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Riemann-Roch theorem after D. Toledo and Y.-L. Tong 

V.V. Schechtman 

To the memory of Vadik Knizhnik 

Introduction 

Local versions of Riemann-Roch type theorems attract much atten-

2) 

tion of mathematicians and, in the last time, physicists . Roughly 

speaking, the problem is to establish an equality between certain co-

homology classes, which asserts Riemann-Roch theorem, on the level 

of cocycles, for example for closed differential forms representing 

these classes. In the remarkable series of papers L1-4J Domingo To-

ledo, Yue Lin Tong and Nigel 01Brian gave a local proof in Cech co-

homology of absolute - RR-Hirzebruch, and relative - RR-Grothendieck-
v 

theorems in Cech cohomology. 

The aim of the present paper is mainly pedagogical. In it I try 

to explain the Toledo-Tong's proof of the absolute RR on the first 

nontrivial example of surfaces. 

Let X be a smooth n-dimensional complex algebraic variety, E a 

vector bundle on X. The Serre-Grothendieck duality theory gives a 
This paper is in final form and no version of it will be sub­

mitted for publication elsewhere. 

2) 
For one of the earliest (and the best) papers on this subject, 

see flO^; examples of recent results are [ll], L12I' L51• 
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canonical element 6(E) £. Hn(X, JL v) whose integral over X when X 
A 

n 
is compact is equal to the Euler characteristics 2L ("-•) dim H (X, E). 

i = 0 0 
Toledo and Tong construct a canonical Cech cocycle representing o(E) 
and prove that 

(0.1) o(E) = (ch E - Td( ^ x ) ) n 

where J is the tangent bundle, ch the Chern character and Td the 

Todd genus (see §2). They do it introducing the very interesting new 

homological technique of so called "twisted complexes" . Unfortuna­

tely, the last step of the proof is implicit: following the idea of 

flO>]/ they show that o(E) is some polynomial of Chern classes of 

E and Tx and then use the Hirzebruch trick to show that this poly­

nomial is equal to the r.h.s. of (0.1). In this paper are presented 

the explicit calculations for n = 1, 2. 

In §1 I carry out the calculation of 0(E) in the easy case 

of curves when there is no need of twisted resolutions. This section 

may be also useful as an introduction to L5J. 

In §2 are recalled the necessary facts from Grothendieck duali­

ty theory. In §3 is explained the theory of twisted complexes. 

In §4, which is the heart of the paper, I calculate directly 

o( (5v) for surfaces. This calculation allows to formulate a certain 
A 

amusing conjecture 4.8.1 which says roughly speaking that different 

higher homotopies appearing in the twisted Koszul-Toledo-Tong reso­

lution of the diagonal give rise to different summands in the exp-

1) 

Note that one of the key points of this theory - a theorem 

that every coherent sheaf has a twisted resolution by locally free 

ones, cf. 3.2.3.1, 3.3.4.1, - appears later (in an equivalent form) 

in [ll, 3.2.9. 
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ression of Todd genus through Chern character. 

Finally, in §5 I explain briefly how the previous technique 

may be used for generalisation of some results of ^5J to higher di­

mensions. 

This work is partly based on lectures given at Winter school 
V 

"Geometry and physics" held in Srni (Cechia), January 1988. I am ve­

ry grateful to its organizers, and especially to Vladimir and Jifi 

Souceks for their hospitality during my stay there. 

Notations. If X, Y are varieties, E (resp. F) - a sheaf on X 
* * 

(resp. Y) then we put E 13 F := p,E © PoF' w h e r e Pi : x * Y — > x / 

p2 : X * Y —*>Y are the projections. 

For a ring A <jt (A) = Mat (A) denotes algebra of m * m-matri-

ces with coefficients in A. 

Symbol • means the end of a proof or the absence of it. 

§1. Curves 

Let X be a smooth compact complex algebraic curve, E a vector 

bundle of rank m over X. Let (O = J-l denote the sheaf of holomorphic 
x 

differentials on X, J : H1(X,co) - ^ C Following [ll put E' = EV®u; 

where E v = Horn (E, (9 ) denotes the dual vector bundle. 
X k 

We also use the notation to f° r k-th tensor power of CO (for 
k < 0 cok = T S~ k, T = T v = U

v = the tangent bundle of X) . 
x 

1.1. The sheaf .? (E) . Consider the sheaf E a E* on X * X. By Kiin-

neth formula and Serre duality we have 
1 1 l • 

H (X *X, E B E') = £ H1(X, E) © H (X, E») = 
(l.l.D i =° ± 

= Z. H1(X, E) ® H1(X, E ) V = 21 End H1(X, E) 

i=0 

On the other hand, consider the sheaf E 0 E'/(E x E')(-A ) where 

A: X —-->X*X is the diagonal. This sheaf is equal to A*(EndE®U)). 

Let tr* denote the composition 
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H1(XxX, E H E») —-*H~(X x x, E a E ' / E ^ E ' l - A ) ) = 

= H1( Xy End E ® (J )
 t r >H1(X,co ) -> C 

1.1.2. Lemma. For f = (f°, f1) € End H°(X, E) © End H1(X, E) = 

= H1(XxX, E a E'), tr^f = tr f° - tr f1. • 

1.1.3. Now for a £ Z put (cf. ['5]) (P (E)~a = E la E1 ( (a + 1) A ) / 

9 ( E ) a , b = (P (E)^/ 9(E)'a (a ̂  b) . All (P(E)a'b are supported on 

and we consider them as sheaves on X. Also put (? (E) = {J fp (E)~a, 
a 

<P(E)a'°° = \J CP(E)a'b. We have (P (Ef"1 = E a E \ (p (E) _ 1' a = 
h'z a 

J)(E)^a : = the sheaf of differential operators E —=> E of order •£ a; 

JP(E)-1' =cD(E) := Uj)(E)"a. We denote by sym projections 

a 

^( E ) - 3 — > rP(E)isa/(p(E)-a~1 = (T ®a ® End E. We have the exact se-

quence 

(1.1.4) 0 —-> E ta E" —-* tP (E) —-» £)(E) — > 0 

Let 3 : H°(X, Dt{EJ ) —->H1(X, E a E') = "1 E n d H1(X, E) be the 

corresponding coboundary map. 

1.1.5. Lemma. For D € H°(X, D ( t ) ) 9(D) is the endomorphism 

in cohomology induced by D.d 

1.1.6. Corollary. Let 

0 —*> to —-> D(£) —-} D(E) — 7 0 

be the extension induced from (1.4.4) by E 0 E1 —>(P(E)~ '" — - ^ U ) . 

Then for D fc H°(X, D ) J 3(D) 6. € is equal to 

t r D lH°(X, E) -
 t r D I H ^ X , E)« 

In particular, J 3(1) = ]C (X, E) := dim H°(X, E) - dim H1 (X,E) . flj 

1.2. Atiyah algebras and Chern classes 

Put 

vA(E) = { 3 € J)(E)61 : sym(3) e Tx C T^ ® End Ej. 
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.A(E) is a Lie subalgebra of D(E) (where for Q-^o^ 6. «E (E) [dirdS]: = 

1 2 ~ 2 1^' i n f a c t ifc i s a L i e algebra of infinitesimal symmet­

ries of (X, E). We call Ĵ (E) the Atiyah algebra of E, cf. Q VI . 

We have an extension of -modules 
x 

(1.2.1) 0 —->End E —^J^(E) —-̂ > 3* —-^0 
X 

Let c(E) 6 Ext1( J"x, End E) = H
1(X, SL1 <2> End E) be its class. 

By definition, the first Chern class (style Atiyah) of E is 

c1(E) := tr c(E) where 

tr: H1(X, SL1 <2> End E) —-->H1(X, SL1) 

is induced by trace End E —-> (9 . 

If E is given by a Cech cocycle *? = ( 4>. •) €. Z1^, GL ( O ) ) on 
13 "* m x 

some open covering V = .̂U. *s of X then one easily sees that c(E) is 

given by cocycle *P . . d If. . , so 

(1.2.2) C;L(E) ={tr 4*"
1 d^ ± j = { ( d e t ^ i j ) ~

1 d(detM?
ij)\ 

1.2.3. Example. Choose a small open covering X = U U. with local 

coordinates x. in U.. Then the transition functions for J are 
1 . 1 x 

c(ij(xi) where x . = oC.^x.) in U.n U,, # = -^- , so c±(Tx) is 
_1 •• 1 

represented by a cocycle °< . . °< . . ( * .) 

1.3. Riemann-Roch. 

Theorem. % (X, E) = J (^ (E) + | c l ( T
X
) } 

Proof (Toledo-Tong). Let us calculate class o(l) in 1.1.6. 

Choose a small open covering X = U U. with local coordinates and 

trivialisations of E over each U.. 

Let U be an open from U with local coordinate x, hence local 

ay-m 
coordinate (x, y) in U * U. 1 is represented by — - — in Ux.U. 
(I € GL an i d e n t i t y . ) Under a change of coordinates x —> o< (x) , m m 
y — > <* (y) and a gauge transformation B £. GL it transforms to 
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-1 d * ( y ) d y m • - 1 " - 1 \ 
B(x) X B(y) = + ( -£ o< ±(x) * (X) + t r B(x) - B(x)j dy 

oC(y) - o«x) y " X 

3 ( 1 ) = j C l ( T x ) + c]_(E) 

on the level of Cech cocycles. • 

1.4. Algebras vA(E) . 

Put 

1(E) = { 3 * {?(E)'V(?(E)$"2; 6(3)£ ^ C r x < 2 ) E n d E } / ^ 

where 

5C:= ker(cL>® End E **>(*) - ->CO/^0) c ( J ® E n d E C {?(Er_1/(?(E)^"~2 

We have an extension 

(1.4.1) 0 —> D/dO > sA(E) -2-->,>(E) -> 0 

^A(E) as an algebra of infinitesimal symmetries of (X, E) acts on 

sA(E) and .A(E) with bracket .f0<,j3~=p(o<)(j3) becomes a Lie algeb­

ra - a central extension of ^A(E) by <J/dO . It plays a key role in 

relative Grothendieck-Riemann-Roch for families of curves, see[[5j. 

§2. Duality 

Let X be a smooth complete variety over C, dim X = n, u) := 

ILn, E a vector bundle of rank m over X, i : Y c—^X a smooth clo­

sed subvariety, dim Y = n - r. We put E1 = E v © U) where E v is 
x 

the dual vector bundle. 

2.1. Gysin map. In this n we follow the presentation of C^J. 

The restriction i*": H-1 (X, E) —->H-,(Y, i~*~ E) induces map of dual vec­

tor spaces H3(Y, i*" E ) v —=>H:I(X, E ) v which by Serre duality is the 

same as 

Hn"r"j(Y, (i*E)') —->Hn_j(X, E'). 

In other words we obtain maps 

(2.1.1) i : HP(Y, (i**E)») ->HP+r(X, E1) 
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According to GrothendiecK they can also be obtained as follows, 

£6] . Consider the spectral sequence 

uPiY Pvf^ 
p+q 

(2.1.2) HP(X, Ext (10 , E'))=^ Extv ( (9__, E») 
°X Y X Y 

q _ 
Since E is locally free, Ext ( 19 , E.') = 0 for q 7- r, and 

Vx 

E x t ^ ( (9y, E') = i*( A
r Ny) 8 E.' = i*( A

r Ny © i* E") 
X 

the normal sheaf of Y in X. Now from exact sequence 

V * .-» 1 /-. 1 

0 —=> NY —-7 i Jl x — > JL Y -?0 

f o l l o w s t h a t i u>x = u ) v © A r N y , s o A r N y <8> i*E* =" ( i E) • . Thus 

we o b t a i n i s o m o r p h i s m s 

( 2 . 1 . 3 ) R e s : E x t P ( U > v , E ' ) — > H P " r ( X , i * ( i * E ) ' ) = H P " r ( Y , ( i * E ) ' ) 

Then i ^ i s j u s t t h e c o m p o s i t i o n 

Res 
( 2 . 1 . 4 ) HP(Y, ( i * E ) ' ) —-==- •> E x t ^ r ( ( D Y , E') —7 Est***( (i?x, E') = 

= H p f r (X, E ' ) . 

2.2. Let us apply the above to the diagonal embedding -1: X —=> 

X* X and to the sheaf F = E' C3 E on X * X. We have (i*F) ' = 

End E, F1 = E a E 1, so we obtain maps 

_-i P + n 

Res : HP(X, End E) => Extv v( O , E a E1) 

In particular, we have a canonical element 

(2.2.1) Res"1(l) fe Extn^x( IDX, E a E') 

X 
Restricting it on X we obtain 

A* Res"1(l) e Hn(X, End E ® U^) — - ^ 7 Hn(X,Ux) 

2.2.2. Lemma (cf. 1.1.6). J tr A* Res_1(l) = %, (X, E) := 

2Î ("D1 dim HŁ(X, E) . m 
i=0 

So Riemann-Roch problem is to calculate the class 6(lp) := S< 
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t r A R e s ~ 1 ( l ) . 

(2.3) Theorem (Riemann-Roch-Hirzebruch-Grothendieck). 

o(lE) = (ch E - Td ^ x ) n 

where 7 is the tangent bundle, ch - Chern character, Td - Todd ge-x 

nus, (•) denotes n-th homogeneous component (see 4.2.3). 

The case n = 1 was treated on §1. In 4.9 we shall prove (2.3) 

for n = 2. 

2.4. More generally, one can define an n-dimensional analogue 

of the extension (1.1.4). To do this we use Grothendieck duality 

theory jj>J that generalises Serre duality. 

This theory asserts that on derived categories of complexes 
i 

with quasicoherent cohomology there exist functors Rf" : D(Y) -•> 

D(X) (for f : X —*>Y) right adjoint to functors of direct image 

with compact supports Rf, : D(X) — D(Y) (recall that if f is pro­

per then Rf, = Rf i{) , with the following properties. 

(2.4.1) If f is finite then Rf" M = R Horn - ( l9v, M) . 

(2.4.2) If f is smooth of relative dimension n then 

Rf: M = f* M ® COx/y Cnl, 

where ^v/Y = '"̂" x/Y "*"s a s^ea^ °^ relative n-dif ferentials, L6, 

ch. Ill, §§ 2, 6l. 

Let 

(2.4.3) Tr = Trf : Rf, Rf
1 > id D 

denote the adjunction morphism. 

For O ^ r ^ c?o consider the r-th infinitesimal neighbourhood 

of the diagonal A (r) : X ( r ) *X*X, X ( r ) = Spec (9V „ / Tr+1 
XK A ' J 

(r) (r) 

where J is the ideal of A. . Put p. ' = p.- A v ' where p. : XxX —-> 

X, i = 1, 2, are projections. 

It is well known that 

^ . ' ' - H O B ^ (p<rJ I5x(r), O x ) f 
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and more generally, for vector bundles E, F on X 

Diff(E, F) ~ r = Hpm(p;
(r) p^r) * E, F) , 

['9, 16.81. Thus we have by (2.4.1), (2.4.2) 

D<19)* r - R P ;
r ) 1 O x - R A ( r ) 1 R P ; O x - R A (r)I P* 60[n\. 

* 
(no te t h a t p , uJ = O ca di ) . So we have a t r a c e map 

Tr ( r ) : & ^ r ) .2)(l9)-r = A ( r ) R A ( r ) I p j c j ^ — ^ P ^ C - A . 

i.e. the canonical element 

Tr £ Extn^x CD(O) , p*tO) . 

Tensoring it by E a E v we obtain the canonical element 

Tr £ Ext^ x (D(E), E a E1) . 

Its Ioneda representative 

(2.4.4) 0 —-T Efl E' ->(?(E) —-*...—-> CT(E) —-> ZD (E) — > O 

is analogue of (1.1.4). Unfortunately it is well defined only in the 

derived category. In §5 we'll show using the method of Toledo-Tong 

how to construct a certain canonical "twisted" extension represent­

ing this element. 

Of course one has an analogue of 1.1.5: 

(2.4.5) Lemma. For D 6 H°(X, D(£)) 3(D) € Hn (X *X, E 0 E») = 

= *L» End(H (X, E)), where o is the coboundary operator correspon-
i 

ding to (2.4.4), is the endomorphism induced by D in cohomology. -• 

(2.4.6) The extension induced from (2.4.4) by 

E S E ' - "7 End E ®U) ^ ^ <--> ID /d.a11""1 

is an analogue of algebra wME) 1.4 (cf. [5 , 2.8]). 
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§3. Twisted complexes. 

3 . 1 . Twisted bicomplexes. Let A'*= {A p q J be a bigraded abeli-
p ,q fe * 

an group, t(A) the corresponding simply graded group, i . e . t (A) = 

= ľ. »?«- Let d : t (A) —*>t(A) be an endomorphism of degree +1. 
p+q=i 

It has components d = Z d . , d. increases the first degree by i, 

i . e . d. = X d f i , dpq . Apq _ > A p + i ' g - i + 1 . 

A pair (A, d) is called a twisted bicomplex if 

(a) d. = 0 for i <-. 0, i.e. d respects the filtration by the first 

degree on A. 

(b) d 2 = 0. 

Assuming the condition a), b) is equivalent to the equalities 

(3.1.1) d^ = O, d^d^ + djd^ 0, d d 0 + d,d, + d 0
d

л o 2 1 1 2 o 0, 

5,-A-i-o.... 
Thus, if d. = 0 for i > 1, we get a bicomplex (with anticom-

muting differentials d , d , ) . 

Let us denote H (A) the cohomology of A with respect to d . 

From the third equation of (3.1.1) follows that d..d, induces zero 

on H
T
(A). We have a spectral sequence 

(3.1.2) E
P q
 = HP

I
(H

q
(A)) = > H

P + q
(t(A)) 

were H denotes cohomology of d, on H . 

Remark. In practice (cf. for example 3.2.5.1) one often meets 

a system of differentials d. satisfying the equations 

r 
(3.1.1) • ZL (-D1

 d. d . = 0 
i=0 i r i 
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By modifying d. : d. = (-1) d?^ we get differentials satis­

fying (3.1.1). 

3.2. Twisted group actions. 

In this n we generalize a notion of a group action on a comp&x 

3.2.1. Let M* be a complex of abelian groups, End*(M*) = 

= Horn* (M*, M*) a complex of endomorphisms of M*, i.e. 

End1(M*) = Horn , , (M*, M"[i\), graded groups i -w ' 

for f £ End1(M*) 

(3.2.1.1) D(f) := [d , f 1 = df + (-1)1"1 fd. 

(3.2.1.2)/$J Agreement. In the following we assume that End'M acts 

on M* from the right; in particular (3.2.1.1) means in usual notations 

D(f)(x) = f(dx) + (-1)1"1 d(f(x)). 

3.2.2. Definition. Let G be a group. A twisted G-action on M* is 

a sequence of maps 

h± : G
1 -"7 End1"1(M*), i > 1, 

satisfying equations 

V e> = I đ
м -

i-l 
(3.2.2.1) Dh

i
(g

jL
,...,g

i
) = ZL (-1)

 3 (h±_1 (g±, . . . ,
g j
g

j + 1
, . .. ,g

±
) -

" V 9 - g j )
h

i _ j ( g j + i - - - g i ) ) 

We call M* a twisted G-complex. 

Thus we have 

Dh.̂  = 0; Dh
2
(g

1
, g

2
) = h-̂ g-̂  h

1
(g

2
) - \(<31 g2

) * e t c
 • 

In other words, we have maps of complexes h, (g) : M* —^M* ; 

homotopies connecting h, (g,)h, (g-,) with h, (g-g-J and so on. 

3.2.2.2. In particular, cohomology groups H
1
(M*) have a usual 

right G-action. 
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3.2.3. Example. Let R be a commutative ring, M a right R[G]-modu­

le. Choose a projective resolution 

P* : ... —>P~ n —->p"n_1 —=> . . . —-*>P° —-> M —-> 0 

of M over R. The multiplications mi—>mg may be lifted to maps 

h-.(g) - p" —=7P"; for every g,, g2 h, (g1)h,(g ) is homotopic to 

h.,(g,gp). More generally, one has 

3.2.3.1. Proposition (cf. 3.3.4.1). There is a sequence of maps 

h. : G —-> End 1(M*) with h, (g) as above, defining a twisted G-

action on P*. 

Proof. Suppose we have already h for p ^ i - 1. One easily 

checks that 

i-1 
D ( X L (-i)3 (hi_1(g1,..., gigj+1/.../ g±) -

- hj (g1,...,g:j)hi_j (g±+1,... , g±) ) = 0 

hence, since Hq(End P-) = Hq(End M) = 0 for q <L 0, there exists 

h.(g.,..., g.) satisfying (3.2.2.1). a 

3.2.4. Remark. In the terminology of f8~\ a twisted G-complex 

is just a universal pseudo-functor from the category G with 

Ob G = •, Mor G = G to the category of complexes. 

3.2.5. Let M" be a twisted G-complex. Define a twisted bicomplex 

C*(G, M") as follows. Put 

CP(G, Mq) = Hom(GP, M q ) , p ^ 0. 

(Horn as sets!). For f = f(g1,...,g±) £ C
1(G, M") put 

(recall that we write action of dM from the right, see 3.2.1) 

dof (gi'*--'gi) = (_1)1 f(gi'--"gi)dM ; 

i " 1 -i-l 
r\ -F frr rr \ = _-F frr rr í 1 T L 1 W " 

(3 .2 . 5 .1 ) 
L 1 f (g 1 , . . . ,g i + 1 ) = - f ( g 2 / - - - / g i + 1 ) + ŢL (-D f(g 1/---/gjgj+ 1/ 

. . . ,g. ) + ( - D 1 t(g±,...,g±) h ^ g ^ ) ; 

d r f ( g l ' - ' - ' g i + r ) = í " D l f t a 1 / - - - / g i ) h ŕ ( g i + 1 , . . . , g i _ r ) , r > 1. 
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(3.2.5.2). Lemma-definition. With the above d C(G, M") is a 

r*. 2 
twisted bicomplex, i.e. putting d = L_d we have d = 0 . 

Proof (cf. [3]). For f = ___ f_ e___Hom (G1, M"), 
i'? 0 

h = Zl h ± e Z . H C M G 1 , End 1 _ 1 (M") ) p u t hQ = _M . _ End 1 (M") ; 
i ^ 1 i 

fS (9i W - - W — ' W + £ ( -D^f i tg i ' -wgjg j+i g i + 1) ' 
A j__]_ 

hd(g_,...,g_) = 2__ (-l)3"" h ^ ^ , . . . ^ ^ . ^ , . . . ^ ) ; 
j=l J 

f -h ( g i , . . . , g i ) = 21 ("D j fjte-L^.wgj) h ^ t g ^ , . . . ^ ) ; 

i 
h . h ( g 1 , . . . , g i ) = Z_ ( - l ) 3 h. (g_. , , ,g..) h ^ ( g j + _ , . . . ,g_) . 

In these notations (3.2.2.1) takes the form of Maurer-Cartan equation: 

ho + h-h = 0, 

and (3.2.5.1) -

d(f) = fS + fh. 

On the other hand one easily checks that 

S2 = 0? Sh + hS = ho, 

hence 

d2 = (§ + h ) 2 = ho + h2 = 0 a 

Example. When we have a usual action o f G o n M * , i.e. h. = 0 

for i > 2, then C(G, M") is (up to signs) the ordinary complex 

of cochains of G with coefficients in M". 

Cohomology groups H1(C(G, M")) we'll denote H1(G, M"). 

A spectral sequence (3.1.2) for C(G, M") takes the form 

(3.2.5.3) HP(G, Hq(M")) t=_> HP+q(G, M") 

3.2.6. Twisted extensions. Let M, N be G-modules. A twisted n-fold 

G-extension of M by N is a twisted G-complex of the form 

0 —"> N — > M —-> . . . —-7 M_ —-> M — > 0 n o 
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which is exact as a complex of groups and such that all components 

of homotopies h., i ^ 2, going from M or into N, are zero. 

Every such extension defines coboundary maps 

9 : H1(G, M) — ^ H 1 + n ( G , N) 

and in fact, an element of Extr(M, N ) . 

3.3. Twisted complexes of sheaves. 

3.3.1. Let X be a topological space, U = { U^ j its open cove­

ring. A twisted complex of sheaves F* over U consists of 

(a) A complex of abelian sheaves F^ over U^ for each <* , 

(b) For all p *>, 0 and p-tuples (ol , . . . , <* ) a map of graded sheaves 

- > ғ : lu £-p + ^ hV'-*p : ̂ V" * -p-~C o...« 

(where U , := H u , ) , 
V " °S> i=0 *± 

such that 

(c) h , = differential in F* ; 
CK OS 

P i 
(3.3.1.1) Dh = 2 1 (-D^h - - h h ), 

V - ' S j=i V - ' V ^ P V - - * j ^••••£p 

where Dh := dh + (-1) g hd and we write the action of h from 

the right (3.2.1.2), cf. 3.2.2.1. 

Thus, h ft is a map of complexes F^ I —*> F«* j , 

h ,n . is a homotopy between h .,_ and h ,fthA^, etc. So cohomology 

sheaves >J{.1(F" ) glue by means of maps induced by h in sheaves 

over X which we denote by 3{>
1(F") 

3.2.3. Example. If we have a complex of sheaves F* over X, then 

putting F.* = F"\TT , h Jl% be canonical isomorphisms and h = 

^ u^ -̂  v - - ° v 

= 0 for p *> 1, we get a twisted complex. 

3.3.3. Let F" be a twisted complex of sheaves. Put 

CP(U, F«-) = L r<U _, . F? ) 
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Let us introduce on C"(U, F") := 2LA CP(U, Fq) a structure of a 
P/q 

twisted bicomPlex. Namely, for f = (f ) e CP(U, Fq) Put 
o""" *p 

^^L * = (~1)P ^ r, A F -

° wo---t °V""*p F«*p 

(3.3.3.1) ; 
+ (-l)p f h ; 

"o—*p "p°Vl 

¥,...V = '-̂ .̂..c V. ••*,*. f0r r>1' °SD p+r o P P P+r 

cf. (3.2.5.1). As in (3.2.5.2) one verifies that we get a twisted 

bicomplex. Its cohomology grouPs we'll denote H" (U_, F "). 

A sPectral sequence (3.1.2) takes the form 

(3.3.3.2) HP(U, -#q(F")) = > H P + q(U, F") 

where in the l.h.s. stands usual Cech cohomology. 

If F* arises from a complex of sheaves over X, 3.3.2, then 

H"(U, F") is Cech cohomology. 

3.3.4. Example. Twisted resolutions. 

Let F be a sheaf over X. A twisted complex E" over U is called 

a twisted resolution of F if "2£°(E") = F, X 1 (E.") = 0 for i 5- 0. 

For example, let X be a scheme and F be a sheaf of (.9 -modules. 
A 

Choose over sufficiently small open covering U = t u ^ a left local­

ly free resolutions E" —*> F \ TT . 

3.3.4.1. Proposition (cf. [2 , 2.4j;£3 , 1.33.C
7 ' 3.2.§). There 

exist maps h : E" I _^ E- I C-p^ll 

«<>••• *P
 rfo« v - - s * p l V - " * P 

defining on E" a structure of twisted resolution of F. 

Proof. The same as for 3.2.3.1. • 

3.3.4.2. For two twisted coirrplexes of sheaves F", F" over JJ call 

a (naive) map f : F-J —->F" a family of maps of complexes f : F* — > 

F2,« «-*that f^h^...^ = h ^ ^ f ^ for all (d Q c(p). 
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Call f quasiisomorphism if all f are quasiisomorphisms. 

Then a twisted resolution of a sheaf E is the same as quasiiso-

mosphism f : E" —^F from some twisted complex to the trivial 

twisted complex associated with F (concentrated in degree zero), 

3.3.2. 

3.3.5. Ext's. Let E" be a twisted complex over U and F be sheaf 

over X. Define a twisted bicomplex Hom(E", F) as follows. Put 

Hom(E", F ) P q = 2L HomíEj3 I ' Fl u 
< '•••'°< ° ' U^ ^ o 

) 

FOГ f = (f ) Є Hom(E", F) pq put 
P 

o 

(3.3.5.1) <; 

<
d
i

f )
ot 

(d f J . 4
 r <* 

(-l)
p
 df 

o p 
łҜ = ( - l ) p 

P+I 

j=i 

( - D P Һ 

( - D D f 

V i 

N
p+r 

o " -3-

f 

V-°S: °<r" 

cf. 3.3.3.1, where h , . : Hom(E', ,
 TT 

V " ^r
 <

-xl
 U
* 

1 

p+r 

, F) 

->Hom(E; | ö , F) is induced by h 
o"Ы0...Ыr 

«r 
, and we write h 

to the left. 

If X is a scheme, U_ is an affine open covering (or over C a co­

vering by Stein open sets), F, G coherent (9 -modules, E" —-> F a 

twisted locally free resolution 3.3.4.1 then H" Hom(E", G) = Ext" (F,G) , 

and a spectral sequence (3.1.2) associated with Hom(E", G) is a usu­

al spectral sequence from local to global Ext's: 

(3.3.5.2) H
P
(U, Ext

q
(F, G)) =->Ext

P + q
(F, G) 

3.3.6. Remark. Of course, all definitions and results of 3.3 

extend in the evident way to sheaves over arbitrary Grothendieck to­

pology, and the contents of 3.2 corresponds to the case of the topos 
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of G-sets. 

In the next section we'll need a site whose objects are open do­

mains U c C and maps - open holomorphic monomorphisms. 

§4. Local calculations 

1 n 

4.1. Koszul resolution of the diagonal. Let R = C[[x ,...,x ; 

y ,...,ynlj be the ring of formal power series, V = 21 R e l a 

i=l 

free R-module; its elements will be denoted f = (f,,...,f ) = f.e1, 

f±e R; R = R/(y1-x1, ..., yn-xn) = C (jx1, ..., xnJ}. Denote by K. 

the Koszul resolution of R over R: 

K. : 0 —-> K -^-> K , --̂ -> . . . — > K — > 0 n n-1 o 

where K. = A. R V; differential d is the interior multiplication 
_ * 

by x = x e. € V , in other words 

(4.1.1) d ( e 1
A . . . A e p) = 2L (-l)r"1x e 1 * A e r A ...A,e p 

r=l 

Homotopy: 

For p ^ 0 let S : R — > V be the following k-linear map: 
L 

(4.1.2) S (f) = J tP(3 f)(x, t(y - x)) dt e 1 

where 9. = 9/Sy1. Put s : A PV —-* A P + 1 V to be 

i- i i-, i 
(4.1.3) s (fe A ... Ae p) = S (f) A e A ...A e p. 

ir hr 

If we put K . = R; d : K — 7 K , : f(x, y) I—^>f(x, x) , -I o o -l 

s_n : c Kxl] —^CfCx, y)\ - natural inclusion then we have 

(4.1.4) d.^,s. + s. ,d. = id(K. ) , i '-*, -1 
N ' l+l l l-l I I ' 

4.2. Group of local coordinate transformations 

4.2.1. Let G be a group whose elements, are n-tuples of power 

series vf(x) = ( ̂ (x),... ,<f n(x)), v?i(x) £ £ [Cx1,..., x11^], such that 
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l?(0) = 0 and 3^(0) :=(( ̂ f - (0) (( <* GL (CS) . We put ̂ ^(x) = 
3xJ n 

= 4> (V (x)). 
G acts on R and "R from the right by the rule 

(4.2.1.1) f • H = f := "f ( ̂  (x)) , f £ R, 

(4.2.1.2) f-4> = *f := f ( ^(x), 4> (y)), f £ R 

4.2.2. Let JI be a right G-module whose elements are sums 

f dx := f.(x) dx1, f.(x) £ R with G-action 

*(f dx) = *f d<-?(x) ̂ <ff± 9. ̂ ?i(x) dxj ; 

put JL1 = A- JL with the diagonal G-action. Next, put JL° = R*/ 
R 

60:= JLn- Thus, elements of U> are expressions f dx A ... A dx11 

with G-action 

*(f dx1 A .. . Adx11) = ^f • det 3<? dx1A . .. Adx11. 

4.2.3. Chern classes. For 1 £ i ^ n define i-cocycle 

ch± £ Z
1(G, JL1) with coefficients in JL1 by the formula 

ch.Ĉ ,...,?.) = ^ trlQi^... Vn)~
1^'''''%W1*

i'%dV2 •••Adc?n1 

As usually, put 

td± = Pi(ch1, ..., ch±) €. Z
1(G, JL1) 

where P. is a polynomial expressing the i-th homogeneous component 

of the power series 

F < T i V BTT, . P -%' d e 5 T
P = p-

1 p=l 1 - e " ^ 

through i-- E. T P, 1 <• p £ i. 
p' q=l q 

For example, one has td, = \ ch,; 

(4.2.3.2) td2 = | chj - Y2 C h2 
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4.3. Twisted G-action. Now let us extend the G-action on R 

(4.2.1.1) to a pseudo-G-action on K. 

First, define operators h(<$) : K. —->K., v-J <£. G. On KQ put 

h( ^ ) Q : R —-7R to be f i—"7 *f (4.2.1.2) . Let us look for h (<-? ) _ : 

: V — > V in the form f = (f.) I—-> ^f - A(l£ ) where A( <? ) : V —=? V 

is R-linear operator. The condition h (4>) _d = dh(<-P) is equiva­

lent to 

(4.3.1) A(<?)-(y-x) = 4>(y) - ^ (x) 

i.e. a?(^)'(y:L - x1) = ^ D(y) - <fD (x) , where A = II a3. /( . Moreover, 

if (4.3.1) is satisfied then if we define h (4> ) . : A XV — 7 A*V to 

be f I—-7 *f • A 1 A(4> ) , where A 1 A (if) : A XV —*> A XV is a R-linear 

operator induced by A, then so defined h(̂ > ) : K. —^>K. is a mor-

phism of complexes. 

For n > 1 (4.3.1) has a large set of solutions. But we choose 

a distinguished one: 

(4.3.2) A(i?) = J dt 8^>(y + t(y - x) ) 
o 

cf . ( 4 . 1 . 2 ) , where 3 *f := 1/ 3_ i ? 3 // , d± := Q/Sx 1 . 

4 . 3 . 3 . Problem. Find R - l i n e a r o p e r a t o r s 

A_(4> _ , . . . , q>_) : K. - * K . [ - i + 1} 

where K . [ i ] . = K. . such t h a t 

d . A ( 4 > 1 , . . . , 4>
±) + ( - i ) 1 A Í ( ^ 1 , . . . , 4>±)d 

i - 1 
(4.3.3.1) = S ( - l ) D ( A i _ 1 ( « J ? 1 , . . . , ( f j

L P j + 1 » - - . ^ ^ ± ) ~ 

¥ i i 
where d :=J ( ¥ (y ) - 4* (x))e. (recall that we write operators 

to the right, cf. 3.2.1); A_ (<p) = © A1 A (up); and A_(iJ>_,..., 

¥ _ ) Q : A°V — > A 1" 1 V is zero for i > 1. 
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Having such A. we can define h. ( ty, ,. . . , V .) by 

h.(H?
1
,..., <f.)f = *" f-A.(^

1
,..., 4>.) 

and (4.3.3.1) is equivalent to (3.2.2.1). 

Since K. is acyclic, such A. exist (cf. 3.2.3); moreover, using 

homotopy s (4.1.3) one can easily write expressions for A. from 

A, as in [lJ. 

4.4. The case n = 2. 

From now up to 4.7 suppose that n = 2. So Koszul complex has 

the form 

0 — > A
2
 V ----> V — > R — > 0 

2 

The only nontrivial A^(^,
v
f

;
 ), : V — > A V is uniquely de­

termined by condition 

d-A
2
( <*,V )., =

 V
A ( c p ) A ( V ) - A ( S m . 

4 . 4 . 1 . Theorem. Put Bi*? ,V ) = * A ( SP ) A ( V ) - A ( ^ ) . Then 

B(Ч>,У) = - H(Ф,У) ( Y

2

 X

2 ) (- (y2 - x 2 ) , y 1 - x 1) + O ( y - x ) 3 

2 yZ - x ' 

where H = H(x)£ *JG 2 (
R) i s defined by 

(4.4.1.1) H(^,V ) dx1 A dx2 = j2 ^d((3f )A d(3y), 

i.e. 

H<y>,V> = i 2 [ 3 1 ( y 3 « f ) 3 2 ( 5 r ) - 9 2 ( v <3^> 3 1 ( 3 v ) ] 

Proof. Direct calculation. B 

4.5. Dual Koszul complex. 

4.5.1. This is by definition the complex K' = Hom(K., R) with 

(pseudo)-G-action induced by the above action on K. and standard ac­

tion (4.2.1.2) on R. 

Explicitly: 

K- : K° — ^ — - 7 K1 —£—*> K2 

U H 0 (( 
R R^ R 
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d°(f) 
řfr(y- - x M 
4"/ 2 2, 
f.(y - x )/ 

/ f - ì 
(-(У

2
 - x

2
), y

1
 - x

1
) 

Homotopy. We shall need ŝ  K up to the second order: 

$ (* ô 0 (x) + o(10(x) (y- - x-1-) + °(0 1(x) (y - xz) + <*2n(x) (y- - x V + 

+ 2 Ы l : L(x) (y1 - x 1) (y2 - x 2) + o<o2(x) (y2 - x 2 ) 2 + . . . ) = 

Л^Ol-^11^1"^ " %2^-^Л + n ř ,2 
- + 0(y - x) ; 

°Sn + °SгУ " Л + ° S т ( У 2 - x 2 ) 10 20 11 v 

and 5 1 : K1 —>K° up t o t h e f i r s t o r d e r : 

- /cC1 + ochy 1 - x 1) + cC^y2 - x 2 )\ 
S i + ...) = ± ( c<f + < 0 + 0 ( y - x ) . 

1,2 ___ ,2 , 1 1_ __. ^ 2 , 2 2./ Z -1 " 
>.<* + oC-^y - x ) + c<2(y - x )/ 

4 . 5 . 1 . 1 . G - a c t i o n : f o r ^ e G f h ( i£ ) ° = ** f (f 6 K°) ; f h ( <£ ) 1 = 

= A(vp )~ l V *f (f = | f
2 U K 1 ) ; fh(<j> ) 2 = d e t A ( i p ) ~ L * f (f e K2). 

4.5.2. Lemma. Put / B W , V ) = A( V)" 1 ^A( 4>)~X - A( ̂ V)" 1. Then 

B( S>,y ) = - 9 ( W ) _ 1 B(f,V) 3CPV)"1 mod(y - x) 3 

where B(S>,V) is as in 4.4.1. • 

4.5.3. Corollary. Homotopy h 2 ( ^ / V )
2 : K2 —-7K1 such that 

dh2(SP,V)
2 = h(9) h(^) - h(*n 

is defined by h2(^,V)
z(f) 

= (det ̂ (^y)~1-^(S>V) "^ -H(*,V) [̂ 2 „\) + 0(y - x)2).*Vf, 

cf. 4.4.1.1. 

Proof. This follows from 4.4.1 and the equality 

* V ( - (y2 - x2) , y1 - x1) = (- (y2 - x2) , y1 - x1)3(W)"1 + 0(y - x)2. 
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4.6. What we have to calculate. 

The complex we need is the tensor product M* = K' ® CJ where 

CO denotes the G-module £f(y) dy A dy V, 4.2.2. To obtain formulas 

of G~action on M* we have to multiply formulas for G-action on K" 

from the preceding n° on det 3^(y) (for h1 (<-P ) ) and det 3(^V)(y) 

(for h 2 ( * , V ) ) . 

Thus we have an exact sequence 

(4.6.1) 0 —-7 M° — > M1 — ^ M2 —>> M2 — > 0 

where M = IL°, 4.2.2. M° has a filtration by powers of (y - x) 

whose first quotient is Od ; let 

(4.6.2) 0 — > U ) —->M1 — > M 2 —-?JL ° — > 0 

be the exact sequence induced from (4.6.1) by the projection M —^kJ. 

It is the twisted G-extension of SL by GO , 3.2.6, and we have to 

calculate its class, i.e. 8(1) £ Z2(G,lO), 1 €. iL° G. 

Let us draw a part of C*(G, M#) we need: 

2 dl 2 
M -> Hom(G, M ) 

-d 

Hom(G. M1) - ->Hom(G2, M1) 

dQ = d 

Hom(G2, M°) 

Put m := 1 € M2 - a l i f t i n g of 1 fc J L ° . We have t o f i n d e l e ­

ments iru ( ^ ) £ Hom(G, M ) . such t h a t d itu = - d , m , i . e . 

dm1 ( ^>) = -m + mr^ ( ^>) 

and m 2 ( ^ , V ) £Hom(G2, M°) such that dQm2 = -d.^ - d2m, i.e. 

dm2(^>,V) = m i ( V ) - m 1 ( W ) +m1(^)h-L(4
/) - mh2 ( *, V ) 

(here d denotes the differential in M"). 

Denote by p : Hom(G , M°) —=7Hom(G , ^) the projection. Then 
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p(m
:?
) will be the desired cocycle. 

Let s denote the homotopy for d induced by homotopy of K' / 

4.5.1. We put 

m, = -sd,m; 

2 

(4.6.3) m
2
 = -sd,m, - sd^m = ((sd,) - sd

2
)m 

4.7. Theorem. We have 

(i) p(sd
1
)

2
m = | ch

2 

(ii)psd
2
m = ү ch

2 

Hence, 

p(m
2
) = td

2 

cf. 4.2.3. 

Proof, (ii) follows immediately from 4.5.3. Let us calculate 

2 
(sd,) m. We have 

mh(^) = det(9<?(y)) A(^)"
1
 = 1 + \ trtoV"1

^) 3(<9<f (x)) (y - x) + 

+ C
20
(tj>) (y

1
 - x

1
)

2
 + 2 C

l:L
(<-?) (y

1
 - x

1
) (y

2
 - x

2
) + C

02
(4>) (y

2
 - x

2
)

2
 + 

+ 0(y - x)
3 

where we p u t d = ( c ^ , <92); (y - x)= I 2 2 J , C 1 D ( 4>) £ R. 

Hence 

l-h t r ^ " 1 a_(3ip» - C11(y1 - x1) - C02(y2 - x 2 ) \ 
m_(f) = -sd_m= z } + 0 ( y - x ) ' 

\ h t r ( d ^ _ 1 d_(d(p>) + C2°(y1 - x1) + C U (y 2 - x 2 ) / 

(we omit for brevity argument x). 

4.7.1. Lemma. 

det 
(9 -. ̂ /-tr^-1 3_^») _ l -tr< * 3f- 32(- 3*))' 

\-Mx(3«ř"1a1(3'P))/ \ t r c - a f ^ r a * ) . ; 

From this lemma and the equality dO-fV) = d1? • oV follows that 

m-.tV) - m1(SP4
/) + m 1 ( ^ ) h 1 ( y ) = 
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/ 1 __ x l \ 
= £ c ( У ) - C(*4 /) + det <ЭV- ÔV"1. У C(if )ЭV + Ê + î_E_]f 2 2 + 0(y - x)' 

U "x/ 
where we put 

-C 1 : L (^ ) - C 0 2 ( ^ ) \ . /, 
C( l | ) = 2 0 n J e flC (R) ; 

\ c 2 c V) c 1 1 ^ ) / 2 

and E, E fc j L (R) are defined by the equalit ies 

M - x M / t r ( ^ f - 1 3 2 ( > ) ) ( y 1 - x 1
) ' 

U 2 - x 2 / 1 \-tr(*d<?-ld1^S?))(y1-x1)/ 

+ ä,(<9v) 
t r e ^ H ' 1 3 2 (^^ ) ) (y 2 - x2) 

- t r r ^ - ^ r - S f n ^ - x 2 ) , 

1 к 1

 л _! . » l-tr(ч/Эч»-1Ә,(vӘч>))' 
\ ~ \ I = t r íSv"1 3 l (9v)) f ^ v " ' ^ ^ " » - 1 --1' 

• y " x l \ tr(v*'3-f-131(,«'3(p))/ 

. _, л t-trt^З^Ә^Лôf)) . 2 2 

tr(Эv ^Ә^ЭV)) 2 (y2 -x 2) 2 
t r ^ З У ^ Г Э f ) ) , 

Now recall that 

^ ( ^ V ) 2 = t r ( V o ^ _ 1 31(3if))tr(3V""1 <92(3y)) - (1<T—>2), 

so tr E = c J ^ ^ ) .On the other hand, we have 

(4.7.2) Lemma. tr E = - ^ ( V£, f ) 2 . 

Proof. If A,, A_ are 2 *2-matrices such that the second column 

of A, is equal to the first column of A~, and E is defined by the 

equality 

• ( ; : ) • 

then tr E = tr A,-c2 - tr A2-c-,. Applying this to A. = aY 3. (3y); 

c. = tr(^<9f _ 1 3. ( * 3f ) ) we obtain the lemma. U 

Finally, tr C = 0, and applying formula for homotopy s , 4.5.1, 

we obtain 
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m 2 ( ( f > ' y ) = i t r ( i ^ + i E ) + 0 ( y • x ) = i c i ( * ' V ) 2 + ocy - * > 

which proves (i). • 

4.8. Let now n be arbitrary. The corresponding complex M" = 

K* <8)U) looks like 

0 -^M° — ^ M 1 —*>... —->Mn — > SL° — > 0 

Now define m. e Hom(G1, M n 1) as in the case n = 2, starting from 

1 t Si- • Then one easily sees that 

m = Z. m(c*> 
n % = 1 n 

where 

^ = (--) qZ( s dc/(l) ) X l ( s d<5(2) ) l 2 ••• ^ 6 i q ) ) ± % m 

the summation being taken over all pairs (inclusion d : \l, 2,...,qV—-> 

—-^{l, 2, ..., n^; (i1,...,in)) such that 2 1 i

p

i ( P ) = n-

On the other hand, let 
ř p 

n l \ 
td = P (ch,,...,ch ) = T\ P ( q J (chn ,. . . ,ch ) n n v 1' n' -L-* n 1' ' n' q=l 

where F q is a part of P which contains the sum of products of q 

factors. 

4.8.1. Conjecture. Let p : Hom(Gn, M°) —-*>Hom (Gn,U> ) be the 

projection. Then one has 

p(mq) =P ( q ) (ch. ,..., ch ) . ^ n' n 1 n 

For the case n = 2 it is just Thm 4.7; n = 1 is trivial and 

is contained in §1. 

4.9. Riemann-Roch for surfaces. 

Let G denote the category whose objects are open domains UC (Cn 

and morphism - open holomorphic monomorphisms ty : U —-7 V. 

Over G we have a sheaves R, R with R(U) = holomorphic functi­

ons on UxU, (resp. , R(U) = holomorphic functions on U) ; SL , etc. 
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All the results of nn 4.1-4.9 extend word by word to this situation 

(cf. 3.3.6). 

Now let X be a smooth compact n-dimensional complex variety. 

Choose an open covering X = U U. together with isomorphisms of U. 

with open domains in C n. With these data the above constructions 

give us a twisted locally free 19V v - resolution of the diagonal 

x*. x 
3.3.4, and 4.7 just calculates the class (1 Q ) €r C (U,u.>) 

X 
for n = 2. So we get 

Theorem. If X is a smooth compact complex surface, then 

%(x) = Jtd(T/
x)2. m 

4.10. We leave to the reader the extension of the previous cal­

culations to the case of surfaces with a bundle. Hint only that one 

has to use instead of category G from 4.9 a category G K G L with 

the same objects as in G, and morphisms - pairs ( <f r ̂  ) where 

St?: U — > V as in G and V a holomorphic map U — > G L m ( C ) , cf. [ lj, 

§6. 

§5. Remarks on constructing of S (E) in higher 

dimensions 

5.1. Let R, G be as in 4.1 with n = 2. Consider the following 

complex 

2 d2 3 d l 
K. = (K2 ^>K1 — - ^ K Q ) = (RZ —-•> RJ ----> R) 

where 

d1(f1, f2, f3) = (fv f2, f3) * I (y
1 - x1) (y2 - x2) 

,(y2-x2)2 

ly2-x2 -(y1-x1) 0 

d2(fr f2) = (fr f2) 2 2. 1 1 
\ 0 - ( y - x ) y - x 

2 
K. is a free R-resolution of R/(x - y) R. Introduce a (twisted) G-ac-



RIEMANN-ROCH THEOREM 79 

tion on K. by formulas: for vp £ G: 

fh(^>)o = *f (f £ K Q); 

fh(i?)1 = *f-S2A(^ ); 

f h ( ^ ) 2 = *f.A(^)-det A ( ¥ ) , 

where A(^) = | 1:L 1 2 is as in (4.3.2), 
a21 a22/ 

S2 A( > ) : = 

all 2alla12 a12 

alla21 alla22+a12a21 a12a22 

2 2 
a21 2a21a22 a22 

A(U?) := f all a21 j 

* "a12 a22 / 

h(vy>,Y)9 : K, —-7 K? is defined uniquely by previous formulas. 

5.2. One easily sees that Hom(K.,U)) defines a canonical twist­

ed G-extension of 3D(vD)6 by R (i.e. by ( 9 . 3 ( 9 ' ) . 

By adding a gauge group, we get on an arbitrary surface,with 

vector bundle E, a canonical twisted extension (of length 2) of 

J X E r 1 by E H E', i.e. an analogue of (P(E)'1 (cf. 2.4.4). 

It would be very interesting to extend the calculations of §4 

to this case and prove a cancellation of anomalies conjecture of \j> , 

3.4 J and more generally, Grothendieck-Riemann-Roch (cf. {_ 5J , Appen­

dix) for the families of surfaces. 

5.3. It seems undoubtedly that this generalized Koszul const­

ruction gives a canonical twisted n-fold extension of 3)(E)~ by 

E a E' in dimension n for every finite a. 
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