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MICROLOCAL HEAT KERNEL ASYMPTOTICS AND INVERSE SPECTRAL PROBLEMS.*' 

I. Reduction to the Boundary and the Asymptotic Expansion. 

Stig I. Andersson, Christian Hogfors, Bo Pettersson 
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0. Introduction 

Given a partial differential operator (PDO), P(x,D) on a mani­

fold M, 

P(x,D) :C°°(M) -• C°°(M) 

the most obvious question to ask is what the spectrum, a(P), is. 

Various aspects of this question are usually called the direct spec­

tral geometry problem. Another possibility is to deduce, inversely, 

information about the operator P(x,D) assuming a(P) and M are known 

or to try to construct M from a knowledge of a(P) and P(x,D). These 

latter problem types constitute the essence of inverse spectral 

geometry. 

This paper will be concerned with two problems. That of recon­

structing the geometry and differential topology of M, given a 

priori (e.g. measured) information about spectral properties of 

a certain class of PDO's, and a kind of reduction process (via 

microlocalization). 

Work supported by STU (contract 85-0337OP) and STUF. 

This paper is in final form and no version of it will be submitted 

for publication elsewhere. 
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The applications we have in mind concern essentially the recon­

struction of the shape of bodies from knowledge (mostly inprecise) 

of their vibration spectra. In the present paper we shall present 

the mathematical basis and the applications will be the subject of 

some forthcoming publications. 

Mathematically, we shall be dealing with manifolds M having a 

boundary dM-H (except for Sect. 4) and corresponding boundary value 

problems for P; 

P(x,D)u(x) = f(x) in M 

B.u(x) = g .(x) on dM , 

f e C (M), g. e C (6M) given together with the boundary operators 

B. : C°°(M) -• C°°(dM) 

At the expense of more involved notations, the situation of having 

sections of vector bundles (i.e. locally vector-valued functions), 

instead of simply functions, could also be handled. In general one 

would have to make sure that such a boundary value problem is solv­

able by imposing conditions of e.g. ellipticity. 

Assuming knowledge of the spectrum a(P), it is possible to 

identify certain spectral invariants, attached to P, with geometric 

quantities. The way this is done is by considering suitable 1-

parameter families of functions of P and to look for the asymptotic 

behaviour in the parameter. 

There are various possible choices for these 1-parameter fami­

lies of functions of P, but the one we shall use is the O-function 

of P, 

0 (t): = tr(e"tP) , t>0 
P 

—tP Clearly, not every P(x,D) would make e a trace-class operator, so 

care has to be exercised in defining 0 (t). 

As for asymptotic behaviour, one could imagine studying two 

different kinds of asymptotic behaviour for 0 (t), viz. t->0+ and 
P 

t++«. Obviously this would correspond to considering very large 

spectral values and very small spectral values respectively, in view 

of the fact that for P self-adjoint; 
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-t\. 
9 (t) = J e , {\.} eigenvalues of P. 

In fact, one can show: 

. . p projection operator onto the eigenspace 

t+«> e = 

correponding to the lowest eigenvalue 

Substantial geometric information is obtained by considering instead 

the asymptotic expansion for small t, i.e., 

U S +
e P ( t ) • <°--> 

We shall here demonstrate a new expedient way to derive the form of 

this asymptotic expansion for suitable classes of operators P(x,D) 

and suitable boundary conditions. 

It is well-known that in considerations involving the t+0+ 

asymptotics of '0 (t) (for say P a differential operator with 
P 

positive principal symbol), no more information is gained by 

studying increasingly complex kernels of this type, like e.g. 

-tQ9(P) 
tr(Q1(P)e

 Z ) (0.2) 

Q. , i=T,2 polynomials (with positive definite highest order coeffi­

cient). It turns out that the asymptotics for (0.2) is essentially 

given by polynomials in the coefficients of the asymptotic expansion 

for (0.1). 

This paper shall also be concerned with going in the opposit 

direction. Given P, are there more basic information constituents 

(obtained by asymptotic expansion), the synthesis of which yields 

the same information as the asymptotics for (0.1)? 

In view of the considerable difficulties involved in computing 

the expansion coefficents in the asymptotic expansion for (0.1), 

such a reduction process would be of considerable interest, not only 

structurally, but also computationally. The possibility of such a 

reduction is suggested by microlocal analysis. 

The interesting situation is that of a manifold with boundary. Since 

however the microlocal study of boundary problems is poorly develop­

ed (c.f. [Mel]), we shall as far as microlocalization is concerned 

in Section 4, consider only the case of a closed manifold. 
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A natural framework for 0p(t) is the mixed problem 

(lt + PB ) u(x't} = ° ' M x R+ 

u(x,0) = uQ(x) , Mx{0} (0.3) 

B u(x,t) = g.(x,t) , 5Mx R+ 

where the domain of P (x,D) would naturally be 
B 

D(P ): = {u e C°°(Mx R,): B. u = g. on 9Mx R,}. 
B + J 3 + 

Formally, the solution to (0.1) would be given by the semigroup: 

"tPB R 9 t • e 

i.e., the object we are interested in. 

For nontrivial manifolds M, exact solutions to (0.3) are not 

available, of course. To construct the asymptotics for 0p(t) it 

suffices however to have an approximate fundamental solution, a 

parametrix for the heat equation corresponding to P (in a sense to 

be made precise shortly) and such objects can be readibly construct­

ed. 

Before we proceed to the construction, some general remarks on 

the underlying strategy for obtaining geometric information out of 

spectral and analytic data, are appropriate. We shall for elliptic 

self-adjoint P of second order obtain asymptotic expansions (AE) of 

the form 

^ 0 + S
( t ) ~ ( 4 l t t ) " n / 2 t I a.tj/2

+ I p.tj/2} (0.4) 
J/2 eN+

 J jeN+
 3 

Here, the coefficients {a.} and {(3.} can be explicitly expressed in 

terms of the symbol P in M and on 5M respectively. On the other 

hand, {a.} and {p.} are also expressible in terms of the geometry of 

M (in case of {a.}) and the extrinsic geometry of 5M (in case of 

{(3.}), e.g., induced metric on 5M, second fundamental form. 

In fact the coefficients in (0.4) are local Riemannian invari­

ants and can be expressed as (universal) polynomials in terms of the 

curvature and its covariant derivatives. 
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Recalling, that for P self-adjoint, 

-t\ . 
ep(t) = l e 3 .- j 

ť j Xea(P) 
e tXmult(\) (0.5) 

(mult(\) = multiplicity of \ea(P)), we have the simple 

Lemma 0.1: 0 (t) and {x., mult(\.)} determine each other uniquely. 
p D 3 

Proof: It suffices to note that (assuming the lowest eigenvalue to 

be simple) 

. 0 for \>u 
tt- (<yt)-l)e = mult(n) for \=u 

«> for X < u 

Remark 0.2: The existence of (0.5) (in the distribution sense), is 

part of the theory to be presented below. 

Since 0p(t) determines {a., p.} via the AE, we obtain the following 

situation: 

spectral data 

{\ .,mult(\.)}«=* p(t)—-> { a ., в . 

geometric data 
(universal polynomials 

/

in curvature and its 
covariant derivatives) 

analytic data 
(polynomials in symbol 
of P and its derivatives) 

Remark 0.3: Strictly speaking, as will be seen in the precise formu­

lation below, the theory gives us (a.(x), p.(x)} and they are the 

quantities which should appear in this diagram instead of 

/ a.(x)du / ßЛx)dv 
M ðM 

In realistic situations of the kind we have in mind for our applica­

tions, one never has complete spectral information but only truncat­

ed spectral data: 

{X^multU^J^Q N<» 

To deduce information about the geometry from truncated spectral 

data requires some extra considerations. This question is in fact 

related to the question whether there exist operators P such that 
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the corresponding AE (0.4) breaks off after a finite number of 

steps, i.e., {a., p.} all zero for j>N. Obviously such a behaviour of 

the AE can result also from properties of the geometry. If, e.g., 

N=l it is known that M has to be flat. This question and related 

problems will be treated in forthcoming publications. As for general 

references on spectral geometry and heat kernels, we refer to [GiJl] 

and [Gr]. 

1. Parametrices and Reduction to the Boundary 

We assume from now on that M is a compact C -manifold of dimen­

sion n with C -boundary 5M. Furthermore, P(x,D) is a second order 
CO 

elliptic operator with positive principal symbol and C -coefficients 

and B is a C vector field on dM. 

We shall be concerned with the mixed problem: 

Lu(x,t) = (|t + P(x,D))u(x,t) = 0 , M x ]0,oo[ 

B u(x,t) = 0 , dM x ]0,»[ (1.1) 

u(x,0) = uQ(x) , M x {0} 

The problem (1.1) is local, so by a suitable local change of coordi­

nates we could always work in a chart where; 

M = { ( x ' , x ) e R n - 1 x R | x >0} 
n n ' 

P(X'D) - " . I , aj.k°° W f c + I c*(x) wr + d (x ) 

j , k = l J ' j k k = l k 
B= S V x , ) i ir (1-2> 

k = l k 

By the same local change of coordinates we could also achieve that 

a .(x',0) = 0, j<n, which we shall assume from now on. We consider 

here the 'localized problem and in Section 3 we shall show how 

to obtain global information by a partition of unity-argument. So 

locally we have the mixed problem: 

L u(x,t) = 0 , x = (x',xn) e R
n"1x R+ , t>0 

B u(x,t) = 0 , x = (x',0) , t>0 ( 1- 1 )
L 

u(x,0) = UQ(x) , x = (x',xn) e R
n"1x R+ , t=0 
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L = I--- + P and B, P given by (1.2). 

Def. 1.1; A fundamental solution to (1.1) is a function K(x,y,t) on 

MxMx ]0,<-> [ , C in t and C in x, such that 

L K(x,y,t) = 0 , MxM* ]0, <->[ 

B K ( x , y , t ) = 0 , 5MxMx]0,<->[ ( 1 . 3 ) 

K ( x , y , 0 ) = 6 ( x - y ) , M X M X { O } 

Note; Here we write for the sake of brevity M, 6M instead of the 

correct local versions of these objects. 

Given a fundamental solution, (1.1) would be solved by 
Li 

u(x,t) = / K(x,y,t)u (y)dy 
M 

and for the inhomogenous version of (1.1) , say with Lu=0 replaced 
L 

by Lu(x,t) = <|>(x,t) on Mx ]0,<*>[, we would have 

t 
u(x,t) = / K(x,y,t)u (y)dy + /ds / K(x,y,t-s)<j>(y,s)dy . 

M 0 M 

To solve (1.3) for non-trivial M is hard and, as pointed out in the 

introduction, is also not necessary for our purposes. The relevant 

concept is instead that of a parametrix. 

Def. 1.2; A parametrix of order N for L on M is function K(x,y,t) e 

C°°(MxMx]o,«>[ ) such that 

L K(x,y,t) = 0(t ), uniformly in x on MxMx]o,«>[ 

B K(x,y,t) = 0 , 5MxMx]o, <->[ (1.4) 

K(x,y,0) = 6(x-y) , M x M x (o) 

The construction of parametrices will directly lead to AE of the 

kind indicated in the Introduction. 

The first step in constructing K is the splitting ansatz, 

K = K0 " Kb 

(K = "free" part and K the boundary part). The problem (1.4) then 



100 STIG I. ANDERSSON et al. 

breaks up into two pieces: 

uN/t-n/z 

(A) 

LxK0(x,y,t) = 0(t"
/u "'") 

K0(x,y,0) = 6(x-y) 

LxKb(x,y,t) = 0(t
N/2"n/2) 

(B) BxKb(x,y,t) = BxKQ(x,y,t) , xedM 

Kb(x,y,0) = 0 

To solve (A) and (B) we shall employ the technique of reduction to 

the boundary (c.f. [Be], Chapter 3.7). 

Before going into the details of this construction, let us fix 

some facts and notations concerning symbols and symbol classes, 

including some basic techniques from the' theory of pseudodifferen-

tial operators (for a good reference, c.f. [SubJ). 
2 

The symbol of P(x,D) will be p(x,£) = J a .(x,£) where 
j=o --" 

a_ . (x,£) is homogenous in £ of degree (2-j). By ellipticity of P we 
-* ~~J 

h a v e a ( a , £ ) * 0 f o r £ =1- 0 . The symbol o f L , 1 ( X , £ , T ) i s t h e n g i v e n 
b y 

l 2 ( x , ~ f x ) = ( i x + a 2 ( x , C ) ) 

1 2 _ . ( X , ^ , T ) = a 2 _ . ( x , £ ) , j * 0 

1/2 Note that L I X J ^ T ) is homogenous of degree 2 in (£,T ). 

Def. 1.3: A function a(x,£) e C (MxR ) is said to be a classical 

symbol of order m if one has the following asymptotic expansion 

a(x,£) ~ I am .(x,£) , (1.5) 
1-0 m~" 

where a . (x,£) is positively homogenous in £ of degree (m-j), i.e. 

a . (x,t£) = tm_:,a .(x,£); t>0, (x, I) e Mx(Rn {o}). We shall denote m—3 m—j 

the set of classical symbols of order m by S (Mx R ) (or simply 

Sm(M)). 

Remark 1.4: The notation ~ in (1.5) signifies that for any £>1 

A-l 
a(x,£) - I a .(x,£) c Sm'\ 

j=0 m J 
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Given a classical symbol a e S (Mx R n), we shall associate with it a 

classical pseudodifferential operator A of order m, by 

Au(x) = / eix#Ca(x,£)uU)d£ (1.6) 

(ue the Schwartz space of rapidly decreasing functions). We shall 

denote by L (M) the space of classical pseudodifferential operators 

of order m. For the properties of such operators we again refer to 

[Sub]. We shall be interested in inverting the operator L and to 

describe the inverse, we need to consider symbols depending on a 

parameter and we also need the basic results concerning composition 

of operators (again we refer to [sub]). Let L have symbol q(x,.€,x) 

for which we assume the asymptotic expansion 

q(x,£,T) ~ I q 9 .(x,I, T) 
j=0 ~- D 

1/2 with q 9 . homogenous of degree (-2-j) in (£,T ) i.e. 

q2_j(x,t^t
2T) = t " 2 \ 2 _ . ( x , ^ i ) , t>0 

The calculus of pseudodifferential operators now gives: 

x-l q_2(xf£fт) = (iт + a2(x,Ç))" 

q_2_p(x,š,-0 = 

(1.7) 

= -(iT+a9(x,C))" I a? 19 v(x,S,T)D*q_9 .(X,5,T)/OI 
2 k+j+|a|=p l 2"k x 2 3 

j < P for p>0 . 

In fact, for p>0, (1.7) can be compactly written as 

Pt1 -A 
q 0 (X,£,T) = I C9 (x,£)(iT+a9(x,!;)) • (1.8) 
--c-p j ^ = 2 *#p -

C (x,C) is here a polynomial in p(x,£) and its derivatives up to a 
X., p 

certain order depending on I and p. We shall use (1.8) shortly in 

connection with higher order corrections 

Solution of (A); Extend the problem to MxMx R by 

K0(xfyft) = K0(x,y,t)x(t>0) 



Lemma 1.5: With the above definition of Kn (x,y,x) and \.(x,y,t), we 
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(x(t>0) = characteristic function for the t>0 region). A simple 

calculation gives the jump formula: 

LK+(x,y,t) = (LKQ)
+(x,y,t) + KQ(x,y,0)6(t) = 6(x-y)6(t) 

(since we would like (LK ) = 0 ) . So our problem is solved by 

K+(x,y,t) = L_1{6(x-y)6(t)} = J e i < X " y ' ^ > + i t T q ( x , I , T ) d £ d x (1.9) 

In view of the asymptotic expansion for q(x,£,-) it is useful to 

define 

K + (x,y,t):= I / e -
< x - y ^ > + i t ^ q (x, I, x)d^dx:= \ \°(x,y,t). 

U W j=0 Z~J j=0 3 

From this one easily verifies 

Lemm 

have 
n-j _n-j 

0 2 2 
1. \.(x,x,t) = t \.(x,x,l): = t a.(x) 
2. a.(x) = 0 , for j odd 

3. K (x,y,t) is a parametrix of order N (c.f. Def. 1.2), 

_n N+l 
+ + 2 2 

4. |KQ (x,y,t) - K Q N(x,y,t)| _< C t , uniformly in x. 

Asymptotically, we therefore have 

- n / 2 + — 
+ , _, tr+ f _ \ _L r. / _ 2 \ f o r t small and 
K 0(x, y /t) = K M(i,y,t) + o(t ) u n i f o r m l y i n x. 

Theorem 1 . 6 ; On the diagonal we have the asymptotic expansion 

K 0(x,x / t) t~ Q + I t ~ n / 2 + j / 2 a j ( x ) ( 1 . 1 0 ) 
--- eN 2 + 

Remark 1.7: We shall see that a.(x) can be explicitly computed as 

polonomials in the symbol of L. The asymptotic expansion (1.10) can 

be integrated to yield 

0 (t) = tr(e~ t p) = / K (x,x,t)dx ~ I t " n / 2 + j / 2 a (1.11) 
M ieN 

2 + 
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3 M 3 0 
From the definition, a.(x): = \ (x,x,l) 

with a..: = J a..(x)dx. 

x_ 

j+1 
Je1Tq_9 .(x,C,x)d^dT = I Je1Tc9 .(x,I)(iT+a,(x,I))~*d£dT = 

A=2 ' 

j+l , -a,(x,5) 

" J2
 /d5 c * . j ( x ' 5 ) TT^rrr e . J > O . 

-a2(x,^) 
In particular an(x) = J d£ e , which can be easily computed 

to yield 

1 n * 
a (x) = -s- r(-=-) J d£ , i.e. a kind of volume in T (M). 
0 2 2 a2(x,5)<l 

In fact for a compact manifold without boundary (locally just 

an open subset of Rn) , the volume is of course the basic geometric 

quantity to be measured. The other coefficients a.(x), j>0 can be 

associated to more refined geometric quantities. However, before 

going into this, let us derive the analogue of (1.11) for problem 

(B). 

Solution of (B); In a manner analogous to what we did when solving 

(A), we here extend the problem to M*Mx]0,-«>[ by 

K^(x,y,t) = Kb(x,y,t)x(xn>0) 

which immediately gives the jump formula 

LKb(x,y,t) = 

(LKb(x,y,t)))
+ + g0((x',0),y,t)6(xn) + g±((x',0),y,t)6'(XR) 

where (keeping the local normalization a .(x',0) = 0 for j<n in 

mind): 

&K 
g0((x'0),y,t)) = -ann(x',0) - ^ ((x',0),y,t)+cn(x",0)Kb((x',0),y,t) 

n 

g1((x'0),y,t) = -ann(x',0)Kb((x',0),y,t) (1.12) 

Now, (LIC) = 0 gives the formal solution 

K^(x,y,t) = L"1{g0((x',0),y,t)6(xn) + gx((x',0),y,t)6'(xn)}. (1.13) 
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Additionally, we have the boundary conditions: 

lim +. . 
x -o- V^Y'

0 = ° n 

(1.14) 

n 

In fact, "forgetting" about the derivation of (1.12), we have the 

following reduction to the boundary result, which is basic for our 

approach 

Theorem 1.8: Define K (x,yft)e C°° (M*Mx]0f«[ ) by (1.13). Under the 

conditions (1.14), g and g are then given as solutions to the 

pseudodifferential equations on dM: 

gn((x\0) =- 0(x
,,Dx,Dt)g1((x

,
f0)fy/t); 

(1.15) 

Q(x',Dx,Dt)g1((x
,,0),y,t) = B_,KQ( (x1 f 0) f yf t) 

Here 0 and Q are elliptic pseudodif ferential operators of order lf 

the explicit forms of which we shall give below. 

Proof; A partial Fourier transform in (1.13) gives (forgetting about 

factors of (2u)): 

K^(x,yft) = 

(1.16) 

/eix^+itTq(xf^T){g0((_
,,0)fyfT)-i^ng1((C',0)fyfT)}dCdT 

with q ~ _ q_2-j-

Writing: 

lim r ix*l_+itT , _ .A ,, _ , _. %_-._ R0 g0 : = x +0- J e q(xf C,T)g0((^'f0)fy, T)d^dT 

R, 
lim r ix#£+itт urn r IX»C,-I-I_T ,

 r
 , .

 r
 r< / t v t -. \___ 

1
9
1

: =
 x +0- >e

 q(x
f
 ̂

f
 T)iC

n
g

1
((C0)

f
y

f
 T)d^dT 

n 

the first relation (1.14) amounts to R-g
0
 = R,g,. To render these 

expressions the form of psdo on 5M, we need to carry out the £ -

integration and carry out the limit. To this end we write: 
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R0(x\Dx\Dt)g0((x\0),y,t): = 

/ eÍX,#C,+ÍtTp°(x\C\T)g0((^,0),y,T)d^dT 

R1(x\Dx\Dx)g1((x\0),y,t): = 

/eix,#^,+itTp1(x\^\T)g1((C\0),y,T)dC
,dT 

with 

ix £ 
p°(x'.l\x):^0_ Je n nq(x,5,T)dCn ~ I P^U'.V, т) 

.. ix 5 . 
P1ix',l'.t)t- x

x
™

0
_ Je

 n n
(i?

n
)q(x,|,t)d5

n
 ~ IPZAXW.*) • 

n 

-, • ix Z, 
Here, p . ( X \ £ \ T ) : = i m Je nq Ax,£,T)d£ and 

" 1 " 3 x ->0- J 

n 
(1.17) 

i • ix £ 1 / i * i \ lim r n n, . „ x , „ ..,_ P .(x\£\x): = J e (i£ )q_« .,(x,£,T)dl_ 
"J x +0- J n 

n 
1/2 are homogenous in ( £ \ T ) of degree (-1-j) and (-j) respectively. 

This is seen as follows; 

ix £ 
p°. . ( x \ U \ t 2 T ) : = l i m Je n nq '. (x. ( « \ *n) . t

2T,dE = 

n 

ix t3 0 
l i m <• n n , .-..-- \.j»-

= x *o- '
e q_2_j(x,tC,t T)td^ = 

n 
ix tl 

.-1-j Ü m ţ n n / ч ,-
t
 x + 0

- '
e <3-2-j

(x'5^)đÇn 

By a simple derivation argument or by actually computing the residue 

(using (1.8)), one sees that 

ix tC 
lim r n n / ,- \ J *-
x .0- '

e <J-2-j ( x'^><H n n J 

is actually independent of t. 

Consequently; R e L (5M*R), R.. e L (&M*R) with symbols p eS (dM*R) 
1 0 and p e s (dMxR). 
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To highest order we have: 

_ . . ix _ -. 
P__<x\«\-) = _x™ / e n n(lT+a_(x.C))'1d5n 

n 

P_(x\C',-) = ^™ 0_ / e " n n(« n>(i-+a_<x,5)>"
1dC n 

(1.18) 

Now, as a function of _ f I -• (iT+a.(x,£)) bas two simple zeroes, 

n n _ 
l i A x , . ' , ; ) i n t h e u P P e r h a l f - p l a n e s . I n f a c t iT + a - ( x , _ ) = ± l o w e r -
a n „ l x ) ( V ^ ) ( V ^ » ' w h e r e J a j n ( x U j + J a n k ( x ) ^ = 
- a ( x ) ( i _ _ - p ) , s o t h a t on- 5M (x = 0) we g e t 

| i _ ( ( x \ 0 ) f „ \ T ) = - j i + ( ( x \ 0 ) f _ \ T ) ( 1 . 1 9 ) 

(due to the normalization chosen, a. (x\0) = 0 , j=Fn) . Also, 
_n 

_ a ( x ) £ . l _ . + i T = a (x)n ̂ so that for x =0 we have 
j,k*n - K 3 K nn + n 

H . ( ( X \ 0 ) , _ \ T ) = i a n n(x\0)'
l / 2{ _ a. v(x\0)^.^ v+iT}

l / 2 

+ nn ^ k + n _k j k 

(1.20) 

Obviously ji+((x
1
 f o), 3 * f T) are elliptic symbols of order one, 

»i ±((x\0),«\t
2T) = ^ ± ( ( x \ 0 ) , _ \ T ) 

Similarly, 

9a 5a9 

jrJ ((X\0),(_\H +((X-0),5\T)) = jfA/- _IL = 
°Si ~ ° n %TT*± 

x =0 
n 

= 2a n n(x\0)ii ±((x\0),s\T) 

is also elliptic of order one. As for (1.18), a simple residue 

calculation now gives: 

ix ii 

D° (x« _' T) = lim e n -i - 1  
p__lx ,*_ , T ) Q _ e - _ _ ( x \ 0 ^ ( ( X \ 0 ) , * _ \ T ) 

n _ z _ * ann -
n 
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1, , ,, . lim lxn"- 1't- i 
P 0 ( x \ ? \ O = . ,0_ e - 2 ann(x\0) 

n 2 , r . nn 
aT Un=,i-) 
n 

R , R. are hence elliptic and R0gn = R,g, yields immediately the 

first relation in (1.15) with 

9(x\D \ D + ) : = R Q 1 ^ e L1(5MxR) 

which is obviously elliptic. Explicitly, assuming RQ e L (&M*R) has 

symbol r(x\E\x) with expansion 

r(x\^\T) ~ I r 1_ j(x\C\T) 

1/2 r . ( X \ £ \ T ) homogenous of order 1-j in ( £ \ T ), so that 

r1(x\C\'-) = (p_1(x\^\T)"
1=2ann(x\0)u_((x\0),^\T) , 

r1_.(x',l% . T) = 

= - ( P ° , ( X \ 5 \ T ) ) " 1 I 5* p° . ( x ' ^ ' . O D ^ r - f ( x \ 5 \ T ) / o l 
"-1 k + A + | a | = j l " 1 _ k X l r l 

Then, denoting the symbol of 0 by 0 ( X \ I _ \ T ) we shall have an asymp­

totic expansion 

0 ( X \ S \ T ) ~ I e 1 _ j ( x \ c \ T ) 

w i t h 

9 Ax'.V.x) = I 5" r - _ ( X \ S \ T ) D" p 1 ( x \ £ \ T ) / a l 
1 " : ) k + * + | a | = j l 1 _ k X " l 

I n p a r t i c u l a r , f o r t h e p r i n c i p a l symbol we o b t a i n 

0 1 ( X \ 5 \ T ) = r 1 ( x \ C \ T ) p 1 = i a _ ( ( x \ 0 ) , ^ \ T ) 

The second relation in (1.15) is obtained by exploiting the second 

relation in (1.14). Let us consider 

1 im _ ., +/ . % 1 im v> -_/.% & -.- + / \̂ 
x -o+ B

x
K b ( x ' y ' t } = I b k ( x } dx" Kb ( x ' y ' t } 

xn u + x D x +0+ k=l K oxk D 

n 
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From (1.16) we obtain 

lim V , , . % r ix*^+itT r._ , _ x , 9 / - xl 
x + 0 + .-.

 bk ( x '/• Uekq(x.5.0+--r-q<x. ..-)}» 
n k=l k 

(g0((^
,,0),y,t)-iCng_((CO),y,T))dCdT = (A0+A__)g0 + (H_+H0)g1 

H e r e , - 0 # H 0 e L ° ( 5 M X R ) , ___-_ e L - 1 ( dMxR) a n d Ĥ ^ e L 1 ( 5 M x R ) h a v e 

s y m b o l s 6 ° ~ I 6 _ . , T)° ~ I n _ . , 6 " 1 ~ I a ] ] 1 , , a n d r,1 ~ I H ^ r e -

s p e c t i v e l y . E x p l i c i t l y : 

6 _ . ( x - , 5 ' , , ) : = J ^ I b k ( x ' ) / e 1 X n 5 n U k q _ _ _ ( x . C . O d 5 n . 
J n k = l J 

r , _ . ( x - , r . , ) : = ^ 0 + ! ^ ( x ' ) / e " n 5 n ( - i 5 n ) - S | - q _ 2 _ j ( x . C . T ) d 5 n , 
J n k = l k J 

6 _ _ _ . ( x - , 5 ' . . ) . = _ _ - . _ b ( x . ) / e
1 X n 5 n » q _ ^ < _ , , , , _ , „ , 

J n k = l k J 

I ^ U ' . ? ' . - ) . - ^ J bk(x')/e1 X nS^n q_2_.,(x. ..-)d.n • 
J n k = l J 

( 1 . 2 1 ) 

H e r e 6_ . , H - _ _ - # H__ • a n d 6_-__ . a r e h o m o g e n o u s o f o r d e r - j , 1 - j , - j 

a n d - 1 - j r e s p e c t i v e l y . T h i s i s s e e n a s f o l l o w s ; 

n 1
1 - j ( x , , t c , , t 2 T ) = 

- ""(>+ J n
b k ( x , ) hXnSt^)lnq UAtV.ln).t2,)*ln = 

n k = l J 

= x̂ CH ? V"'> / e"ntCn<«k)(ten)q_2__(x.t,.t2-)td.n = 
n . k = l J 

= t l _ j x̂ CH ! V X < ) / • " " ^ V n q_2_j(x. . .-)d.n , 
n K—l 

and again one sees that 

n k=l 

does not depend on t. Analogously for the other symbols. Denoting 
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An+A_, = S0 and H0+H, = 2,, we have 

xir^0+BxKb+(x'y't) = S0g0 + Slgl ' S 0
e L ° ( d M x R ) ' S1eL

1(aMxR) 

and both being elliptic. This is seen looking at the symbols 

C ° ( X \ S \ T ) = 6 0 ( X \ 5 \ T ) + 6 " 1 ( X \ C \ X ) ; 

C 1 ( X \ 5 \ T ) = r)°(x\^',T) + T1
1(x\C\'u) , 

which have principal parts; 

C 0 ( X \ £ \ T ) = 6 ° ( X \ C \ T ) = 

- 2an||(x\0)
 (

k L
b k U ' ) U k ^ ( (x\0)^\O + * bn ( x , ) ) 

C J ( X \ 5 \ T ) = r,1(x\£\'0 = 

° 2 a 1(x\0)(J bk(x')Vbn(x')u+((x\0),C\T)) . 
nnv k<n 

Using now the relation g = 0 g., we obtain: 

lim B, K. b
+(x,y,t) = (SQ + S-^g^ : = x +0+ k n 

= Q(x\Dx',Dt)g1((x\0),y,t) , 

which is the second relation (1.15). 

Obviously; Q(x\D \D.)e L ( 5MXR) and for the symbol we have the 

expansion 

I V 1 w ~ -• wl-j 

where, 

a )
1_j

( x' ,S\ T) = 

I 5", C° (x',C\T)D^,01_A(x',C\T)/al + C1, 
k+£+|a|=j 

and principal symbol 
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C O 1 ( X \ 5 \ T ) = C 0 0 x + C1 = 

° a (i-,0) ( J V-' ) «k + b n ( x , ) M< - , ' 0 >'5' . ' . ) ) • 
n n k<n 

This ends the proof of Theorem 1.8. 

The formalism which has been set up for the proof will now 

easily yield the asymptotic expansion for K (x,x,t). Our next step 

is therefore to prove the analogue of Lemma 1.5. The calculus above 

will also yield the explicit form of geometric quantities. 

2. The Asymptotic Expansion for K, (x,x,t) 

This section aimes at proving results for K (x,y,t) analogous 

to Lemma 1.5. As a result we then also abtain the asymptotic expan­

sion for the total parametrix K = K-K, . 

The starting point will be Theorem 1.8. Solving for g in 

Q(x\D \D )g ((x\0),y,t) = lim0+BxK0
+(x,y, t) (*) 

n 

and computing g~ from 

90((x\0),y,t) = 0 (x\Dx\Dt)g1((x\0),y,t) , (**) 

we have all the information necessary to expand K (x,x,t). We are 

first only interested in homogeneity properties of gn ( ( £ ' , 0) ,y, t) 
-A 1/2 

and g ((£ \ 0) ,y, T) in ( £ \ T ' ) and such properties are almost auto­

matic from the calculus built up in the previous section. 

From (1.9), KQ (x,y,t) = L~ (x,D ,D ) 6 (x-y) 6(t) and we denote 
f (x, t)s6(x-y)6(t) so that f U , T ) = e"ly^. Let £: = B^L""1 with 
symbol a(x,£,T) = p(x\£) • q(x,£,T) (symbol product) where p(x\£) 

n 
= symbol B = £ b (x')i£ . Then x k = 1 K k 

lim 
x ľ0+ -Л+Cx.y.t) = ̂ V I(x.D

x
,D

t
)f (x.t) 

ix'•C'+itT
r
lim f

 l x
n^n ,

 r
 v

 l y
n^n л 

= Je [
x > 0 +

Je a(x,£,т)e d^
n
)f ,(^',т)dC'dt. 

П
. ix l -iy l 

Let Ф(x\Ç\т:y
n
) =

 x

i m

Q +
 Je

 n П
a(x,Ç,т)e n n

d^
n
 (pаrаmeter y^), 

n 
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and denote the corresponding operator by $(x*,D ' ,D.). Note that 

<t>(x' , t£' , t2T;t"1yn) = •(x',l;
,,T;yri)l a being of order -1. Using (*) 

and inverting Q we find that 

g^tU'iOhy, T) = (elliptic factor of order -l)-e"ly^ 

and from (**) 

gQ( U\0) fy f T) = (elliptic factor of order 0) •e"
1^. 

Lemma 2.1; K. (xfxft) has an asymptotic expansion 

n-3 
K+(x,x,t) ~ Q + l \*?(x,x,l)t 

jeN J 
л
b,„ „

 1 U
 - (2.1) 

+ 

Proof: Writing 

K
+
(x,y,t) = 

I J e i x ^ + i t T q _ 2 i ( x , ^ T ) { g 0 ( ( C , , 0 ) , y , T ) - i ^ n g 1 ( ( C O ) , y f T ) } d C d T 
J J 

b - i^ i 
:= £ k.(xfyft) we find that \.(x,x,t) = ̂t \.(x,x,l) by the usual 

change of argument combined with homogeneity properties of gnrg-, • We 

also find the analogous properties to those stated in Lemma 1.5, 

which gives the asymptotic expansion (2.1). 

We therefore have the asymptotic expansion for K=K -K ; 

K(xfxft) ~ t"n/2 { I t+j/2a,(x) + I tj/2^(x,x,l)} 
t+0+ j/2eN+

 J jeN+
 J 

(2.2) 

Furthermore, the calculus above yields computable expressions for 

the expansion coefficients a.(x), \.(x,x,l) to any order. These 

coefficients we shall identify with geometric quantities later. 

Note, that unlike the free case, \.(x,x,l) do not vanish in general 

for odd j. 

3. Global Results 

The construction has so far been purely local- (c.f. (1.2)). It 

is however a routine matter to show that the local results obtained 
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so far can be patched together to yield a global construction. For 

this, let {u } be a (finite) covering of M and Y a subordinated 

partition of unity. Define (writing K just for either K or K ) 

KNfv
(x'y't): = Yv(x)KN(xfyft)¥v(y) 

(where K are just the sum of the N first terms in the expansion of 

K) and globally 

K N(x fy ft) = I K v(x,yft) . 
v J' 

The construction above then yields (2.2) uniformly on M. 

4. Microlocalized Spectral Geometry for Closed Manifolds. 

As indicated in the Introduction, we shall in this section be 

concerned with a reduction process. By this process we shall break 

down the geometric information in asymptotic expansions for general 

P(x,D) to that associated with the 1-parameter semigroup of transla­

tions. 

The tools for the reduction process will be a combination of 

microlocal analysis and a simple semigroup argument. 

As for microlocal analysis in general, we refer to [Tr]. The 

essential idea is here that many objects in the usual theory of 

pseudodifferential operators can be naturally localized in the 
• * 

cotangent bundle T (M), not just in M. Locally in T (M) (microlocal-

ly) a considerable simplification in the structure of these objects 

can sometimes be achieved. A general PDO, say P(x,D) can, e.g., 

depending on the algebraic geometry of its characteristic set, be 
* 

microlocally reduced at a generic point in Tn (M) to operators like 

Dl' Dl + i D2 a n d Dl + i xl D2 ' (Dj ~ idx"~) 

(c.f. the more standard reduction of a non-degenerate vector field X 

to the form D locally). 

As usual, the global situation is controlled by inverting the 

transformations used and by patching together the local solutions by 

means of a partition of unity. 

For the sake of brevity we shall here only sketch the arguments 

and only in the case of a closed manifold (c.f. the Introduction for 
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dM*0). 

Let in t h i s s e c t i o n P(x',D) be an m:th order e l l i p t i c PDO w i th 

homogeneous (of order m) p o s i t i v e p r i n c i p a l symbol p ( x , £ ) . 

Theorem 4 . 1 ; The a s y m p t o t i c s 0 _ ( t ) j . ~ n + i s d e t e r m i n e d by t h e 

asymp to t i c s for 0 ( t ) . 
n 

l/m 
Proof: This reduction is done in steps. Let Q; = P , then Q is a 

first order psdo (pseudodifferential) with principal symbol 

p (x,£) . For elliptic first order psdo an asymptotic expansion 
m 
can be derived essentially as in the PDO case (c.f. [Du-Guil]). By 

the comment in the Introduction the asymptotic expansion for 0n(-) 

determines that for 0 (t). Hence we may study only © (t). Micro-
p * u 

locally at a generic point (xn,£n) e Tn (M) one can find an elliptic 

(in a conic neighbourhood of (xn#£0)) Fourier integral operator F 

(of any order) such that F QF" and D are microlocally conjugate 

(at (Xn*-Sn))
 t o each other (c.f. [Tr] p. 471). This means that 

(xn,S0) / u supp (FQF
 1-Dn) 

(where a supp (A) denotes the microsupport of A). So there exists a 

regularizing operator B e L (M) such that near (xn,£n), we have 

FQF"1 - D = B. Now, 0^(t) = tr(e"tQ) = trfFe""^"1) = tr(e"tFQF ) 
n U 

and near (x_f£n) this equals 

-t(D +B) 
trie n ) . 

-t(D +B) -tD 1 im n n — °° Clearly n Be -e II = 0 since B e L . This follows from 

-t(D +B) t -(t-s)Dn -s(D +B) 
e~ -e = / e B e ds and by the same argument 

0 
convergence in the trace-norm also follows, i.e., 

-t(Dn+B) -tD 
tr(e ) = tr(e ) , for small t. 

Hence, microlocally at a generic point we have for small t 

e (t) = eD (t) . 
n 

Remark 4 . 2 ; -~— i s of course t h e generator of t r a n s l a t i o n i n t h e x -
n 

d i r e c t i o n ( w i t h d o m a i n D = H , p ( i n t h e x - d i r e c t i o n ) ) , i . e . , 
n 
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- t D - t D 
e n f ( x ) = f ( x + i t ) , e h a s t h u s t h e i n t e g r a l k e r n e l 

K(x ,y ; t ) = ô(x - y + i t ) , 
n Jrn n ^n 

REFERENCES 

[Be] Beals M., Fefferman C., Grossman R., "Strictly 

Pseudoconvex Domains in Cn", Bull. A.M.S., 8, 125-322, 

1983. 

[Du-Guil] Duistermaat J.J., Guillemin V.W., "The Spectrum of 

Positive Elliptic Operators and Periodic 

Bicharacteristics", Inv. Math., 2^, 39-79, 1975. 

[Gil] Gilkey P.B., "Invariance Theory, the Heat Equation and the 

Atiya-Singer Index Theorem", Publish or Perish Inc. 1984. 

[Gr] Greiner P., "An Asymptotic Expansion for the Heat 

Equation", Arch Rat. Mech., 41, 163-218, 1971. 

[Mel] Melrose R.B., "Differential Boundary Value Problems of 

Principal Type", in Ann. Math. Studies 91 (Ed. L. 

Hormander) Princeton 1979. 

[Sub] Subin M. , "Pseudodifferential Operators and Spectral 

Theory", Springer-Verlag, (Berlin 1987). 

[Tr] Treves F. "Introduction to Pseudodifferential and Fourier 

Integral Operators", Vols I, II, Plenum Press 1980. 

(S.I.A.) RESEARCH GROUP OF GLOBAL ANALYSIS, CHALMERS UNIVERSITY OF 

TECHNOLOGY; S-412 96 GOTEBORG, SWEDEN. 

(C.H. and B.P.) DEPARTMENT OF THEORETICAL MECHANICS, CHALMERS 

UNIVERSITY OF TECHNOLOGY, S-412 96 GOTEBORG, SWEDEN. 


		webmaster@dml.cz
	2012-09-18T09:37:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




