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INTEGRAL GEOMETRY FOR COMPLEXES OF RATIONAL CURVES 

S.G. Gindikin 

The aim of this lecture is to obtain a local inversion formula 

for the problem of integral geometry for complexes of rational cur­

ves (i.e. n-parameter families of rational curves on an n-dimensio-

na.l complex manifold) . Actually, it is the most general type of 

comnlexes of curves for which a local inversion formula exists.Ho­

wever, in the sequel we make no discussion of the necessity of that 

condition referring the reader to [ 1 , 3 l . Instead, we concentrate on 

finding an explicit form of the inversion formula and consider how 

the geometry of a family influences its structure. 
2 (D OO 

1. Radon transform in C . Let *f(z , z ) be a finite C 

2 

function on <E . Consider its integrals over complex lines 
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Then there is the following inversion formula (see, e.g. [2,4]) 

V ^ Зšp ( ^ 2>ІVW2-Vi d }И d T ľ (2) 4> (wr,w2) = c 

where c = 1/2£ 2. 

Thus, for each line going through w one first applies a dif­

ferential operator acting along a family of parallel lines, and 

then takes the mean value for the family of lines going through w. 

There is an important difference between the Radon transform 

for complex lines and the Radon transform for real lines. Namely, 

for the complex case the inversion formula is a local one, i.e. in 

order to recover a value of a function at a given point it is suf­

ficient to know only those integrals that are computed along the 

This paper is in final form and will not be submitted for publica­

tion elsewhere 



196 S.G. GINDIKIN 

lines close to that point (i.e. infinitesimally). 

2. Formulation of the 2-dimensional problem. We are interested 

in those families of curves (2-parameter families on a 2-dimensio­

nal manifold), for which a function can be reconstructed from its 

integrals by a local formula similar to (2). All our considerations 

will be local and in general position. Thus one can assume that we 
2 

have a sufficiently small neighbourhood D C I and a 2-parameter 
r-i 

holomorphic family of holomorphic curves E... /^fcC*' --n D« 0 n e c a n 

assume that E is defined by an equation in D. One can assume 
4 

that E ^ is defined by an equation in <E (z,,V ): 

o) <£> ( v v v s 2» • °-
c — i 

We also assume that the whole parameter domain J^ is lying 
2 

in £ . Since we consider a local situation, one can take z.. as 

a parameter for all curves in E. , i.e. E^ is of the form 

(4) z 2 = f(z.»^ ) . 

Let a family of densities <V (z.;^ ) be given on E> . Define 

an integral transform for ^fe C (D) by the formula 

(5) 0 ( ̂  ) = ̂  f (z1fz2) ^ ( z . ; ^ ) ' ^ (z1(-J ) d z ^ dz-; . 

E* 
As we have already mentioned above, we are interested in the 

question when the integral transform*fl—> ^ admits a local inversi­

on formula? More precisely, when there exists such a (holomorphic) 

differential operator 

(6) Lw = {/.(w/J ) ^ + t 2 (w.-J ( ^ + t 0 <
w ^ >< 

Э_ 0 _2-
'.*$, ^ 2 ^ 

L° = Ь. -av + v •ъ* 

that 

0 L L 
^** TAT TAІ 

(7) f M . c J LwLw <?<p d j ,A d j r c = 1/25?2, 
0 w 

where "A is the family of curves E -. going through w€: D under 
w y . J> v r-i 

the assumption that j ^ is a cycle. Note that those \£ ulj f o r which 
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w e E •• form a curve (evidently, in general position) V w
 o n C* • 

Thus there arises a dual 2-parameter family of curves Y paramete­

rized by the points w 6 D. 

A triple (C^, TL , L) where c_* defines the family of curves 

E ̂  , ̂ x the set of densities on them, and L differential operators 

L is called admissible if condition (7) is satisfied, 
w 

3. Admissibility conditions. Let 

"d v ^ 
<8> Mw = T F y v + m ( M > -7TJ-2 
be a derivation along the tangent vector to the curve Y at the 

point ̂  . Let 

(9) p(Zl;w,^ ) = Mwf, q(Zl;w,^ ) = L°f , 

q(z1;w,^ ) 
u(z ;w,\ ) = — — — . 

1 * p(z1;W,^ ) 

Note that for z = w.. p has zero and u has a pole. 

The^renu A triple ( ji/̂ U , L) is admissible if 

(i) Mw(n(z1?wfJ ) y (Zy\ )) = L wH/(z r^ ). 

(ii) ẑ - w^u^-^l when z —-> w,. 

for all z1 ,w, ̂  . 

Note that for the family of lines considered in section 1 one 

has H'S 1/ L = TTpv—' U * Z 1 ; w' 1 * = Vfz-j-w^. Therefore, both 

sides of (i) vanish ana hence the conditions are satisfied. 

Actually, the conditions of the theorem are not only sufficient 

but also necessary ones. On their necessity see [3 l. We only note 

that one can formally obtain (i) by substituting the delta function 

fc(z-w), w 4 w into (7) and by requiring that the right-hand side 

of the relation should vanish. 

For the sufficiency condition consider the infinite dimensional 

manifold \ I of curves z = f(z ) and all densities Vy (z ) on them. 

Fix w £ D. Let u(z ) denote functions having a p o ^ a t z = w., 

and let pi consist of triples (f, ̂  , u). Let U , \ \ denote the 

sets corresponding to the curves f going through w. Define an inte­

gral transformation 

(5') <4(f,V) = \ ^ (z1ff(Zl)) vy (Zl) V (Zl) d z ^ d ~ . 
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For functionals F(f,4M on 1 I define an operator acting into 

1-forms on \ \ : lw 

(10) X wF( f ,V ;^f,^H/) = ^ F ( f , V ; U, ̂  f , £ (4/ a) ) . 

In other words, the value of the form TfO F at the point (f ,vy ) 

on the tangent vector ( o f/bf) equals the value of the variation 

V at the same point on the tangent vector (a 0f,0 (tya)). The vari­

ation *> f, being tangent to l| , vanishes for z = w, and hence the 

variation y. 0 f is regular and the vector (a o f, d (^JiM --s tangent 

to I! (but not to n ) . Lift the form 9LF from l| to f] . 
w w w s^ 

A direct substituion of (5') shows that the form * IP is 
^ -closed on VI . The operator ^C is defined in a similar way. w * w — ^ p. * 
Thus one obtain a closed (1,1)-form ( 3^ \?& ) ̂f on I I . 

w w w 
It remains to note that under condition (i) the form integrated 

— • *̂*v 

in (7) is a restriction of the form (3L/\'#')<f and that under (ii) 

the cycle j is homological to the corresponding cycle for lines 

in (2). 

4. Locally projective structure on curves of a 2-parameter 

family. In this section we construct a special class of densities 

and operators L closely connected with the geometry of the family. 

We start from the fact that the family u!_i induces on its curves 

canonical structures of locally projective lines. Namely, for each 
r-| r-l 

tangent space T. j ^ consider the projective line P(Tw u ) of one-

dimensional subspaces in it and associate to each point z £ E^ 

the tangent subspace to the curve "jC at the point *t . One obtains 

locally the structure of the projective line on E v . 

If the curves E^ are defined by equation (3) then the tangent 

line to H is given by the equation 

$ i ( z < ' V d V + $ 2
( Z - V d $ 2 = °' 

where Q . = ̂ ^ / 3 ^ .. HenceCJ)' = grad. ̂ B may be considered as homo­

geneous coordinates of the points on E^ with coordinates z: 

zv-><$)' (z;^ ). 

Introduce a compatible affinization on the curves E.., . Fix a 

curve A on D (e.g., z1 = const). Let u = u(t ) be the intersection 

point of E ̂  with A • Let 

cb ' i < b ' 2
( u ' 3 > 

(11) t(z;t) = T. ' , -J-, , h(* ) --jM , 

* h < 5 ) % + $ 2
 5 $ i (u'-V 
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i.e. t(u;"r )ioo . Now one has a fixed affine structure on E ̂  

where t is defined up to a linear transformation (with coefficients 

depending on ^ ). Introduce an affine measure on E^ 

(12) dt(z;^ ) = H> (z1? ̂  ) dz,.-, 

and the aux i l i a ry functions c ,d : 

t ( z ; ^ ) - t ( w ; J ) 
(13) c ( w ; ^ ) = l i i m 

z - w 
z 1 - * w 1 

1 <b! + m(w,f ) $ : 

t . . . ) > - « < . . J > - -TO7JT \ , r t ; . t ; 

where m is the same as in (8), i.e. (d* .., d^ 2) = (dY.. , m(w,^ )dt .) 

is the tangent vector to V at the point *J and (d^ ., d^ J = 

= (n(^ )d^?, d t ) is the tangent vector to V at the point ** . 

Let, finally, 

(14) Lw = c(w;> ) d(w;* ) (n(J ) ^— + ̂  ) c"1 (w;J ) . 

The homogeneous part coincides with derivation along V at the 

point ̂  . The functions c,d give a convenient normalization. One has 

1 
(15) u(z1? w,*V ) '1 t(z;J ) - t(w; X ) 

We have, therefore, introduced densities Mf and operators L on ^ 

Condition (ii) is satisfied for them. However, condition (i) is sa­

tisfied only under strong additional restrictions imposed on which 

will be considered in the next section. 

One can see without difficulty that all the above constructions 

are invariant under diffeomorphisms separately with respect to z 

and to \ .On the parameter z there depend only normalization 

of the measure on E^ and the corresponding normalization of the 

measure on t . 
0 w 

5. The infinitesimal Desargues condition. We now impose additio­

nal conditions on the family £j under which it (considered together 

with densities and operators L) will be admissible. In that case we 

call the family itself admissible. 
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n 
(I.D.) The family £j is said to satisfy the infinitesimal 

Desargues condition if at each point Je. CJ t n e curves Y 3 "T 

can straightened by a diffeomorphism with respect to V in the se­

cond order infinitesimal neighbourhood. 

Condition (I.D.) is imposed separately at each point 1 

The ma_n_theorem_ A family of curves satisfying the infinite-

simal Desargues condition is admissi.b 1 e . 

Thus if condition (I.D.) is satisifed for *V , L constructed 

in the previous section then formula (7) provides the local inversion 

formula for the problem of integral geometry. In fact, condition 
r—» 

(I.D.) is also a necessary one for the family £_ to be admissible 

[1,3]. 
r-i 

The _ain_lemma. A family Cli satisfies the infinitesimal Desar­

gues condition at the point Y if and only if the curve E^ can 

be transformed to the form z = 0 by appropriate diffeomorphisms 

with respect to z and \ separately, and if the curves in its neigh­

bourhood satisfy the condition. 

(16> z2 = ̂  1 z1 + 1 2
 + o(ll\2> 

(where the original curve corresponds to ] = 0 in new parameters). 

The sufficiency of (16) is evident. Let us prove the necessaity 

of that condition which is actually what we need. Let condition 

(I.D.) be satisfied for ^ = 0. Make a diffeomorphism with respect to 

"C , which preserves \ = 0 and straightens the curves *j(s (0,0) in 

the second order neighbourhood of the point ^ = 0. Then one has 

5l Z1 + ^ 2 +° (ty 2> = ° 

on lfo(0,0) where z1 is taken for a new parameter on the curves 

S[£ (0,0). For a second new parameter z_ on the family we take the 

value of V 2 for which "Y intersects the axis ^ . = 0 . Then on 

V one has z2 = 0(1>[ ) . Suppose now that for a curve Y (close to 

>= 0) z1 is such that the line ^ ..z + 12 Z? = ° i s t a n 9 e n t t o 

V at the point (0,z ). Then one has relation (16) since on 

* < V Z 2 > 

^ 1 Z 1 + J 2 Z 2 = Q i z ; % l * + °< l} f )# 

where Q i s a quadrat ic form in ^ whose coe f f i c i en t s vanish for 
z2 = 0 hence Q = o(l^\2) because z = 0 (l'J ]) . 
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Let us now prove (i). Without any loss of generality (making 

an appropriate linear diffeomorphism with respect to z) one can as­

sume that .A. is of the form z =-1/c + o(l*j|). Consider only the 

case w = 0. Then 

t(z;^ ) = z1/(cz1 + 1) + o<rjl), c(0;} ) = 1 + o(l}|), 

d(0; J ) = 1 + o(l}P , 

mfOj'J ) = o(l̂ l) , n(} ) = c + o ( V*J \ ) f 

V.V (z 1 ?^ ) = 1/(czl + 1)
2 + o(lj|), 

LQ = c -£— + -£— , M Z l ; 0 f ] ) = c + 1/2l + o(ljl). 

J 1 *2 

Now both sides of (i) vanish ends the proof. 

We now make some additional comments. 

1) Results [1,3] imply that condition (I.D.) is a necessary one 

for ^ to be a member of an admissible triple ( j-^, ̂  , L) . For ,_Xj 

satisfying condition (I.D.) one can effectively describe all admis­

sible triples (i^j,Mf, L) . 

2) Condition (I.D.) can be described in analytical terms in 

the following way. Introduce arbitrary parameters on ̂ a : 
n n 

*? = ̂  ^ ' z^ ' ^ ^°' z^ = 1 " Consider the torsion P (f , z) = 
= l l * ° ^ 2 * 0 * " ! 2 * ° * 1 1^°^# T n e n condition (I.D.) is equivalent 

to the fact that P is a homogeneous polynomial of the 3rd order 

in the components of the tangent vector *t (0) [1,4]. Using that con-

dition one can extend the family Cj satisfying condition (I.D.) 

in such a way that for each direction and each point of a small 

domain in ̂  there is a unique curve V going out of it. Accordingly, 
in the z-representation the curves E y are extended to complete ra­

ti n 
tional curves (homeomorphic images of a projective line) P ( T ^ ) . 

n * 
If there is a complete holomorphic family of curves ̂  such 

that for each point ^ and for each direction there is a unique 

curve H going out of it in that direction, then condition (I.D.) 
0 0 

is satisfied automatically. The reason is that P (** ,z) is always 
a homogeneous function of order 3 in t (0), and since it is a 

J 2 

single-valued holomorphic function on C it has to be a polynoamial. 

Thus, from the global viewpoint, condition (I.D.) is equiva­

lent to the fact that one has a family of rational curves with the 

normal bundle (3"*(1) . Roughly speaking, while.locally projective 

structure exists in all cases, in order for the local inversion 

formula to exist one has to be able to extend that local structure 
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to a global one. 

3) the results of [1,5] imply many specific results on addmissib-

le families of curves. For example, such is the family of curves of 

order 2 on the plane tangent to a triple of fixed curves * i' ?' V 

All these are admissible complexes of curves of order 2 in general 

position. The tangency condition for the curve I can be allowed to 

degenerate into the condition of passing through a fixed point U. 

A complex of quadrics remains admissible. The complex of quadrics 

passing through three fixed points U,. , U , U~ is diffeomorphic to 

the complex of lines on - the plane. The set of quadrics going 

through two fixed points is equivalent to the set of circles. Ad­

ding the tangency condition for the curve 1 one obtains an admis­

sible complex. The set of circles of. a fixed radius is not admis­

sible. 

4) If condition (I.D.) is satisfied both for the complex of 
, r-i 

curves E^ and for the dual family V , then the complex uZa is 

diffeomorphic to the family of lines (a necessary and sufficient 

condition). 

6. Integral geometry for complexes of curves on a 3-dimensional 

manifold. We now extend the above results to the 3-dimensional 

case. We shall presently see that in that case new features arise 

which have not been apparent in the 2-dimensional case. However, 

any subsequent increase in dimension is made automatically. 
r*i 

Suppose that there is a 3-dimensional family of curves E ̂  , H u , 
2 J J 

in the domain D C, C . For each z £ D denote by Y the set of 

such ^ that z £ E. Thus there arises a dual 3-dimensional family 

of curves Y , z 6 D on «_-* . One can assume that E^are given by 

the equations 
(17) <$>l(z,^ ) = 0, <£> 2(z,^ ) = 0 , Jc2l . 

As in the 2-dimensional case, fix a set of densities HMz.,;^ ) 

on E^ and consider the following integral transformation on 

C0(D) 

(18) ^(z)!-?' <4(^ ) = J> VMz) HMZ.,;-} ) <V (z.,;^ ) d z ^ d ^ . 

We are looking for the local inversion formulas, i.e. when for 

some operator 

Lw = Lw+ &->'*>• Lw= k.<w'l> ^ Y 7 + ^ < - 0 ) ^ + t 3 ( w ^ >§; 
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one has 

(19) ty(w) = c\ L~(^(\) d ^ A d T ^ , c - 1/2S;
2
. 

We now formulate sufficient conditions which are in fact also neces­

sary ones [ 1 , 3 l . We start with the condition whose 2-dimensional ana­

logue is trivial. It ensures the existence of a locally projective 
r—i 

structure on the curves of the complex
 t
 "j, which in the 3-dimensio-

nal case does not exist in all cases. The local projectivity condi­

tion is formulated in the following way: 

(L.P.) For each Y (j ̂  the tangent vectors to the curves 

H 3 ^ (z^EJ lie in the same 2-dimensional plane Q (*? ) c. T
-r ̂  • 

Clearly, in that situation the projective line P(Q) induces a local­

ly projective structure on E^ . Our requirement is: 

(iii) The operator is a derivation along some direction in 

Q(J>. 

Condition (L.P.) can also be explained in the following way. 

The curves ^ 3 *? span a surface with a conical singularity at ,J ; 

(L.P.) condition then means that the surface is smooth at the 

point ^ 

Let us reformulate the (L.P.) condition in the z-representation. 
n 

Vectors of Tv ^ correspond to variations of Ev , while vectors 

tangent to X
z
9 ^ / correspond to variations vanishina at some point. 

The (L.P.) condition means any such variations are proportional 

with a functional coefficient. Namely, if E.. is of the form 

fj (z
1
? ) , J =

 2
/3, ( 1 7 ; ) z . = 

a n d 

M -
w 

^ 

^ i 
+ m

2
( w

^ > ̂ Y Г
 + m

3
( w
' ^ ' ^ >$2 3 I ^ 3 

is a derivation along a tangent vector to V and 

V v w '5 ] = M wV 
qj (z

r
"wA ): = L

w
f _., j = 2,3, 

then, since in view of (iii) M , L derivate along vectors from 

Q(\ ), there is the following proportionality condition Q^/b *X^tp xM 
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which is exactly (L.P.) condition. 

Thus there appeared the function |i which is a major characteris­

tics of the operator L under the condition (iii). Conditions (i), 

(ii) are formulated exactly as in the 2-dimensional case (see sec­

tion 3) . 

Theorem. Conditions (i), (ii), (iii^ are_sufficient (and neces­

sary) for a triple ( 2, f "4? , L) to be admissible, i .^^forthe inver­

sion formula (19) to be true. 

The proof of sufficiency repeats that in the 2-dimensional case. 

On the manifold of triples (f,y , u) where f is now a vector-functi­

on (f~,f-) one defines the operator F\—>'X F where ̂  is of the 
2 3 B ^^ w w 

form (10) and the form {?t> \dts ) ^ is closed. If condition (i) is 
satisfied then the form integrated in (19) is a restriction of the 
form ('afc/ /\X, ) f . Condition (ii) ensures that the cvcle Y is w w 0 w 
homological to the cycle of lines passing through w in some plane. 

7. 3-dimensional problem (explicit formulae). Our next step 

is to construct some special M' and operators L satisfying condi­

tion (L.P.) and condition (iii). Let E-* be defined by equations 

(17). Condition (L.P.) means that there exists a combination 

7vlgrad
(51 + A2grad

c3? 2 = (p., V$ ) , P2-V.J ) ' 1) which does not de­

pend on z. However, the coefficients >. .."X depend on z. Q ( ^ ) 

is given by the equation P-i O ) d 1 i + P? ̂  1 ^d ̂  ? + ^ 1 ̂  = °' 

Substituting d*\ ~ into < grad<5 , d\ >• 0 one obtains local projec­

tive (homogeneous) coordinates on E w : 

(20) T^D;^ ) = (<fe,.)J - P-t^-V^ r 

T2(z;^ ) = &,)'2 - P2($,)l , 

<<&!>; ^ ^ ] y 

Fix an affinizing surface J\ in D and let u(V ) be the intersection 

point of i\ with E^ . Introduce an affine 'coordinate 

T.. T (u;^ ) 
t(z;V ) = ! , n(\) = - — - - , 

J n ( ^ )T,.+ T 2
 J T1 (u; ̂  ) 

so that t(u;^ ) = 0 . Let 

dt(z;^ ) = V ( z r - ^ ) d z r 
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;<w;}) = lim
 t ( 2 ; V - t ( w»ì> 

Z1 ^ w 1 Z1 " W1 

R, + m(w; Ҷ )T
n 

t(z;^ ) - t(w;^ ) ••- ' (21) 
d(w; > ) n( ̂  )T.. + T 2 

w . ^ d í w . ^ í n í ^ ^ + ą - - (n(ţ) P l(î) +p 2(5))ą^)c-
1(w f ï: 

Note that the tangent vector to ̂  at the point ^ is of the form 

( d 5 1 ' d l 2 ' d ] 3} = ( d l r m ( w ' l ) d ^i ' ( - p r m ( w - i ) p 2
) d } i> 

and 

1 
u(z1; w,^ ) = 

t(z;^ ) - t(w;} ) 

The infinitesimal Desargues condition (I.D.) is formulated as in 

the 2-dimensional case: ̂ ^ ^ can be straightened in the second 

infinitesimal neighbourhood. 
n 

Theorem. A complex of curves ^ satisfying conditions (L.P.) 

and (I.D.) is admissible f i.e. the triple (2''V '
 L* where^f L 

are defined by (21)is admissible and the inversion formula (19) 

holds. 

Necessity of those conditions follow from [1,2]. 

Lemma. If conditions (L.P.) and (I.D.) are satisfied then any 

curve in a neighbourhood of each curve E^ can by appropriate dif-

feomermisms with respect to z f ̂  be reduced to the form 

z2 = 1 ^ z ^ + } 2
 + o(ty2)' 

(22) 
Z3 = ^ 3 + o(Vj\ 2 )' 

where E. corresponds to ** = 0 . 

The proof of the Lemma repeats that in the 2-dimensional case. 

Define a transformation in a neighbourhood of E._ , \* = 0. First, 

choose such | , in the neighbourhood that all Y passing through 
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the point (0,0,z-) satisfy the condition ^^ - z = °(l\3\ )• 

That is possible since under the condition (L.P„) one has 

^I^V^' + ^ 5 < P ^ j ( ^ ) + P ^ i ( ^ ) ) ( ^ i , < ^ " 2 j ) + 0 ( l l " J | 2 , 

So far we have used only the (L.P,) condition; z is one of the 

parameters. Now using (I.D.) we make such a diffeomorphism with 

respect to ^ that on "j(3(0#0,z3) one has l 1
z
1
+ ^ 2 = ° ̂}l )• 

Finally, we choose Zw z2 --n such a way that the curves V (z. ,z2, z ) 

pass through Y^ (0, z ,z ) and are tangent to the line*^ .. z + ̂  2
zp =^ ' 

*t = z j. The validity of (22) is established as in the 2-dimen-

sional case. 

Admissibility of ^ is verified with the use of (22) exactly 

as in the 2-dimensional case (all the formulas being identical). 

All the comments made on the 2-dimensional admissible comple­

xes of curves are naturally transferred to the 3-dimensional case. 

The curves of an admissible complex are canonically extended to 

rational curves (with the normal bundle vy (1) + (j . Under con­

dition (L.P.) the torsion is defined as the vector product 

(? = [ \ (0) , \ (0)]. Condition (I.D.) means that P is a polynomi­

al of the 3rd order in *T (0), and it is sufficient to require 

that only one of the components is polynomial [6]. For a globally 

holomorphic family conditions (L.P.) and (I.D.) mean that for each 

point ^ and each direction from some plane Q (V ) there is a unique 

curve *J going out of that point in that direction. 

As for examples of admissible complexes of curves, an untrivi-

al question is already that on the admissible complexes of lines. 

In that case, evidently, there remains only the condition (L.P.) 

Admissible complexes in general position consist of lines tangent 

to a fixed surface S or intersecting some curve V [2]. In the 8-pa-
3 

rameter family of curves of order 2 in (EP admissible complexes 

are defined by 5 conditions: either those of being tangent to a fi­

xed surface S or those of intersecting a fixed curve V [1,5]. 
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