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ON THE FORMALITY OF PRODUCTS AND WEDGES

Martin Markl

Roughly speaking, we prove that the intrinsical formality of the
cartesian product or a wedge of ( finitely many ) topological spaces
implies the intrinsical formality of each factor. Our proofs are based
on a deformation theory for bigrasded algebras which is a generaliza-
tion of that defined by Y. Félix in [FZ]. We deduce anew also some
results of Y, Félix and D, Tanré charecterizing the intrinsical for-
mality in terms of an associated cohomology theorye. An outline of the
corresponding results in the dual situation ( for coformality ) is
. given in Appendix. )

0. Introduction and results. In this note we restrict our atten-
tion to the category of gimply connected spaces having the rational
cohomology of finite type. Consider in our category the following
relation: There exists a continuous map F : X—>Y inducting an iso-
morphism P¥; H*(Y;Q)—éll(X;Q) in rational cohomology. This relation
induces in our category an equivalence relation, called the rational
homotopy equivalence and the corresponding classes are called the

. rational homotopy types. Finally, a topological space X is celled
n sic fo , 1f each space whose rational cohomology algebra
is isomorphic to H™(X;Q) belongs to the same rational homotopy type
as X. In other words, there is precisely one rational homotopy type
with the rational cohomology isomorphic to H¥(X;Q) ( see [T1l ).

In fact, as is usual in algebraic topology, all spaces are suppo-
sed to have a base point, Recall that the wedge of two spaces A and B
is the topological space AVB obtained from the disjoint union ALIB
by the identification of the base points. This definition clearly ge-
neralizes to an arbitrary number of factor. Our mein result then reads:

Theorem 1. Let xl,...,xn be simply connected spaces having the
rational cohomology of finite type. If the space X X ...xxn or

XyV.eeoe VX is intrinsically formal, then each xl,...,xn is intrin-
sically formal, too.

This paper is in final form and no version of it will be sub-
: mitted for publication elsewhere.
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The dual statement is valid, too ( see Appendix ). Vur proof i:
based on the usual methods of rationsl homotopy theory ( minimal.
models ... ). In the following paragreph we describe a deformation
theory for the set of rational homotopy types, motivated by the com-
putation of Y. Félix [F1,F2], see alsc [SS]. In the secord paragraph
we discuss the case of free products, which is the algebraic analogy
of the cartesian product and wedge. In the third paragraph is our
theory applied to the proof of Theorem 1. For the basic definitions,
notation and results we refer the reader to [r2].

1. Deformation theory for bigraded algebras. All objects ( vector

spaces, algebras ... ) are considered over the field of rationals Q.
1.1, Let a% = @ A7 be a bigraded algebra ( 1.e. AJ.APCALP )

which is either graged commutative or graded Lie with respect to the

upper grading. Suppose that the following condition is satisfied:

(bound) The set f{ie ¥; A} # {0}} 1s finite for each nelkt .

We denote by Dex‘i(A) the set of all derivationa of degree i of the
algebra 4 end let peri(a) = (Benert(a); B a¥) C Af{ﬁa for each jekl.
Let dener (A) be a derivation satisfying [d,d] = O ( recall that
the commutator is taken in graded sense, hence [d,d] = a° ). We de-
fine the bigraded vector space E* E4(A,d) by:

Elg‘ = Der:].,k(z;, fork *9,J>0 or k=0 and J) O,
Eo = {f eDerd(a); [a,6] = o} ana
= |0} otherwise.

Clearly E* with the ( greded ) commutator as the product is a bigra-
ded Lie algebra. The linear map Dy defined by Dd(e) =[a,0] is a
differential on the bigraded vector space £¥, Because it is homogene-
ous ( of bidegree (1,0) ) the homology H(E*,Dd) inherits the natural
structure of a bigraded vector space as well,

1.2, For g€ Aut(A), let F,(g) be the linear endomorphism of A’:‘
defined by Fo(g)(y) = Pi(g(y)) for yEA’{; here P: A’!‘K—>Ai denotes
the projection. Then the set

= G(A,d) = [g€Aut(A); g(A})c A‘;'J and F,(g)od = doF, (g)}

can be shown to be a subgroup of Aut(A), this need not be true
without the condition ( bound ). The natural ( left ) action of the
group G on £} is defined by g(A) = geAog” -1,

1.3. Under the notation above we denote by M; = M;(A) the set

Yy = {d*mlmz"’--.emEl; [a+m)+my*eeeydimytmytess] =-0}.
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The equation [d+m1+m2+...,d+ml+m +...] = 0 plays here the role of

a deformation equation in the sense of [NR]. Because of ( bound ),
each element of T_?])Derj defines a derivation, hence the elements of
My are again derg?rations of the algebra A,

1.4. The action of the group G clearly restrict to an action on
the set Md and we can denote by #(Md/G) the number of elements of
the orbit space M /G In our theory is valid the following "rigidity"
theorem ( see [NR] {c],[T1],[F1], [F2], [ss1, .00 )

Eroposition 2. If H‘} (E,D3) =0, then 3, /G) = 1, On the other

hand, if Hy,(8,D3) = 0 and #(Md G) =1, then H)l(E Dy) = 0.

1.5, hxamgle. Let a* be a graded commutative algebra of finite
type with W ¥ Q and H‘l {O}. The Lie differential graded algebra
(L (#),9,) is defined ( up to isomorphism ) by o‘g*((ﬂ*,dm‘))) ¥
= (lL(W),'az) ( see [T2] for notation ). Define the bigraded space Z;
by i 1

Zy =W, = {0} for 1,§e R, J # 1.

Then 9, defines on IL(Z) a differential d € Dert ([[_(Z)) and the algebra
E*(ll_(Z) d) will be called the Quillen deformation algebra for H¥, In
this case, the points of the set M /(: are in one-to-one corresponden-
ce with rational homotopy types with the cohomology isomorphic to it
( see [LS] ). It is possible to show that ut (E(1L(2),4d), Dy ) is iso=-
morphic with Harri*d*l, 1(H ,H), where Harr denotes the Harrison coho-
mology in the notation of fr2]. Progosition 2 in this case gives:

Theorem ( D, Tanré ). If Harr (H,H) = 0 then H is intrinsically
formal. If Harr) 2(H,H) = O then H is intrinsically formal if and
only if Harr) ’ (H H) = 0.

1.6. Exsmple. Being H¥ as above, let (/\x d_;) be the Halperin-
Stasheff bigraded model of the algebra H* ( see [HS] g X = @ X.i

1,530
define the bigraded space ZJ by 2 = X1, and denote by d the 4iffe-

rential induced by d_; on /\(2). The corresponding algebra Ey( A(2),
,d) will be called the HS deformgtion algebra for H . Again M;/G is
the set of all rational homotopy types with fixed cohomology H . The
object H}(E(A(Z),d) Dy ) is precisely the "filtered cohomology" intro-
duced by Y. Félix m [F1,F2] and Proposition 2 in this case gives:

Theorem ( Y, Félix ). If H} (H) = O then H is intrinsically formal.
It H)Z(H) O then H is intrina:lc;ally fo;mal if and only if )l(H) =
= 0. Here we write for brevity Hy(H) = Hy(E(A(Z),d),D ne

1.7. Suppose i )1 and let 0e Eo Derg(A) Because of the condi-
tion (bound) the sum :

exp(0 ) (x) =:):.)(l/nl) 9%(x)
n)
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is finite for each . €A and defines an element exp(D)e€aG.

Proposition 3. Let E: = E (A,d) and G = G(A,d) be as in 1.1 and
1.2. Suppose that E* is a bigraded Lie subalgebra of E and deE C
CE(I). Let G be a subgroup of the group G satisfying:

(1) TEPCEL, _
_(41) the element exp(0) belongs to the subgroup G

for esch O Eﬁg i)1.

Finally, denote by Md the G-space H = My nT_lE

If the inclusion EGE induces a monomgrghism H>1(E,Dd))——)H>1(E Dy)
then #(M;/G) = 1 implies that H(H;/T) = 1.

Proof of the proposition. Suppose that #(Md/a)> 1. Then there
exists an element A = dﬂnsﬂn +1teee ( here m G.E:l are the homogeneous
components, i)s ) with AE€M,, which is not G-equivalent to d. Coun-
ting the degrees in the equation [d+m +mn +l-r...,d-"m +m g41teeed = O we
see that [d,m sl 1= Dd(m ) = 0, hence m determines an element [m ] in
HL(E;Dy) e

12 [5] = 0, there exists D€EJCDer(a) with [a,6] =,. By
our assumptions the element g = exp( 9) belonga to the subgroup G and
A"g(dﬂnsﬂn +1 +e0e) = (1a+ 0+ B2 /21+...) (d+mg +e.0)(1d= 0+ B2/21-...)

= d+(m -[d 9] )+(terms of lower degree) s+l),
hence Ais G-equivalent with a point of the form dﬂnB +1+ma sp¥eee o
Repeating this process sufficiently many times we can show, using
(bound) and the assumptions above, that A is G-equivalent with a paint
of the form d+i'ﬁk -k+1+...€'ﬁ with [E 1 #01in Ht(ﬁ D).

Our point dﬂnkﬂnk 41t ie also an element of the set M;. Because
#(M /G) = 1, there exists g€G with gd = d+m #m, 1+« .. Using the
similar arguments as above we can find g “€G of the form g'= 1d+gk
+5k+1 .., Where 81 are, for i >k, linear endomorphisms of “‘1 of
bidegree (0,i), such that g ‘a = gd. The endomorphism g]; is clearly a
derivation and the equation g’d = a+m -rmk+l eee glves [d,gk] Dd(gk)

hence [mk] 0 in Hk(E D.). But this 18 a contradiction, because
Hk(E Dd) is mapped mnomorphically into Hk(E Dd) by the assumption.

2, Free products, In this paragraph we show, how to apply Prop. 3
in the case when A is a free product of subalgebras.

2.1« For a graded vector space z¥ ve denote by F*(Z) either the
free graded commutative or the free graded Lie algebra on Z*. 1r z¥
has another "lower" grading, Z# ijel‘.zﬁ for each i€ #, then there is

the natural induced "lower" grading on F(2); suppose that it satisfies
the condition (bound) of l.l. Note that there is one-to-one corres-



FORMALITY OF PRODUCTS AND WEDGES 203

pondence between elements of Der(F(Z)) and linear maps from Z to F(Z).
2 2 Suppose that there are bigraded spaces ka and Yi such that
Z* = X;g@ Yi. Then we can consider in the clear sense F(X) and F(Y) as
bigraded subalgebras of F(Z). Define @ : Der(F(X)) @ Der§(F(Y))—>
——>Der*(F(Z)) by @ (01, 9) Q& 0 , where the derivation 0&0 is

defined by (N®@Q)FX) =0, (N®B)F() = O. The map
X: Aut(F(X))XAut(F(Y))-—>Aut(F(Z)) can be defined similarly.

2.3, If a'e Derl(F(X)) and d" EDerl(F(Y)) are derivations satisfy-
ing d' 2 = g2 = 0, then clearly d = d' @ 4" is also a derivation
satisfying a® = 0. The subspace z.* of the algebra E’i = E(F(Z),d) con-
sisting of all derivations O with D(X)CF(X) and B(Y) CF(Y) clearly
forms a bigraded subalgebrs. 1so G = {geG(F(Z),d); g(X) CF(X) and
g(Y)C F(Y)} is a subalgebra of G = G(F(2),d) ( see 1.1 and 1.2 ).

The couple (E,G) clearly satisfies (i) and (ii) of Proposition 3.

2¢4. Let us denote
£ = B(F(X),a"), ¢ =G(F(X),a"), E" = B(F(Y),d") and G" = G(F(Y),d").
Then there are isomorphisms E*N EX o' and T ¥ ' x G"and it 1s
not hard to verify that My /G x Mqu/Gh = Ma/G ( we use the notation
of Proposition 3 ), hence =l’t~(M /G ). ¥, /G ) =HN [:L.

Proposition 4. There exists a linear map J: E——>E of differen-
tial spaces, homogeneous of degree (0,0), such that J O’L = idg,
where 1 : EGSE is the inclusion.

We note that J is not, in general, a homomorphism of Lie algebras.
Combining the statement above and Proposition 3 we easily obtain:

Corrolary 5. The map H*(E Dd)—>-H,k(r, Dd) induced by the inclusion
is o monomorphism, hence #(My/G) = 1 implies that

# Uy /6') = HGgse') =

Proof of the proposition. Let P,: F(2)—F(X) and P,: F(2)—F(Y)
be the canonical projections. Given O €Der(F(Z)), we cen define the
linear endomorphism J,(6) of F(X) by J;(6)(x) = P,(0(x)). Similar-
1y, the linear endomorphism J (9) of F(Y) is defined by J (6)(y) =
=P (9 (¥y)).

At first, we show that J;(B) is a derivation of F(X). Let us
denote by F'(X) the augmentation ideal of F(X) ( = subspace of all
elements of positive lenght ) and let I be the ideal generated by
F'(X) in F(2). Now, for each a€ F(Z), B(a) can be decomposed unique-
ly in the form Pl( B(a))+ Q,(a) with 9+(a)€1. Br a,b F(X) compute
J,(0)(a.b). By the definition, J,(0 )(aw) = P (6 (a.b)) =

= P, (B(a).b £ a.B(b)) = Py (P (B(a))* B,(a)).b * au(P (B (b))+
+0,())) = Pl(Jl(e)(a).b 2 aud( 0)(b)+(an element of I) = Jl(B)(a)b
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* a.Jl(e )(b). The endomorphism J,(0) is a derivation by the same
argument. Hence the map J(0) = Jl(e) (<] che) is a well-defined
linear homomorphism J:E—> E of bidegree (0,0) and it clearly satis-
fies Jof, = ia,

It remains to show that J commutes with the differentials. In otler
words, we show that for each 8 € Der(F(2)), D4(J(0)) = [4,5(0)]=
= J([4,08]1) = J(Dd(e )). For x e F(X) we have J([d,0])(x) = Pl(doe(x):
¥ Boa(x)) = Pl((dl (5] d")(Pl(B (x))+ 0,(x))X(P (B (a'(x))+ 9+(<’.ll (x))F
= Pl(d'(Pl( B (x))+an element of I)I(P,(8 (@'(x))+ B,(a"(x))) =
=[d,J(0)](x). The same equation is clearly valid also on F(Y) and
therefore is valid on F(Z) as well.

3. Proof of Theorem 1.

*B.l‘. The case of wedges. Suppose that the algebra H* is a "wedge"
H*VH" of algebras H'* ana H"¥ ( 1.0, HO 2 q, HL ¥ 'L 4 41
with the product defined by %le clear way ). Denote by E = E(L (Z),d),
E =E(L (X),d') and E = E( U_(Y),d") the Quillen deformation algebras
for H*, H'* and H" respectively ( see 1.5 ). Because the Quillen
model of the algebra (H,d=0) is of the form (IL(s"1(i'*® H'%,de9),
we can supposc that 2§ ¥ X¥ @ Y end a = a' @ a". This situation wes
studied in the previous paregraph and Corrolary 5 gives:

Proposition 6. If the algebra H* = H'*v H'¥1s intrinsically formal,
then both H* and H'¥are intrinsically formal, too.

Remark., As kindly pointed me Daniel Tanré, Proposition 6 follows
in the light of his theorem ( see 1.5 ) in the case when the Harrison
cohomology Harr’ 4»2(H,H) is zero from the additivity of this cohomo-
logye.

Now the statement of Theorem 1 for wedges follows from the clear
generelization of Proposition 6 to the case of n factors.

3.2. The case of products can be discussed similarly as the pre-
vious one. If H* & H*® H'*ana ql’:(/\U,dl_l)-—>(H'*,d=0) and
l\\,“ :( /\V,di‘l)—a(}{“fd%) are the Halperin-Stasheff bigrsded models of
H'™* ana H'* respectively, then clearly ’l{:Q "cl:(/\(UW) ,d'_l&l'_‘l)——)
—> (H*®u"™a=0) 1s the Halperin-Stasheff model for H¥, Now, if E =
= E(AZ,d) is the HS-deformation algebra for HX ( see 1.6 ) then
again (AZ,d) is of the form (A(X+Y),d'@d") am we conclude similar-
ly a8 in 3,1

Proposition 7. If H¥ = H*® H'¥is intrinsicelly formal, then both
* and H"F are intrinsically forxﬁal, too. '

Theorem 1 in the case of products again follows immediately from
the clear generalization of the previous proposition to the case of

Hl
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n factors.

3.3. For a l-connected graded algebra HY of finite type denote by
#(H ) the number of ( simply connected ) rational homotopy types with
the cohomology isomorphic to HT. Our mein result in this terminology
reads:

e #H*VE® = 1 (or #E*®HH = 1), then $EHD.KEH = 1.

It is possible to construct a graded differential space whose acycly-
city in dimension one implies the inequality #(H'*VH“*K#(H‘*) .ﬂ‘(l’l”)

( similarly for tensor product ). The construction, based on the theory
developed in the present paper and some results of [SS] is described in
[Ma]. Inequalities of this kind can be obtained even for pullbacks and
attaching of cells.

Appendix. Here we briefly show how our theory applies to the study
of the set of rational homotopy types with a given homotopy Lie algeb-
ra. The symbol ﬂ* denotes a ( positively ) graded Lie algebra of finite
type. .

A.l. The bigreded algebra E = E(AZ,d), where (AZ,d) =C{Tly,9=0)
( see [T1) for the notation ), describes the rational homotopy types
with homotopy Lie algebra isomorphic tolj*. The associated cohomology
was introduced and studied by Y. Félix in [Fl, Annexe 2]. Because the
Sullivan model (AZ,d) behaves well under products, we can deduce:

Theorem 8. Let Xl,...,Xn be simply connected spaces having the
rationsl cohomology of finite type. If X1X ...XXn is intrinsically
coformal, then each Xl,...,Xn is intrinsically coformal, too.

A.2. Let (ﬁ.(x),a_l) be the Halperin-Stasheff bigraded Lie model
of (T1¥,8=0). If we denote by Zi the bigraded space Z§ = x:i and by
d the differential induced on L (Z) by 3_1 then again E(\_(2),4)
describes the set of all rational homotopy types with given homotopy
Lie algebra. Because the Halperin-Stasheff bigraded Lie model behaves
well under wedges, we can formulate statement, similar to Theorem 8,
also in the case of wedge.
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