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CONFORMALLY INVARIANT WAVE EQUATIONS 

IN 3 + .2-DE SITTER LINEAR- GRAVITY 

J.P. Gazeau and M. Hans 

Massless fields theories on 3+2 de Sitter space ("Anti-de-

Sitter space") share with their flat-space counterparts common cha­

racteristics like gauge invariance and conformal invariance. 

In the present work we examine these aspects in the lowest-spin ca­

ses s = 0,1, and 2 with a particular emphasis on the de Sitter gra­

vity (s = 2). Conformally invariant wave equations are given. Final­

ly we show that only two values of the gauge-fixing parameter have 

a conformal origin. 

Introduction. 

It has been known for a long time that conformal in­

variance is intimately connected with massless field theories [l] . 

Field theories being usually built up around wave equations, the 

latter should present in the massless case specific behaviour under 

conformal transformations. 

Basic relativity principles already impose invariance pro­

perties on wave equations : e.g. they are invariant under Poincar£-

transformations if space-time is flat. They are instead invariant 

under the Anti-de Sitter group S0o{3,2) (resp. de Sitter group 

S0o(4,1) ) if space time is curved with negative (resp. positive) 

constant curvature 0 . Dealing with both latter relativities of 

maximal symmetry is most interesting at several levels : in general 

relativity, the Einstein cosmological constant A is proportional to 

p and working with constant-curvature space-times gives solid foun­

dations and brings in rich information for further developments con­

cerning field theories on more general pseudo-Riemanian'manifolds. 

We shall restrict ourselves to SOQ(3,2) in the present work. 

"TbU papeA u> In falnal faoHm and no \)Qja>i.on o£ it wWL be AubtoiXtzd ^OK. publica­

tion eJtAcwkeAe," 
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This group possesses a set of very attractive features. For instance, 

some of its unitary irreducible representations can be associated 

with physical elementary systems. In particular, massless elementary 

systems are defined in this way and related representations show 

features familiar to the flat-space situation : gauge invariance of 

the wave equations and indecomposability of the representation. Fur­

thermore, conformal invariance of wave equations strongly depends on 

the choice of a certain parameter, the "gauge-fixing" coefficient. 

Massless - de Sitterian - conformal trilogy has been exami­

ned in the recent past by Binegar, Fronsdal and Heidenreich (see 

[2] / [3J and references therein) . Several points however require 

clarification, particularly the passage conformal six-cone - (3+2) 

de Sitter formalism, the explicit form of the conformally invariant 

("CI") wave equations, and finally the "conformal" origin of two 

and only two values of the de Sitter gauge-fixing parameter : c = 1 

and c = 2/(2s+1) (s is the spin). 

In order to simplify the presentation, we have restricted 

our approach to the lowest integral spin cases : s = 0,1 and 2. 

The six-cone formalism is presented in Section I. De Sitter 

coordinates and projection techniques are described in Section II. 

Afterwards, we give in Section III a summary concerning the de 

Sitter group and its representations necessary for our purposes. 

The rest of the paper is devoted to the specific cases s = 0,1, 

and 2. 
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1. 4 + 2-conformal action through the Dirac's six-cone formalism [l], [2} . 

The Dirac's six cone is the 5-dimensional surface U- zz 

8 U U Q in (R . The metric is given by : 

An operator A which acts on scalar fields A over jR 

A,B = 0,1,2,3,4,5. 

An operato 

is said intrinsic if 

For instance, are intrinsic 

- the 15 generators M A QzLjll.dQ.ltA) of the conformal group. 

S0o(4,2), 

- the conformal-degree operator N, ^ UL 0* 

- the intrinsic gradient 

VA = u A 3 8 2
B _ .t^A(N,,-n) 

- conditionnally the powers of the d'Alembertian ^/\a | (oA o ) 

acts intrinsically on -/ if N±\-[\>-l)'l * i.e. if the confor­

mal degree of J is p - £ . 

Therefore, we can start from the following conformally in­

variant ("CI") system on the cone : 

jCaA^)>= 0/ 
i ^ d.2) 
I NL, y = (f-*)y / 

where Uj is a tensor field of a certain rank and a certain symmetry 

pictured by some Young tableau, e.g. iij = U>J 

Other conformally invariant conditions can be added to 

(1.2) in order to restrict its solution space, e.g. for symmetric 

tensors, 
- transversality 

^ > A 6 C . . = °, (1'3) 

- divergencelessness 

VAfABC.. = <-,
 (1-4) VA 

tracelessness 
A 

(1.5) 
and so on. 

Conformal invariance of (1.2) - (1.5) is understood as in-

variance under infinitesimal transformations 

S y = £ A 1 3 L A 8 Y / LAB = M A B + S A e ; M .6, 
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^ A B
a c t s ur

-ically on indices of Uj 

Invariant subspaces of solutions to (1.2) are easily put 

in evidence, using constant vectors or tensors H or gradients S7/ 

and suitable svmmetrizers 2-. 

Ф _ - Z ž c p ; ф - Z v < f 

2. (3+2)-de Sitter coordinates for the projective six-cone and re­

duction of the tensor fields. 
2, 

The (3+2)-de Sitter coordinates for the cone IL zz O are a 

set of five numbers 

C\ , p , . . . . run over £ 0,1 , 2,3,5^ . &o( p designates the (3 + 2) metric 

of iR : b^p = diag (1,-1,-1,-1,1). p is some positive constant, 

the curvature of the de Sitter space. The U ' s are related to the 

"u" variables by 

y4 becomes superfluous when we deal with the projective cone. We keep 

the notation y for the 5cj \ solely. 

The various intrinsic operators introduced in the first section now 

read : .. 

- the conformal-degree operator 

- the ten SOo(3,2) generators 
M*P = i ( y^p-^^) / 

- the five purely conformal generators 

_ M.* . , - - .^ - * - ( ^ + e ^ N , ) , (2.2) 
where O^ r: O^ — p UN ^ 3p == ̂ ^ stands for transverse deriva­

tive on de Sitter space. We designate by T the transverse projector 

which makes transverse a tensor field ^yz rr ( n.o( o( .--oT ) o v e r IR 

y C ( T 1 ^ ) ^ ^ , . . . ^ . . . = O for any i. 

- the powers of the conformal d'Alembertian when acting on 

fields of conformal degree p-2 

frh\Y = c-e>py;*p TT (a . - (4+ -x i -« ) (2-3) 

4=1 
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ot B 

where Q
0
 .= 1A VI M ^ A is a second order-Casimir operator re­

presentative for SO(3,2) 

- the conformal gradient 

V - = - ^ i ^ e ( Q o + N + ( N , - i ) ) + 4 ^ . . ( N , + i )} (2-4) 

As we shall see, the tensor fields on de Sitter space which 

are of real importance are transverse and totally symmetrical in 

their indices. . ~ 

To obtain such fields through projection, say jx — ( yi^ <x, • -. o(^ of 

rank s, the most economical way starts from a s-rank symmetric ten­

sor field 01 — ( \AJ ̂  ^ ..-A ^ " T n e
 --

a t t e r m a
Y

 b e
 issued from a ten­

sor of higher rank and of mixed symmetry : the case s = 2 is very 

illustrating [3J of this situation. 

Let us define from i|̂  (s+1) (s + 2)/2 tensor fields using 

contraction procedures and transverse projection : 

KІ:., =-т(i:(н-ђ-т,н-,)-))) 

Only the first one is of rank s. We shall introduce the purely-

de Sitter field 

4 = ^ - P K љ 
& 

(2.6) 

form The remaining ones, j K p - o , p < s o r p = s and q > 0 j , 

a set of
 s
 *

s
— - auxiliary fields. 

mv
ie main points that we would now like to elucidate are the 

following : 

(i) Starting from the "minimal" conformally invariant system (1.2) 

what is the equation (J/ ~̂ f -= 0 / obeyed by k alone ? 

(ii) Given the invariance of (1.2) under the conformal transforma­

tion (1.6), what comes about the transformational properties of k 

or/and of the operator C7 ? 

(iii) How can the answers to (i) and (ii) be modified if we enlarge 

the system (1.2) by adding other conformally invariant conditions, 

say LL'U^—O , V ^ M ^ ^ O / etc..., which restrict the solution 

space ? 

(iv) What is the S0
o
 (3,2) -content of the equation &k = 0 ? What is 
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its physical content too ? 

Before giving (partial) answers to these questions,, the 

last one need more precision. That will be the aim of the next 

section. 

3. A Survey of 3+2 - de Sitter - Group Representations [ 4 ] -

The 3+2 de Sitter geometry for four-dimensional space-time 

is one of the three geometries of maximal symmetry (besides 4+1 de 

Sitter and Poincar£) [5] . De Sitter universe can be visualized as 

the hyperboloid in |R j U2"— i/p . Its kinematical group is S0o(3,2). 

By extension of the Wigner ideas, massive elementary systems are 

defined as associated to unitary irreducible representations (URREP) 

of this group. Massless elementary systems are rather associated to 

nondecomposable representations where gauge invariance plays a cru­

cial role. Unitarity and irreducibility are restored on quotient 

spaces and give significance to the physical degrees of freedom 

of the system. 

Representation spaces are conveniently realised as set of sym­

metric, transverse, homogeneous, s-rank tensor fields on some open 

set U including the hyperboloid (only integral spins will be consi­

dered here) n 

gfcU > 4 ( i p = (-R tv1cv t...* /.C^) /, 

y.-& = o / ( N _ N ) ^ = o / N s > ^ . ^ . 

The ten basic elements X ,fl of the Lie algebra so(3,2) are repre­

sented by 

Xctfp > I— o<p = M d p + ScXp / <3-1> 

whe're Mo* ft n ^ ( U ^ G — y S ̂of ) • T n e s P i n part acts as 
follows : _ p 

Solely the K-finite, minimal-weight representations D(Eo,s) can be 

of physical interest. Eo is the lowest eigenvalue of the "energy" 

L-.̂  whereas s is the angular momentum (spin) of the state of lowest 

energy. 

D(Eo,s) is an URREP if 

s = 0 and E o > 1/2 
(3 2 . 

s = 1 and. E 0 > 1
 K3' } 

s > 1 and E„ > s+1 
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The limit cases of unitarity D(1/2,0), D(1,1/2) (singletons) and 

D(s+1,s) for s > 0 are nondecomposable. 

Note that the finite irreducible representations (FIRREP) cor­

respond to the values E o = -s- 0" , for positive integers <T . 

The usual way for obtaining carrier states passes through sol­

ving invariant wave equations. They involve the second-order Casimir 

operator 

Q = l L^ s L*
1* . (3.3) 

For instance, the D(Eo,s) -states lie among 

the solutions of the SO(3,2)-invariant system (the index s means an 

action on tensors of rank s) 

f(a_ - <Qi"*>a= o , 

where < Q J* > = ET. ( E 0 - S) -f ̂  U + I ) . 

They are distinguished from D(3-EQ,s)-states by different 

behaviour at spatial infinity Jr. z= ( tj^ -J- ̂  \ -+- ̂ * )'' L > -+- <=^> 
Equations (3.4) are not suitable for massless fields. They have to 

be modified in order to account for some gauge invariance 

ecu- < Q : T » £ + C 3 ^ ^ . * = o y 

I ̂  is the trace operator 

•DA is a symmetric transverse gradient operator : 

ID_ a e - ' T . _ ^ . 

( 3 . 5 ) 
a 

( 3 . 5 ) b 

(3,6) 

O • is a double-traceless transverse divergence : 

"V = T'B. - e/i^j*. < 3 - 7 ) 

33 A acts on tensors of rank s-1 whereas O* acts on tensors 

of rank s. Both achieve a factorization of Q_ : 

' V . D , ę = _ ( Q ^ . , - <QГ>)S (3.8) 

if T>_ 5 - o . 
c is the gauge-fixing parameter. If c = !, (3.5) is fully gau-
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ge-invariant, i.e. is identically satisfied by gauge fields : 

X = ID, % y ' T* 5 = O y (3.9) 

while applying ''cXj • to the left side of (3.5)a gives zero. On the 

other hand, the choice [6~] , [7J 

c = - a / ( . 2 - i + i ) <3-10> 

restricts the space of solutions to the minimal content of any mass-' 

less invariant theory : such a space is made up of traceless, double-

divergenceless tensors and carries the direct sum of two nondecompo-

sable representations or Gupta-Bleuler triplets : 

(3.11) 
D (-4 + 4,-4-1) => D (-4+ 1,-4) > D(4t2i-l) 

D (4-^,4) > J(^+i/)_^D^-^^) 

^ ^ : D ( I - ^ , ^ - < 0 ^ 

The arrow in A ^ B means an extension of the representation 

B by A. In other words, a group element g will be represented by a 

nondecomposable block matrix : 

3 — » ( e A(„ ) ' 
Z(g) being some nontrivial 1-cocycle of extension [8J 

- ( 3 V ) ^ ^ ) + B ( ? ) 2 (^ ' )A (v ' ) 
Carrier states of (3.11) propagate on the de Sitter light 

cone , i.e. singularities of two-point functions are solely meromor-

phic in p y.y' = 1 [l] y [-0 • Any other choice of c introduces lo­

garithmic singularities which implies reverberation inside the light 

cone. However, physical states remain unaffected by any choice of c: 

they carry D(s+1,s), the URREP parts of the triplets, once cleaned 

up from the D(s+2,s-1) and D(2-s,s)-gauge fields. Physical states 

really propagate on the light cone. 

Conformal invariance and light-cone propagation are intimately 

linked. It results that the very special value (3.10) taken on by c 

should denote a conformal lineage. This has been proved for general 

s [l Oj and will just appear as a by-product in the particular cases 
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s = 0,1,2 we are going to consider in the next. 

4. Conformally Invariant Wave Equations in 3+2 de Sitter Space : 

spin-0 and 1 cases. 

a) Scalar Fields s = 0. 

The simplest CI system is obtained from (1.2) with 

P = 1 ^ 

"3 <f = o y N 4 y - _ q ; . ( 4 .D 
The scalar de Sitter field is defined by (2.6) 

^ k = U Hj . (4.2) 

It obeys the C I . equation issued from (2.3) 

(0 0+ t) ~$L = O • (4.3) 
The solutions of (4.3) carry the scalar massless- representation of 

SOo(3,2), direct sum of two URREPS. 

D ( \/ O) 0 ZD(2, O) . - (4.4) 

Eq. (4.3) is invariant under the purely-conformal transformation 

£ "£. r-^"' / l (Z • ̂  - p ̂ -Z)^. (4.5) 
which mixes up D(1,0)-states and D(2,0)-states. 

The symbol H stands for the infinitesimal five-vector Z ^ =. £ v ^ 

b) Conformal features of the de Sitter Q.E.D. : s = 1. 

We first adopt the procedure described in Ref. £l1̂ ]« 

Let UJ be of rank one. Assume it be solution of 

(^A^
A) y = O y i\l< <f = _ y . (4.6) 

The purely-de Sitter field -Hfc^ = U ^ T ^ (-̂  Kl)and the auxi­

liary field U1 (z K ° ) obey the following system,, once eliminated 

the other auxiliary field U . Uy ( — K ' ) . 

1 3 X ç 1 o / (4.7) 

(Qo+«) f4 = O . (4.8) 

Subsequently, taking the divergence of (4.7) leads to 

Q,(Q,+ O ^ ^ = o . < 4 - 9 > 
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General solutions to (4.7) can be found out from solutions to 
(4.6). Consider the combinations 

y A = 2 A Cp, + V A Cp, (4.10) 

with ^ A ^ <p.=:0 and (1)^1) ) Cp̂  - O . 

2 A is a constant six vector. Trivially, each term of (4.10) form a 

conformally invariant space of solutions to (4.6). They induce solu­

tions to (4.7) : 

Jkd - Qu-I <f, + D,* <pA (4.1D 
with 

(Qo + A)?,-. o / Q o ( Q 0 + 4 T ) < ^ = o . (4.12) 

Z. is now a constant five-vector. 

@ -= t _ pLj U A projects on transverse tensors. 

A (not CI) subspace of gauge solution D, <P̂  is therefore made ex­

plicit, directly issued from V A ^P^ . Even (4.11) is not CI, since 

we must take into account the auxiliary fields whenever purely con-

formal transformations ^R ^ K 4 S R , ̂  .̂ U1̂  + S ^ , are 

carried out. Explicitly 

Besides, an invariant bilinear form on the space of the two-component 

fields (<u ) can be defined [l2J 

At this stage, we would like to give up auxiliary fields in or­

der to deal with k alone. Two possibilities exist. Either we wish to 

keep up conformal invariance or we aim to the minimal structure (3.11). 

(i) CI wave equations on de Sitter space. 

The first purpose is achieved by adding to (4.6) the CI 

.condition : 

^ Y A = ^ ( i t - e " T * ) = ° • (4-i3) 

We are then left with the system, 

Q. K. -f D, "3. K =: O ^ (4.14) 

(Q0+ 2) Q. \ = o - <4-15> 
which corresponds to the gauge fixing c = 1 in (3.5) . However this 

is not the fully gauge-invariant case since condition (4.15) res­

tricts the gauge-field space and preserves the null-cone propaga­

tion of the solutions. As expected, (4.14)- (4 .15) is invariant under 
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K—*.> l-h£rt with 

(ii) Minimal s t r u c t u r e . 

It is obtained from (4.7) by imposing 

Q o ' - . l = O , (4.17) 

which is compatible with (4.9) a l t h o u g h it o b v i o u s l y breaks the con-

formal invariance. Eq. (3.5) then follows and the gauge is fixed to 

be c = 2/3. 

As a final remark, we mention that imposing f u r t h e r to (4.13) 

the other CI condition 

v A 4V = o . 
does not bring in anything new. 

5. About Some Conformal Aspects of Linear de Sitter Gravity. 

We now deal with the case s = 2. LU is a symme­

tric two-rank tensor field which obeys (1.2). Because we hope to at­

tain a de Sitter field for which the lowest energy Eo is s+1 = 3, the 

power p has to take on a v a l u e e q u a l to or larger than 2. It is clear 

from (2.3) where the terms (j+1) (j-2) run over possible v a l u e s of 

E0(E0-3). It is reasonable to fix ou r choice on the v a l u e p = 2. 

The a u x i l i a r y fields K, , K 0 , K 0
 a r e unnecessary to write 

down the de Sitter e q u a t i o n s . We will adopt the notation for the 

remaining ones : 

4 = \<t , K - Kf , A = Kt • 
They obey the system 

(Qt _ G)(Qt-4)i _4D^?i + 4Q±Qi' + 

_4^Q iD^K _ icG'B-K +4£>*--D.:D, A _4()(Q i +_)0A_o / IS.D 

Q, (Q.+ i-OK - i ^ A ^ i _ 4 e ( Q , + 8 ) D , A _-
T 9 0 / (5'2) 

+ 4 f - ' Q,H .ft + 8 -D.-fe =_ o 

(Q0
1+2_-Qo + 3_)A + 8p-'(Qo+8)3-K_^e"'(Q0+6)^'+8^-^.3^ = 0. (5.3) 

«~ T » " m -v " Cs 
0 . stands for T o . f was introduced in (4.12). 

k' is shortened notation for \W. K • 
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Without entering into details about deriving these formulas, we just 

mention the intertwining properties of Q ^ , H ^ , Z. 0 : 

As for spin one, it is possible to get a (not CI) equation in­

volving k alone. The (actually valid for any spin) procedure con­

sists to carry out trace and divergences of (5.1) and divergence of 

(5.2). A sufficient number of equations is then available in order 

to eliminate the one-rank tensor K and the scalars ̂ . K and A. 

The result is somewhat complicated : 

(Q^_6) (Q^-4) i - -L ( Q ^ - ^ Q , + S 0 ) D ^ T K 

-±-(n-QT>^.i'A--§l\Q^G)Ql).'?^ + 
|5 3 

- £ (Q*+?Qt+ 70Q t - Sfi tOTVD.-W 

- WI CQi + i < ? Q f - ^ 6 Q . . + 4 32-)e £'=- o • (5.4) 
It follows the one-rank and scalar equations 

Q, (Q.-^KQ.-GYaT-Je-. (i^o.-s)!),^. 3 T i + 

_ £> Q, (Q, + £) ( Q , + € o ) D , -£' = O , (5-5) 

Q. (Q 0+^)[^^-^^+ e (3Q0 + -2o)"H
/--= Oy (5.6) 

( Q 0 - io) ( Q 0 - 4 ) Q 0 (Q. + s ) •£'=-. O. (5-7) 

As we already mentioned Eq. (5.4) is not invariant under purely 

conformal transformations. The latter mix up components ~% , 

T(^.f)s Kf , and T ^ = K,' : 
s& . . p - ^ T z . ^ i z:e-z(K^-e-^K;)] <5.8. 

The discussion is now similar to that one in Sec. 4.b. 

(i) CI wave equations on de Sitter Space. 

By imposing the CI condition U * lj1A — K -P'^K'- 0/ 

we obtain a CI system made up of one two-rank wave equation, one one-

rank, and one scalar condition. Note that we have reintroduced the 

symbol u3 • defined by (3.7) 
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(Qt-<)[ (Q,-6)l + ̂ ^-i] + 

+ 1 ("D.-D, - p"' Q(Qo-6)][^.~}
T£+-e(Qo-->)"fe']_0 (5.9) 

Q, (Q1-_)~dT. fc + £ (Q,-6)-D, '~) . 'D r£ = c? (5.io) 
1 ' _> ' / 

Q0 (Q o + .£)-&' = o • <5-11> 

(5.10) entails the scalar constraint Q 0 ( Q0+• •?) 3 • ~3 • fe— O . 

(5.9)-(5.11) is invariant under -^ ^.H + ZK' 

S"KL - - £>-'/* T Z . :_ £ • <5-12> 

A very interesting feature of (5.9) holds in the fact that it is 

completely factorizable, i.e. it can be written ; 

QO, £ = QiO'c
Jk^O/ (5.13, 

which is reminiscent of (^A !)A ) ( ^ A ^ A ) 4^ - Q ' 

Precisely CX. is this operator we would have obtained if we had 

started from a <vAa>__0 instead 

C^4 = (QA_4)-6-_. (Ot-8)D^
T.K 

i_ ' 3 

___. (Qi+- ̂ )T>_~D, -&'___ (Q A- 3) 9^'= o. (5.14) 
6.4 3 

The partner factor CZ- is given by 

Oc\ _ ( Q , _ e ) ^ _ J. C Q ^ I O ) X ^ T £ + 
fc IO ^ ^ 

v_:o 2. v ^ ^ 

_ J? ( Q i + lo) _\D, •£' _ i.(Ql-6)9|
/ . (5.15) 

4 0 -̂  

Contrarily to the "s=1" situation the system (5.9)—(5.11) is still 

far from (3.5)a with c = 1. However we can supplement \L \]) — O with 

two other CI conditions. 

TAft = ° (tracelessness) . (5.16) 
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A 
V U^A "= O (divergencelessness) - (5.17) 

(5.16) does not bring out anything new. Condition (5.17) (which to­

gether with IX Û  ~ O actually imply (5.16) ) amounts to the 

following one ~ 

which in turn entails : 

Q , y . i - i (Q, -^]D 1 9.^ , .S - :o / < 5-18) 
a formula to be compared to (4.7). 

Besides, the de Sitter tracelessness k1 = 0 is clearly inva­

riant under 7 K — ^ K — Q~ L ' 2 • c? K .To sum up, the best we can 

reach is the following CI system : 

(Q i--0[(Q..-6)"te + ̂ T i j + 

+ 1 [D^TD, -e"'0(Q o-6)] ^ . y . i = o y (5.19) 

0,^.* - '/fe ( Q , - ^ D ^ . ^ £ = o y <5-20' 
-~£ ' -= o . ( 5 -2 1 ) 

Let us now consider the two-rank tensors k which are solutions to 

(3.5)a with the gauge fixing c = 1 . They form a SOo(3,2)-(but not 

conformally) invariant subspace of solutions to (5.19) if further­

more they are traceless and obey the (not C.I.) conditions : 

Q, IT. 6 = O, (5.22) 

"3 . "S^ *& = O . (5.23) 

This means that 0 . K describes a physical spin-one- massless field 

carrying D(2,1) (modulo D(3,0) or D(1,1)-gauge fields). 

A second S0o(3,2)-invariant subspace of solutions is made up of so­

lutions to the following system, straightly issued from C/T K. — O • 

(Q^-<<)£+ Z J, ^Ti _ e ^ Q ^ . ^ l l ^ O , (5.24) 
3 3 ' 

Q, "c3T ̂ -+- D ^ . Q ' ̂ = Oy (5.25) 

CQo^^O Q-^T. 4 = Oy (5.26) 

-^ ' zz O . (5.27) 

(Compare the constraints (5.25) and (5.26) with (4.14) and (4.15) ). 
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This system is not conformally invariant under (5.12) but instead 

under a transformation similar to (4.16). Its solutions have no 

physical meaning and are given the name of ghosts. Those which are 

divergenceless are associated to the nonunitary infinite represen­

tations D(2,2) and D(-1,2). 

The role of Transformation (5.12) amounts to mix up both subspaces 

of solutions. Therefore conformal invariance in 3+2-de Sitter li­

near gravity keeps up with inevitable appearance of ghosts. 

ii) Minimal structure. 

Let us now try to recover the minimal structure 

(3.11). It is then necessary to impose the following conditions on 

solutions to the system (5.4)-(5.7) : 

2). ̂ T- 4 = 0/ (5.28) 

Jfc' _ o (5-29) 

(Q,- 6) Q.-fe = O • (5.30) 

They are compatible with (5.5)-(5.7) and considerably lighten (5.4) : 

(Q4-6)(Q^-4)i + 1 - D ^ . & = o - (5.3D 

Droppina the operator (Q^-4) by usincr (5.30) yields Eq. (3.5) with 
z ~ a 

the "good" gauge-fixing c = -=•. 
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