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ON THE CONFORMAL RELATION BETWEEN
TWISTORS AND KILLING SPINORS

Thomas Friedrich

1. Introduction.

We consider a Riemannian spin manifold (Mn,g) of dimension
n 2 3 and denote by S the spinor bundle. The kernel of the
Clifford multiplication T @ S—S is a subbundle of T@ S and
there exists a projection of T ® S onto this bundle given by

the formula
. 1 =
P(X®LP)=X®W+,-‘ o;l e“®ed'x'w ]

where X-y denotes the Clifford multiplication of the vector X
by 4 . The twistor operator & is defined as the composition
of the covariant derivative ¥/ and the projection p

D=pey : F(S)—v—’ (T ®s)2—I(T ®s)

(see [1]). Let D by the Dirac operator acting on sections of
the bundle S. Then we have the following formula for the
operator &
n
1 ,
Y= g;i ﬂxﬁb(‘ve&&+ e, Dw).
The kernel of the twistor operator is given by the equation

Vxt+ .% X-Dy =0 (1.1.)

for any vector X&€T. A more symmetric and equivalent form of
this equation is

x'qu".' Y' VXW=

3SIN

g(X,Y)oy .

Ois a conformally invariant operator. In particular, if
d = \g is a conformal change of the metric and ~: S—§
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denotes the natural isomorphism of the spin bundles, then %
belongs to the kernel of S if
1

14 i belongs to the Kernel of © (see [2], [15]). On the
other hand, the equation for Killing spinors is given by

Vg% + 5 X4 =0 (1.2.)

where a # O is a complex number. It is well known (see [7])
that if a Riemannian manifold has a non-trivial Killing
spinor, then it must be an Einstein space with scalar cur-
vature R = ii%:ll a’. If a is a real (imaginary) ..umber, we
call + a real (imaginary) Killing spinor. Any Killing spinor
is a twistor spinor, i.e. it belongs to the kernel of the
twistor operator. In small dimensions we know many spaces
with real Killing spinors (see [6),{71,.8],[9],(107,[11],
(12],{131), and there is a classification of complete
Riemannian manifolds with imaginary Killing spinors (see [3],

£43,05D).

On the space Ker(% ) of all twistor spinors we have an
invariant of order two, namely

Cy := Re{Dy,y>

(see [14]). In this paper we observe that
2 2 2 n 2
Q= (4" 1DU" - Cy = 2 (RedDy, exr 4>)" 2 0
A=

is an invariant of order four on Ker(9), too. Using the
first integral on Ker( ) we show in particular that a
Riemannian manifold (M",g) with a nowhere vanishing twistcr

spinor Y is conformally equivalent to a space (M“,g) with
non-negative scalar curvature

R = 2n=Dc2, qp).
Moreover, we study the set N1p= {nleMn:1#(m) = 0} of all
zeros of a twistor. It turns out that Ny is a discrete
subset of M", Finally we investigate the question under which

conditions a twistor spinor can be conformally deformed into
a Killing spinor. For example, Uuec Ker(X ) can be conformally
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deformed into a real Killing spinor if and only if Qy = 0 and
Cy # 0. Similar characterizations we obtain in the imaginary
case, too.

I thank V. Soucek (Prague) for several discussions on the
twistor equation in autumn 1987,

2. The first integral Qy, on Ker(2).

First we collect some formulas that are valid for any twistor
spinor Y ¢ Ker(®) ). A general reference is the paper [14]. Any
twistor spinor satisfies

02y = Z%EIET)W | (2.1.)
and
Vx(0%)= 3075 (2(ﬁ-1) X-RicC)-yw - (220

where Ric: T —T is the Ricci tensor of the space. Moreover, if
u = |1+|2 denotes the square of the length of 13, we have

DAu = ;255 u -0y, Dy, (2.3.)

We denote by S the (1,1)-tensor
S(X):=

1 R .
n-z (ta=y X - Ric(X)
and we consider the vector bundle E = S ®S as well as the
connection VE in E defined by the formula

0 X

1
! n
-% s(x) , O

The twistor equation (1.1.) and formula (2.2.) show that
E L's -
Vx () =0

holds for any solution of the twistor equation.
Conversely, if

V% (§) =0,
then @ = Dy and Yy is a twistor spinor.
Consequently, the twistor spinors Ye Ker (D) correspond to the
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VE-parallel sections of the bundle E and we obtain in parti-
cular
Proposition 1: Let (Mn,g) be a connected Riemannian manifold

of dimension n * 3. The kernel of the twistor operator o is

[g]+1

dim¢ Ker(&) ¢ 2 .

a finite-dimensional space,

In particular, a twistor spinor y is defined by its values
u(mo), D1+(mo) at some point.

Remark: We understand the Weyl-tensor W of the Riemannian mani-
fold in the usual way as a 2-form with values in the bundle
End(S):

W(XJY)' Y = Z Q(W(X:Y)ei.ej)ei'ej- ¥ .

i,j
An easy computation yields now the following formula for the
curvature tensor RE of the connectlion VE

RICHORR

E Wy
RENCE= | Ly, v)-g+ JUT S 0-(T, ()% |
Example 1: We consider a 3-dimensional Riemannian manifold
(M3,g). The Weyl tensor vanishes, W = 0, and consequently we
obtain the integrability condition

(Vx8)(M=-(Vys)(X) = 0,

i.e. the space is locally conformally flat (see [16]). There-
fore, if a 3-dimensional Riemannian manifold (M3,g) admits a

non-trivial solution of the twistor equation, then (M3,g) is

locally conformally flat.

Example 2: Denote by A the usual Spin(n)-module and consider
a twistor spinor y: R"-——alln on the flat Euclidean space.
According to equation (2.2.) we have V(Dy) = 0, i.e.

Dy = 1y is constant. Now we integrate the twistor equation

1 ) 1
O=VT1+ + 52 T0y =Viusr 5T 4y
along the line {sx: 0¢s£1] " and obtain
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S o1,
w(x) =u(0) = - = x- Y .
consequently, the kernel of the twistor equation is given by
: . pn
the spinors u%: R — An
1 .
L"(x) =u'o - ﬁ X Ll'll xeRnl

with U, . 4, € Antn%f particular we have
- +1
dimg Ker() = 2 2 .
Proposition 2: Let (Mn,g) be a connected Riemannian manifold

and 4% 0 a twistor spinor. Then Ny = 1n1cM": y(m) = 0 is a
discrete subset of M",

Proof: Suppose w(m) = 0. Using formula (2.2.) we have
Vuw)(m) = o.

With respect to

(Yxu) (m) = 2(Y(Vy p, ) (m= = E(V(X-Dw, y))(m) =

= 2 (X-Dy ,Y-D ) (m)= —& g(X,V)| Dy (m)] 2
n n

we see that the Hessian of the function u =|u42 at the point
meM™ is given by
Hess_ u(X,Y) = =2 g(X,Y)[Dw(m)] 2.
n
In case Dyw(m) # O, m is a non-degenerate critical point of u

and consequently an isolated zero point of Y . In case
Dyw(m) = 0, we obtain = 0 by proposition 1.

We consider now a geodésic ‘X(t) in M" and a twistor spinor Yy .
Denote by u(t), v(t) the functions u(y(£)), [Du/(y ().
Moreover, we introduce the functions

F(t) = ggs(f'(t)),j‘(t))
£,(8) = 3= s3] 2.

Using the twistor equation as well as formula (2.2.) we obtain
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2
gult) o op (Due) + £ v(b) /

dt n
(2.4.)

2

dv(t) 2 df,(t) ]

—v;—- = Fy(Du(p)s 0 L du(t) +F (LIV (L),
dt 2 dt dt

Proposition 3: Let q—# O be a twistor spinor and denote by
Y [0,T]>M" a geodﬁsic joining of two zero points of .
Then

a.) Ric(f) is parallel to ?"

-

b.) grad u is parallel to Y -

! )

c) H=LrgG(p)y) .
2

d) uev =4 (HE

Proof: Using the notation introduced before we have

(o = (=X (=0 V>0
u(T) = %2 (m = %X (T) = o, v(T) > 0.

Since u(t) and v(t) satisfy the equations (2.4.), we obtain

2
du - _h- .2
fyat ) = (Fp - 5= fPu.

2
1f £, - 2= ¢2 # 0 on the interval [0,T] , we have
2

T 2
AON NGO [ 90
2
7 f1r FUS(PIEg(s(§), 705 2 o,

- n- .2 - . . .
a contradiction, In case f- 5= f] 0, R1c(3») is parallel

because FZ-

2
toypand $F = F—g(s(3).3) & .

Moreover, we calculate

9 (y.v- 23(92)2)_ du y, o Qv _ n gy o®u
dt 4 ‘dt T dt dt ~ 2 dt 522
2 2
- du n_ du _ n_ du 2 =
=iV *t3 F1 u It 5 g (f1u+ ;2 v) = 0,
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we have

i.e. uv = %—( %— )2. Since y 1is a twistor spinor vanishing
al some point,
n

uby = 5 grad u-y .,
This implies u-v = %—lgrad ul2 and consequently
2 _,duy2
fgrad ul® =(3D ",
i.e. the gradient of u is parallel to ? .

Proposition 4: Let (Mn,g) be a complete connected Riemannian
manifold and suppose that the (1,1)-tensor

A R oteY i _ . .
S = 775 ( Z2(n-1) Ric) is non-negative. Then any twistor
spinor w # O vanishes at most at one point.

Proof: Suppose u(p;) = 0 = ulp,), P, # P, and consider a
geodesic Y {0,T1—=M" from p, to p,. Then

o uw) = F (DU + Z5 () 20
dt n

since S is non-negative. With respect to u(0) = u(T) = 0 and
g%(o) = %EU(T) = 0 we conclude u(T) = 0 on [O,T] , i.e.
Y4 vanishes on the curve X(t), a contradiction to

proposition 2.

Example 2: The condition S 2 0O is satisfied in particular if
(Mn,g) is an Einstein space with scalar curvature R £ 0. On
the Euclidean space R" and on the hyperbolic space H" there
exist twistor spinors vanishing at some point (see example 2).

We denote by (4,9 ) the real part Re<y ,¢> of the Hermitian
product of two spinors. Given an arbitrary spinor e [7(S)
we define the function Qy by the formula

n
O = IulPlowl ? - (w4 )? - L Ow e y)?

Denote by Vq, the real subspace of S given by
Vip ={X % @ XeT].

Then we have

Qy = u-dist?(Dy ,Ling(Y,Vy, ).
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Proposition 5: If we Ker(X) is a twistor spinor, then Qv

is constant.

Proof: Since (Dy,y) is constant for ye Ker() (see [14]),
we have

Uy (Qy )= 2( wa WDyl 2 + 2u-(7,(0%),0y)

-2 Z(Dw et W IV (Dy), eyeyp)
RX-
-2 Z(DW reqry Iy, en- Vyy).
Using the tw1stor equation (1.1.) and formula (2.2.) we obtain,
with respect to

n

>_(eg v Dy)(e - XDy ,Dy)
o=1

S

> .
:L:j.(%“.ly ID.L'P)(eog" LV IZ" lf' )
that VX(QH') = 0 immediately.

~(X-y ,0%) Dy ?

(Z'w ID‘{._") “"Hzl

Remark: For any twistor spinor W let us introduce the vector
field
¥
= 2 ) (ly e, Dyley .

Then we have

Tu, = -n grad u
(see (14]) and an elementary calculation provides the formula
[Cy-w - udy -'§T*~Lplz=uow. (2.5.)

In particular, if Wy is a twistor spinor such that
Cy=20-= Q\P' then :

uby = % grad(u)- y (2.6.)
holds.
Proposition 6: Let (Mn g) be a Riemannian manifold with a
twistor spinor W such that Cy, = 0 = QN' and suppose that

1 does not vanish at any point. Then " ,g) is conformally
equivalent to a Ricci-flat space " ,@) with parallel spinor.
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Proof: Consider the metric G = g, u = lwlz. Using the
u

2
identification ~: S—35 of the spin bundles we have (see [2]))

1

Nt

= 1= 1
Vi ( ﬁWﬁ u Vt(_ﬁ:qfﬁ
1 1—_ 1
Lgue) L= L
YR

According to Cy = 0 = Qy we can apply equation (2.6.) and

t-grad(u)--27u1+
u

{u Vil + % t-grad(u): y } .

then, from the twistor equation

0=V,w+2t-Dy =9+ & t-gradw)-p ,

u

it results that ﬁt(ié:@) =0, i.e. {%i; is a parallel spinor
u
with respect to the metric g.

Corollary 1: Let (Mn,g) be a Riemannian manifold. that is not
conformally equivalent to a space (Mn,§) with parallel spinor.
Then a twistor spinor 1 ¢ Ker(&)) vanishes at some point if
and only if CV’ =0 = QN"
For any twistor spinor Y we introduce the function
2/, .,

Hy = dist (1y Vy, )

defined on the set pneMn:'w(m) # of.

Proposition 7: Let y be a twistor spinor satisfying

CW= 0 = Qw- Then

By
is constant.

~

o
Proof: The derivative of the function F=cf;i(iU/,qx-‘w )2
is given by

n
ar(x) = - 3 2 (wea WU o = XD
Since Cy = 0= QTP' we have uDy = % grad(u)- y and consequently
df = £ ¢ du.

Finally we obtain
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a'y) = aa- %) = 0.
u

u
Let f: M"—¢C be a complex valued function on M" and consider
the equation

- £ o
VX\Y + ﬁX'\y- 0.
A. Lichnerowicz (see [14]) proved that if < # 0 and Re(f)# O,

then Re(f) is constant and < is a real Killing spinor. We
consider now the case f = ib.

Proposition 8: If qu» 1%—X" Y = 0 with a real function
b: M"— R1, then
a.) u-Hq, is constant

b.) Qy = b%u Hy .

Proof: Suppose thy+ L%—X-q; = 0. Then Dy = iby and we
obtain Qy = b? u Hy by definition of Qy . Since
n
U Hy = u?- 3 (iy e -kp)z we calculate
\V “=1 X

n
Vy (u Hy )=4u(Vy 4y )= 2 ggl(iw e, W)U Vyy e -p )

n
-2 2 _(iy.,e, -y )w,e + Vyy) =

=1

n
=z - 4—2— u-(ixeyw,y)- g% %(i\j‘),eo&-v)(x.(f-leot. 0] )
2b & , > .
+ 5 _Ll(i\v e WUy e Xriy) =

[

4b tas . 2b .. , 2b ..

< ulip . Xep) - S0 Gy X9 - Y X p)
= 0,

i.e. IWIZ HW’ is constant.

Corollary 2: If1y is a solution of the equation

Viy + 12 xp = 0 and Q# 0, then b is constant and y is
an imaginary Killing spinor.

Corollary 3: If Wy is a non-trivial solution of the equation

ib 1
=X = 0 and = 0, th = i llel
ny)+ n 'Y an Q\V ' en = L) s a paralle
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spinor with respect to the metric g =-l§ g.
u

Proposition 9: Let y)eKer(&D) be a twistor spinor and denote
by u the square of the length of yy , u =’W,2- Then u is a
solution of the following equation

2%5:17 u2=C% + Qur g u2£§(1nu)+-9£%:gl uzlgrad(ln u)|2.

Proof: We consider the vector field
TV = 2 i (¢ e - Dyde, .
o=1
Then we have

and grad u = -~ % Tw

(see [14]). Consequently we obtain by equation (2.3.)

A(ln u) = --%lgr‘ad u|2 + EA(U) =
u
_ 1 v, 2, _R___ 2 12
'uznz|T %+ stoeD ™ 7w 10V

fgrad(ln u)l2 = -515 quq 2
un

Finally we have

uA(ln u) + ﬂSﬂig) ulgrad(in w|? =

NS

A AR oy RUBE LT R
Cz+0~

S S nR hd 1
il L I ey TR Sl

2
- ...DB_. C:+Q|
= i Y - ——-‘1’—:']’

TV 2 -

and this is the equation we claimed.

Theorem 1: Let (Mn,g) be a Riemannian spin manifold of dimension
n23 with a nowhere vanishing twistor spinor y . The Riemannian

metric
= _ 1
9= e 9
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has constant and non-negative scalar curvature

R = ‘-‘(—“5-1—) (c%,o\f-,).

-n/2+1 2 _ 1 _ and the metrics
2

Proof.: Denote by h:= u
g and g are related by

§ = hn-2

Then the scalar curvatures are related by the formula

4 R
RoniZ . 40=D Ao, g

g.

The result follows now by a direct calculation using the
formula of proposition 9.

3. The conformal deformation of twistor spinors into Killing
spinors

Consider a Riemannian spin manifold (M",g) and a twistor spinor
WeKer(L). We say that y is conformally equivalent to a

Killing spinor if there exists a conformal change of the metric
1

g = Ag such that 14 Y is a Killing spinor with respect to the
1

metric g. We introduce the function f = % A 2. Then the
equatiog 1
N 71—‘ a q-
VA" H) + 2 x-(A7y) =0
becomes equivalent to
ay - 2fDy + n grad(f).yp = 0. (3.1.)
i

Indeed, with respect to V&1y+ n X-Dy= 0 we use only the well-
known formulas describing the change of the covariant derivative
(see [2]) in order to derive (3.1.). Consequently, 7 is
conformally equivalent to a Killing spinor iff (3.1.) has a

positive solution f for some constant O # acC.

Theorem 2: Let (M",g) be a Riemannian spin manifold and
0 #\ye,Ker(ﬁ)) a twistor spinor. Then \ is conformally
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equivalent to a real Killing spinor if and only if Cy,# 0
and Q\P= 0. In this situation there exists - up to a constant -
precisely one metric

1
97 Ty 9
with respect to which v becomes a Killing spinor.

Proof: Let O # a be a real number and suppose f is a solution
of (3.1.). Then

allplz -2fCy =0
and, consequently, Cu,# 0. Moreover, in this case we have
distz(DﬁP,LinR(uz,Vn,)) = 0, i.e. Q= 0. Conversely, suppose
Clpf 0 and Qq= 0. Again we consider the vector field TY
defined by

-2 7_(\4/ et DW)ey .

With respect to (2 5.) we have
CyW=-udy-3 1 W= 0,

and since Yy is a twistor spinor, we know
™= - v grad(u).

Consequently
Cyy - uDy+ 3 grad(u)ey = 0,

i.e. f = % is a solution of (3.1.). Finally we remark that
*
any solution f of (3.1.) is proportional to u in case a er?

* *
since f must satisfy the relation a-u - 2f Cy= 0.

For an arbltrary spinor field y we introduce the 1-form

*l (X)— KXW, Y>= Im (X« LZA P

Theorem 3: Let (Mn,g) be a Riemannian spin manifold and

0 #y a twistor spinor with Qy = 0. Then \y is conformally '
equivalent to an imaginary Killing spinor if and only if
m)cw=0,Hw50
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b.) + -YIJ)T is the differential of a positive function.
Tyl

n
In this situation, for any function k>0 with + = dk,

yl4
the twistor spinor becomes a Killing spinor in tde metric
- 1
= —5 g.
19142

Proof: By equation (2.5.) Qy = O implies
uDbDys= Cyy+ g grad(u)- y .

Suppose now that
+ iy - 2Ff Dy+ n grad(f)- y = 0

has a solution f>O0. Then -2f(Dy , ) = 0, i.e. CW = 0 and
u Dy = g grad(u)- y . This implies Dy ¢ Vy and, finally,
iy e Vy, . Thus we have the necessary condition H‘i’; 0.
Furthermore, we calculate M and obtain

MN,.(X)= =<i X-¥ ,¥2= +{2fX-Dy -nX-grad(f)- ¢, y>

Y
= + {-n2f( Vy . ¥) + n(grad(f) ¥ ,X- W)=
=+ n{—f‘ du(X) + df(X) U}

Ty -y naceb,
u - u

i.e. + 71_15_ is the differential of a positive function.
u n
Conversely, suppose Q,, = 0, Cy,= 0, Hy, = 0 and + < = dk.
Y Y ¥ 42

Then f uk is a solution of equation (3.1.). Indeed, we have

u Dy =

IS i

grad(u).y (since Cy= 0 = Q‘P) and, consequently,
we obtain with f = uk

-2f Dy + n grad(f)- Y= n-u grad(k)+y =

n
=n-u- > dk(ey dey- -y =
oA=1

n
1 <
n- 2 (

n
1+

iemw,w)eocli; =

o=

"
I+

niy.
The latter equation follows from HlPE 0, i.e. iwevq, .
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Theorem 4: Let (M",g) be a Riemannian spin manifold and 0 #%
a twistor spinor with Qv # 0. Then % is conformally equi-
valent to an imaginary Killing spinor if and only if

Cy = 0 and dist®(Day ,Ling(iy ,Vy)) = O.

In this case there exisls exactly one positive function k

with + 31% = dk such that W becomes a Killing spinor with
u

respect to the metric

R

Proof: Suppose Qly # 0 and that equation (3.1.) has a positive

solution f for some imaginary number a. Then
dist?(0w ,Ling (i ,Vy )) = 0

and CU’ = 0, and we obtain the necessary conditions mentioned

above. On the other hand, if Qq,f 0, CV’= 0 and

dist(Dq/,LinR(iw/,Mw )) £ 0, then there exist a function A and

a vector field § such that Diy= Aiy+ %3y . Using the twistor

_ o 1 ,
equation Vyy = - = X-Dy we obtain

Ve (Dy) = {aA(X) + §A <EX>F Qv +
2
A= X+ Bgr B - E ey .

With respect to 0\9# 0 we know that iy is linearly independent
(over Rl) of VQI' The latter formula as well as formula (2.2.)
yield now

A = - 2A <EXD

Consider the function f:=

Nt o

i%r (since Qiyﬂ 0, A cannot vanish).

Then we have

1 1 1 .
grad(f) = ; '—A-I-‘_§= ; 2f¢
and, consequently,

Dy = ALY + -g,,w._... sgn(A) é_f"- iw-p-g—f_:. gr‘ad(f‘)-kp '
i.e. f is a solution of equation (3.1.) and the corresponding
conformally equivalent metric is given by
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- 2

g = A"g.

Furthermore, Dy = Aiy+ €3 implies

n
idu

A’QN’+ utg =
_ n dA
=AM, T3 UK

and, finally,

",
- n d(K%Q = ;%?
u

5 .
. 2 .. . 2 1 :
This means that A™ is given by A™ = —=5 for a unique func-
Ny u-k
tion k >0 satisfying dk = + E%}
u
On a manifold of dimension n = 3,5 we have Hy = 0 for an

arbitrary spinor field. Therefore Theorem 3 and Theorem 4
provide the following

Corollary 4; Let (Mn,g) be a Riemannian spin manifold of
dimension n=3,5 and let yeKer() be a twistor spinor. Then
y is conformally equivalent to an imaginary Killing spinor if
and only if

a.) Qy=0, Cy=0

b.) + n%% is the differential of a positive function.
u
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