J 2 TiK,J dt K,J

 Q
 V T2 2 rl' u 

because f-- ̂  f2= _"-(|S(^ )| 2-g(S( ̂ ),y )2) - 0, 

a contradiction. In case f-.- -̂ - f^ = 0, Ric(v-) is parallel 

t ° t a n d d T = # 9 < s < * > < * > 5T ' 
Moreover, we calculate 

_-r,,.v __f_ih2'.- du v* n -- nf du d2u _ 
dtCu v 4 ( d F }" dt v+ u dt F dt T7_ -

2 2 dt 

. - . _ _ _ * u du _ __ _J (f u+ _L v) = 0 dtv + 2 rl u dt 2 dt Yl u + ~2 v> - "' 
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2 
i.e. uv = ̂ -( jj£ ) . Since ^ is a twistor spinor vanishing 

at some point, we have 

uDif = 3 grad u • ty 
2 

r. ^ 

This implies u-v = ^-jgrad u| and consequently 

Igrad u| 2 = ( ^ ) 2 . 

i.e. the gradient of u is parallel to y . 

Proposition 4: Let (M ,g) be a complete connected Riemannian 

manifold and suppose that the (l,l)-tensor 

S := —7> ( 2( n-l) ~
R* C) *s non-negative. Then any twistor 

spinor i.p t 0 vanishes at most at one point. 

Proof: Suppose u(p^) = 0 = u(p 2), p 1 £ p 2 and consider a 

geodesic V" : L°/T] —» M n from p.. to p 2. Then 

d2 2 
9-j u(t) = f1(t)u(t) + ̂  v(t) * 0 
dt n 

since S is non-negative. With respect to u(0) = u(T) = 0 and 

^ ( 0 ) = ^.u(T) = 0 we conclude u(T) = 0 on [°/TJ / i-e. 

if- vanishes on the curve X(^)» Q contradiction to 

proposition 2. 

Example 2: The condition S = 0 is satisfied in particular if 

(Mn,g) is an Einstein space with scalar curvature R = 0. On 

the Euclidean space Rn and on the hyperbolic space Hn there 

exist twistor spinors vanishing at some point (see example 2), 

We denote by (if , cp ) the real part Re<ty,<f> of the Hermitian 

product of two spinors. Given an arbitrary spinor tye P(S) 
we define the function Qj, by the formula 

Q v = /lf!
2lDlf| 2 - (Dlf ,Vr ) 2 - E1(D> t\c ^)2-

<X = 1 
Denote by V̂ . the real subspace of S given by 

\ ={X'V : X^T}. 

Then we have 

Q ^ = u . d i s t 2 ( D y / L i n R ( ^ / V y ) ) . 
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Proposition 5: If \y& Ker(<£)) is a twistor spinor, then Q-y/ 
is constant. 

Proof: Since (DLf,"y) *s constant for \y e Ker(<£)) (see [14]), 
we have 

VX(QL(/ )= 2( V X^/V)|D Vl
 2 + 2u-( V x(D^),Dv) 

n 
- 2 Z K D ^ e ^ - V )(Vx(Dq/), e^* ip ) 

<%=1 
n 

- 2 Zl(DV^eoL-^ )(D^<eoc- 7 x ^ } -
0L=1 

Using the twistor equation (1.1.) and formula (2.2.) we obtain, 
with respect to 

n 2 

H ( eoL'V / D v ) ( e o C - X-D lp fD\j/ ) * - ( X - Y #Dl|/ ) |D'v|;| 
0L=1 

n 

| = i < ^ * ^ *Di+)(e0L- lj/ ,Z- V ) = (Z'V ,D\j>) l^l
2, 

that Vx(Qh, ) = ° immediately. 

Remark: For any twistor spinor ty let us introduce the vector 

field 
V — 
T = 2 >_( V/e^- D>)e^ . 

o( = l 
Then we have 

T = -n grad u 

(see [14]) and an elementary calculation provides the formula 

| C^ - v - uD^ - 1 T ^ <p | 2 = u Qy . (2.5.) 

In particular, if ly is a twistor spinor such that 
c\y = ° = Qy / then 

uD\j/ = ^ grad(u)- tp (2.6.) 

holds. 

Proposition 6; Let (Mn,g) be a Riemannian manifold with a 

twistor spinor V such that C^ = 0 = Q^ and suppose that 

^ does not vanish at any point. Then (Mn,g) is conformally 

equivalent to a Ricci-flat space (Mn,g) with parallel spinor. 
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— . 1 2 
Proof: Consider the met r ic g = —^ g, u = I ty/ . Using the u 

i d e n t i f i c a t i o n " : S —.> S of the sp in bundles we have (see [ 2 ] ) 

V t ( -=r ^ )= u V t ( p r if )+ 1 t . g r a d ( u ) . -La j , + 

+ 1 d u ( t ) — \u = - = |u Vflf- + I t - g r a d ( u ) - ij/ I . 
~ -jl? 'fu ' L - J 

According to C^, = 0 = Q-g, we can apply equation (2.6.) and 

then, from the tvvistor equation 

0 = ? tV+ J t« Dy = 7 t V
+ ^ t-grad(u)"V> , 

1 1 

it results that V t( — ^ ) = 0, i.e. —;1f is a parallel spinor 

with respect to the metric g. 

Corollary 1: Let (Mn,g) be a Riemannian manifold, that is not 

conformally equivalent to a space (Mn,g) with parallel spinor. 

Then a twistor spinor iL>£Ker(£)) vanishes at some point if 

and only if C-̂  = 0 = Q^ . 

For any twistor spinor "ty we introduce the function 

H v = d i s t 2 ( i " i f , V V ) 

def ined on the set jm€>Mn: o.p(m) / 0^. 

Proposition 7: Let -\jj be a twistor spinor satisfying 

C-q,= 0 = Q ^ . Then 

—ir­

is constant. 
T̂L 2 

Proof: The derivative of the function f= f—^(il^ ,e^' \i> ) 
i s given by 

A n 

d f ( X ) s '- 2 X I ( i > - ^ \|/ ) ( i > ,C ( X • X^Dtp) . 

Since c-g, = 0 = Q-u, , we have uDty = * grad(u)* \ j; and consequently 

df • 2 f du. 

F i n a l l y we obta in 
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d(Hi) = dCl--^) = 0. 
u u 

Let f: M n—> C be a complex valued function on Mn and consider 

the equation 

v x V • £ x - v = o. 

A. Lichnerowicz (see Ll4]) proved that if y?0 and Re(f)^ 0, 
then Re(f) is constant and ay is a real Killing spinor. We 
consider now the casve f = ib. 

Proposition 8: If VvM^ S T X " ̂  = ° w*th a real function 
b: Mn—* R1, then 

a.) u-H^ is constant 
2 b.) Q^ = b u H^ . 

Proof: Suppose V v V + 7̂7* x * V = ° - T h e n D V = i b y and we 
p A U 

obtain Q-y = b u H<v, by definition of Qy . Since 

u Hi,, = u - 2Z (-V 'eoc"^^ we calculate 
*=1_ n 

Vx(u Hy )=4u( vxM* V ) "
 2 H (-V /ectv)(i V XV /ê .-y ) 

•>*• = JL 

n 
-2 Z I U V 'ecc' Y )(iV-eoC. \7xu,) = 

OL=l 

- - -*jL u.( l x. V / V)_ -£ Z l ( i^ ,e 0 , .V) (X-V ,e 0 L . H> ) 
oi=l 

?h JL 
+ -77 ̂  (-"*»» 'e^Y )(iv ̂ -X-ily) -

«X = 1 

- -J-u(iv,x-v) - --J (iy.x-y) - ̂ (iY'X-v) 

- o, 
p 

i.e. |Vl Hv; is constant. 

Corollary 2: If-y is a solution of the equation 

xV + ~ x" V = ° and ^ L ) ^ °' then b is constant and y is 
an imaginary Killing spinor. 

Corollary 3: If *y is a non-trivial solution of the equation 

Y X Y + ^ - X ' V
 s 0 and Qy= 0, then ~ V is a parallel 

Y Tu 



TWISTORS AND KILLING SPJNORS 69 

— 1 spinor with respect to the metric g = —^ g. 
u 

Proposition 9: Let ipeKer(£)) be a twistor spinor and denote 

by u the square of the length of \j , u =Jy| . Then u is a 
solution of the following equation 

-^---- u2-^2,* QV+ \ u2A(lnu)+ Cln--2^ u2|grad(ln u)| 2. 

Proof: We consider the vector field 

TV= 2 YL (V ^ D v ) e a • 
< * = 1 

Then we have 

Q V - u | D V | 2 - C 2 , - | | T V | 2 

1 V and g rad u = - - T T 
u n 

(see C l 4 j ) . Consequent ly we o b t a i n by e q u a t i o n ( 2 . 3 . ) 

A( ln u) = ~ l 9 p a d u l 2 + S ^ ( u ) = 

u 
1 i - r ^ i 2 R 2 i n n i i 2 

= JFT lT I + 20^1)- rT̂ T | D ^ ' 
| g r a d ( l n u ) | 2 = - ^ I T V ' * • 

u n 

F i n a l l y we have 

\ u A U n U ) +
 n < n ; 2 > u | g r a d ( l n u ) | 2 = 

2 = 4il^|2*4fc)"-lDVl 
2 

• 4 i l ^ 2 * 4 f c y U - C - A - 4 i l ^ l 2 . 

and this is the equation we claimed. 

Theorem 1: Let (Mn,g) be a Riemannian spin manifold of dimension 

n=3 with a nowhere vanishing twistor spinor y . The Riemannian 
metric 

9" = TvK9 
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has constant and non-negative scalar curvature 

Proof: Denote by h:= u"n/2+1. Then \ ^ = ±? a n d t h e m e t r i c s 

_ u 
g and g are4related by 

g = h g. 

Then the scalar curvatures are related by the formula 

R hn-2 _ 4(n-l) Ah p 
R h - n-2 h + R-

The result follows now by a direct calculation using the 

formula of proposition 9. 

3. The conformal deformation of twistor spinors into Killing 

spinors  

Consider a Riemannian spin manifold (Mn,g) and a twistor spinor 

\peKer(S)). We say that "y is conformally equivalent to a 

Killing spinor if there exists a conformal change of the metric 
1 

g = Xg such that \ V is a Killing spinor with respect to the 
1 

1 ~2 metric g. We introduce the function f = * X . Then the 

equatioo 1 

Vx( x
5^) + 2 x-( \*<j) = o 

becomes equivalent to 

a^ - 2fD y + n grad(f). Vf> = 0. (3.1.) 

Indeed, with respect to Vx1p + - X-Dy= 0 we use only the well-

known formulas describing the change of the covariant derivative 

(see [2]) in order to derive (3.1.). Consequently, \j is 

conformally equivalent to a Killing spinor iff (3.1.) has a 

positive solution f for some constant 0 / atH). 

Theorem 2: Let (Mn,g) be a Riemannian spin manifold and 

0 .*\y&Ker(£)) a twistor spinor. Then \j; is conformally 
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equivalent to a real Killing spinor if and only if C™;-* 0 

and Q\j= 0. In this situation there exists - up to a constant • 

precisely one metric 

with respect to which -y becomes a Killing spinor. 

Proof: Let 0 / a be a real number and suppose f is a solution 

of (3.1.). Then 

a|^|2 - 2f C^ = 0 

and, consequently, Ĉ n t 0. Moreover, in this case we have 
dist (D^ ,LinR(^ , Vv, )) = 0, i.e. Q-y = 0. Conversely, suppose 

C-m/ 0 and Q-^= 0. Again we consider the vector field T^ 

defined by 

T V = 2 Z K V ' ^ * DV)eoC . 
oc=i 

With respec t to ( 2 . 5 . ) we have 

C^\|> - u D\ j / - | T^- V = ° ' 

and s ince V is a t w i s t o r sp inor , we know 

T = - w g r a d ( u ) . 

Consequently 

Cv,\p - u Diu+ g grad(u ) - Vj) = 0 , 

i.e. f = 5 is a solution of (3.1.). Finally we remark that 

any solution f of (3.1.) is proportional to u in case a e>R 

since f must satisfy the relation a*u - 2f C-^= 0. 

For an arbitrary spinor field 14; we introduce the 1-form 

% ( X ) s s f < x - ^ / V > = Im <X< if" V > • 

Theorem 3: Let (Mn,g) be a Riemannian spin manifold and 

0 £ \j) a twistor spinor with Q^ = 0. Then y is conformally 
equivalent to an imaginary Killing spinor if and only if 

a.) 0^= 0, H^S 0 
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Y] 
b.) + — X - is the differential of a positive function. 

I n t h i s s i t u a t i o n , for any func t ion k > 0 wi th + —77 = dk, 
the tw is to r spinor becomes a K i l l i n g spinor i n the metr ic 

b wv a* 
Proof: By equation ( 2 . 5 . ) Q\n= 0 impl ies 

u D-y= C ^ Y + 5 grad(u)- y . 

Suppose now tha t 

+ i ty - 2f Dy+ n g rad( f ) - lf> = 0 

has a so lu t i on f > 0 . Then - 2 f ( D l j ; , t y ) = 0, i . e . C-. = 0 and 
u Dty = ^ grad(u)- V • This impl ies Dlf c V^ and, f i n a l l y , 
ii.p G \tV, . Thus we have the necessary cond i t i on H^= 0. 
Furthermore, we ca l cu la te ^^ and obta in 

r| (x)= -<i X-tf ,V>= + <2fX-Dy -nX-grad(f)- <p,v> 

= + j - n 2 f ( Vx V V ) + n ( g r a d ( f > ^ ,X- V)} = 

= + n j - f du(X) + df (X) u } 

\ = + n d ( f - l ) , 
u 

i.e. + —*• is the differential of a positive function. 
u 7) 

Conversely, suppose Q ^ = 0, Cvj = 0, H^ =* 0 and + -4£ = dk. 
T Y T u 

Then f = uk i s a so lu t i on of equation ( 3 . 1 . ) . Indeed, we have 

u Dy = 2 grad(u)#ty (s ince C-^ = 0 = Q^ ) and, consequently, 

we obta in w i th f = uk 

-2 f D y + n g r a d ( f ) - t y = n-u grad(k)* y = 
n 

= n-u - X I dk(ecx )e<x* V = 

oc=l 
1 ^ 

C X = 1 

= + ni \j/ . 

The latter equation follows from Hvj= 0, i.e. i i f ^ V ^ . 
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Theorem 4: Let (Mn/g) be a Riemannian spin manifold and 0 i y 
a twistor spinor with Q-y / 0. Then H> is conformally equi­
valent to an imaginary Killing spinor if and only if 

C ^ = 0 and dist 2(D^ /LinR(i V / V^ )) = 0. 

In this case there exists exactly one positive function k 
with + -=-̂  = dk such that V becomes a Killing spinor with 

u 
respect to the metric 

Proof: Suppose Q-^ / 0 and that equation (3.1.) has a positive 

solution f for some imaginary number a. Then 

dist2(D\> /LinR(iy /Vy )) = 0 

and C ^ = 0, and we obtain the necessary conditions mentioned 

above. On the other hand/ if Q ^ / 0/ C-̂ , = 0 and 

dist(D\j/ /LinR(iT| /V̂ , )) = 0, then there exist a function A and 

a vector field ^ such that D\y= Aity + gfy . Using the twistor 

equation Vx/ty = " n x* D vt J we obtain 

V. 2 r

x ( D ү ) = |dA(X) + £ A < f . X > | І V + 

, , 2 

+ l£-x + Vx^ hS'x>^ - 1 i ? ' 2 x i v . 
With respect to Q ^ ^ 0 we know that i ty is linearly independent 
(over R ) of V-|n . The latter formula as well as formula (2.2.) 
yield now 

dA(X) - - 2 A < £ , X > . 
1 1 

Consider the func t ion f : = * TTT (s ince Qg, / 0/ A cannot vanish) 

Then we have 
grad(f) - 1 - J - * - l 2 f t 

and/ consequently/ 

D\j) = AiV + ^- V • sgn(A) ~ iy + ̂ - grad(f)* ip , 

i.e. f is a solution of equation (3.1.) and the corresponding 

conformally equivalent metric is given by 
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g = A 2 g . 

Furthermore, D\j> = Ai i^ + ^-"4' implies 

Q du = A T + u f -

- A
 П

 ..
 d A 

= A
^

V
- 2

 u
 — 

and, finally, 

2
 a v

Au
;
 2 * 

2 2 1 

This means that A is given by A = „ - for a unique func-

- • ^ . 
iГk' 

tion k>0 satisfying dk = + -¥-, 
u 

On a manifold of dimension n = 3,5 we have H^ = 0 for an 

arbitrary spinor field. Therefore Theorem 3 and Theorem 4 

provide the following 

Corollary 4; Let (Mn,g) be a Riemannian spin manifold of 

dimension n=3,5 and let tycKer(<£)) be a twistor spinor. Then 

\y is conformally equivalent to an imaginary Killing spinor if 
and only if 

a.) Q^= 0, C^ = 0 

b.) + <±%r is the differential of a positive function. 
u 
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