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HIGHER ORDER ALMOST TANGENT GEOMETRY AND
NON-AUTONOMOUS LARRANGIAN DVNAMICS

Manuel de Ledn Paulo R. Rodricues

Abstract.- This paper is a sequel of a previous article |DLR1l| , We
aeneralize the intrinsical formulation of non-autonomous Lacrancian
dynamics for Laamranaians devendine on hicher order derivatives with
respect to the time, The study is develoned from the almost tancent
qeometry point of view. Some ceometric structures are examined. The
hicher order Poincaré-Cartan theory is presented in terms of the al
most tancent structures. )

Key words: Almost tanaent-qeometry, Lacrranmian dynamics,non-autonomous.
Mathematical A.M.S. Classification: 58%/70H.

1.- Introduction.

In a previous pamer (de Lebén & Rodriques (see |DLR1|)) we have exami
ned the intrinsical descriotion of the non-autonomous (or time denen
dent) Lacrancian formalism in the framework of the almost-tanment -
neometry (see Clark & Bruckheimer |CB|). We have seen there, for ins-
tance, that the theory of connections nronosed by fArifone (|Gl|, [G2]|)
is more simpler than the theorv for the autonomous (or time-indenendent)
situation. Also, the intrinsical version of the Poincaré -Cartan form in
terms of the almost-tanaent structure was investicmated (see also the
paper of Crampin, Prince & Thomnson |CPT|).

The nurnose of the present article is the extension of our studv to
the formalism of non-autonomous Lacrancians hiqher-order derivatives.
The study of hiagher order theories, from some different noint of -
views, has been object of a certain number of authors: for examnle,
Aldaya & Azcirrama |AAl|, |AA2|, de Lebén & Rodricues |DLR2|, ¥ranca-
vialia & Kruoka |FK|, farcfa & Mufoz |GM|, Horak & Koldr |HK|, Kol&r
|¥|, Krupka |KR|, Shadwick |S|, Tulczvijew |T1|,|T2|. In the Ledn &

Rodricues |DLR2|, for examnle, we have clarified how the autonomous

hicher order situation is formulated in terms of the almost tancent
aeometry machinery (we suamest to the reader the naner bv Crampin,
Sarlet & Cantrijn |CSC|, where a different anroach is npresented, ai
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ven emphasis on the role of the higher order differential ecuations).
A non-autonomous (resp. autonomous) Lagrangian formalism for a higher
order particle Mechanics is given by a real snooth (C”) function L
defined on the jet bundle jk(R,M) of all smooth functions from R to
M (resp. on the bundle JE(R;M) of all smooth functions from R to M

with the source at the origin OeR). Here, k 1is the highest order of

derivation involved in the variables from which L is dependent and
M 1is the configuration manifold. As these bundles may be identified
with RkaM and Tth\respectively, vhere TkM is the tangent = ..--
bundle of order k of 1, we mav transport the geometrical structu-
res intrinsically defined on TkM to Jk(R,M). We use this fact to
give the corresponding intrinsical fornulation on Jk(R,M).

The present paper is organized as follows. In section 2, we give sO
me basic definitions and results necessarv for the development of
the theory. In section 3, we characterize the semispravs of higher
order by means of the higher order almost-tangent geometry. In sec-
tion 4 , we introduce a kind of connections (called dynamical connec
tions) on the fibration Jk(R,M)~—>Jk_l(R,M). Section 5 and 6 are de
voted to study the relationship between senisprays and dynamical .=-
connection. Finally, in section 7, we show that the Poincaré-Cartan 2-
form may be constructed bv using the almost tangent structure of --
higher order and prove that there exists a dynanical connection who

se paths are solutions of the generalized Lagrange equations.

1.~ Notations, definitions and some ‘results.

Troughout this pavner it is assumed that all differential structures
are of C"- class (smooth). Iet R be the field of real numbers.M a m-di-
mensional manifold and (RxM; p,R) the corresponding (trivial) fi-
bred manifold. By Sec (RxM) we denote the set of all sections of
(RxM, p, R). Locally (Rx!M) 1is characterized bv coordinates (t,yA),
1sAgm. The manifold of k-jets of sections seSec (Rx!l), denoted by
Jk(R,M) is locally given bv coordinates of tvpe (t,yA,y?,...,yﬁ )
1lsk<» (when k=0, the JO(R,M)=RXM). If seSec (RxM) then sk(t) or

jts denotes the corresponding k-jet of s at teR. By uk:jk(R,M)—~>R,

Bk:Jk(R,M) —>M and nk:Jk(R,M) —> Rx!, we denote, respectively,
the canonical projections sk(t) —>t, sk(t) —> s(t) and sk(t)——>(t,
s(t)). The map sk:R ——>Jk(R,M), t->sk(t), such that sk(t)aSec (Jk(Rmﬁ,

ak, R) 1is called k-jet prolongation (or extension) of seSec (RxM).

If seSec (RxM) and sk(t) is the corresponding k-jet of s at teR

then locally we have: i
PPy, vR= L 94 Py, 1cisk.
117 g1



HIGHER ORDER ALMOST TANGENT GEOMETRY 159

The factor 1/i! appears only for technical reasons. We may adopt

the following coordinate svstem for jk(R,M) : (t,qA,q?,...,qﬁ),
where qA=S A(t),q?=(dl/dtl)sA(t), lgigk. Clearly, we have:

o = (i) vh, 0sick, lenen.

As (RxM, p,R) is a trivial bundle we may identify maps from R to

M with sections of (Rx!,p,R) as well as their k-jets. Thus we put

Jk (RxM) = Jk(R,M) (= the k-jet manifold of all maps from R to M).
Futrthermore, we notice that Jk(R,M) can be identify with RkaM in
a naturﬁl way by the map sk(t)——>(t,(d/dt)(s(t)),...,(dk/dtk)(s(t))'
where T"M is the tangent bundle of order k of M, that is,

TkM = Jg(R,M) is the k-jet bundle of all maps from R to M with

source at the origin OeR.

Let g : Jk(R,M)——>R be a smooth function. Thus dT is the Tulczjew's
k+1

operator which maps g on a function d,g on J (R,M) locally
expressed by k ’
A A, 3 . A ) A A
dpg (/¥ s svi)= 22+ 1 (i41) Vil o (vy = v (2.1).
i=0 Byi

(for an intrinsical definition of d, see |DLR2|,p.80).
Definition (2.1). Let N be a (k+l)m-dimensional manifold. An endomor
phism S : TN—>TN such that rank S = km ahd Sk+ =0 is called
almost tangent structure (of order k). The couple (N,S) 1is $Said almost
tangent manifold (of order k).
A first interesting result says that for all manifold I its tangent
bundle TM is endowed with an almost tangent structure (see Godbillon
|G|) . Furthermore, for any integer k, there exists a family of endomor
phisms Jr: T(TkM)-—>T(TkM), lsrsk, such that Jq :T(TkM)——>T(TkM) is
an almost tangent structure (of order k ) on TkM. For 1lsrgk, one has

J_o= (@,)".

r 1

(see de Lebn & Rodrigues |DLR2|, p.24-31). For a local coordinate sys
tem (yA,y?,...,yi) the endomorphism Jr has the following expression:

k=r
J_ =1 g ay? (2.2).
T =0 ay® 1
r+i

Also, there exists on TkM a family of vector fields Cr, 1<r<k, loca

lly given by

_ . A ‘
Cp =1 (i4l)yy.q —x— (2.3).
TSr+i
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When r = 1, then C, is called the (generalized) Liouville vector
field. One has

Cr = chr—l (or Cr = Jr—lcl)' rx2

Definition (2.2). Let ¢ be a vector field on TkM. We say that ¢ is
a semispray (or a (k+1)th order different equation) if J18=¢Cy
A curve s : R—>M is called a path of ¢ if sk is- an inteqgral
curve of ¢, that is,

(d/dt)sk = £ o0 sk
Therefore, s is a path of ¢ if and ohly if verifies the following
system of differential ecuations:
k+1

d — P = PP, @azan) s, ..., @ /adk) st
at

)}—'

o

where the semispray & has the local expression

k-1
£ =1 (i+l)yR,, 24 P20 (2.4).
. i+l A
i=0 0y, Y
1 (k)
(for further details, see |DLR2|, p. 54-58).
(Let us remark that if we adopt the coordinates (t,qA,...,qﬁ), then

s 1is a path of ¢ if and only if it verifies the following svstem
of differential equations:

k+1 _

d "= (P azansh, L, @ad st

dt

where ¢ 1is locally given by
k-1

£ =1
i=

A ] A3
TG+ R E TR )

A
0 aj aqk

Let us remark that on TkM there is defined an appropiate exterior
calculus induced by PR an inner product on p-forms

[ Ichee]

iJ m(Xl,...,Xp) =

) w (xl,...,Jlxi,...,...,x )

1 je]

i
and an exterior differentiation dJ defined by d =i

a-4di
1 I

J1 J1
A proof of the following result may be found in |DLR2|, p.95-99.

Theorem. Let L : TkM——>R be a reqgular Lagrangian (that is, the

2
Hessian matrix (93 L/ayﬁayi) is of maximal rank everywhere). Consi-

der the following closed 2-form on Tzk-lM
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= k 1.k-1
wr, —-de L + 7T d,dd 2L 3—|- d dd 3 Lt...+(-1) ErdT

iE wp, = d E . _ (2.5).
B I S U NS PSS U U IO S S
L 1 2T "ol 3T B 3T e kT “r k :
Then
. . 2k-1
(1) wy, 1is a symplectic form on T M,
. . . . 2k-1
(2) The vector field ¢ given by (2.5) is a semispray on T M,
that is, J1€ - Cl ’
(3) The paths of & are the solutions of the Lagrange equations
k . i
r (-1t S u—_q— o .
i=0 dt qu

3.- The generalized evolution space.

We have remarked that J (R,M) may be identified with RkaM ahd so
we may transport the geometric structures needed to develop the auto
nomous Lagrangian formalism on TLM to Jk(R,M) via this identifica
tion. We call Jk(R,M) the (generalized) evolution space. Thus wve

have the following induced endomorphisms on J (R,M) :

Jf = Jr - cr ® dt, 1lsrgk.

Locally

. k-r A k-r A
Jp = io a/ayr+1 8 dy; - (iio (1+1)yl+1 2/0yh, ;) & dt

and it is clear that we nav define in a similar way as we do for the
autonomous case the operators i_ and d_ . The followin§ equali-
J J
r r

ties are easily obtained:

J._(a/3t) = - C_,
r r 3/ay?+i’ r+igk,

- A _ A =
T (3/3y]) = I _(3/3y;) = 0, r+isk.

Let Jr be the adjoint.operator induced by Sr on the exterior
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algebra A(Jk(R,M)) of Jk(R,M). Then we have

-
3. (@) = o,
.0, i<r,
-
3 ayh =
. -A
{i-r I3 rsisk+r—l,
where
W = dy? - (i+1) y?+l dt , Ogigk-1. (3.1)

(we remark that, if we adopt the coordinates (t, qA,...,qﬁ) introduced
in section 2, then we put

A_ A _ A o
ei = dql qi+l dt, Ogigk-1,
and we have
A _ ., ,=A
6y = il (Si)).

Definition (3.1). A vector field ¢ on Jk(R,M) is said a senmispray
(or (k+1)-th differential equation), if and only if <g, 6?>= 0 and
<g,dt> = 1,0gisk-1.
We can easily prove that a semispray ¢ is locally given by

k-1

_ . A A A b
E = B/Bt+iio(1+l) yi+l B/Byi + £ a/ayk (3.2).

Therefore, we have
Proposition (3.1). A vector field & on Jk(R,M) is a semispray if
and only if J;& =C; and J.& = 0.
Definition (3.2). Let ¢ be a semispray on Jk(R,M). A curve

$: R—>M 1is said a path of ¢ if sk is an integral curve of £.

From (3.2) we deduce that s is path of £ if and only if s satis
fy the following system of differential equations:

1 dk+lvA

_ A
k_!'dtk+i =&

(3.3).

(Let us remark that, if we adopt the coordinates (t,qA,...,qA), then
s is a path of & if and only if it satisfies the following éystem

of differential equations:
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where k-1

g =3/3t + &

A A, =A A
: Tjpq /0 ay + & 3/3 ap ) .

0

4.-Dynamical connections on Jk(R,M).

The tensor fields J,. and J. on Jk(R,M) pernit us to give a
characterization of a kind of connections for the fibration
K@) — a5t r,m .

Definition (4.1). By a dynamical connection on Jk(R,M) we mean a
tensor field T of type (1.1) on Jk(R,M) satisfying

I3y = =J3 T3 = =3, 3T = 347 =J

1 . (4.1).

1 i

By a straigthforward computation from (4.1) we deduce that the local

expressions of T are

k A .
r(a/st) = -1 i v d/93v, + rAa/ayA ,
. “1i -i-1 k
- i=1
r(a/oy?) = asay® + TG DB D geiek-1,
i i A k
A A
r(a/ayk) = - a/ayk .
The functions r® ’ Fi will be called the components of TI. From the
local expressions above, it is easv to prove that F3 - T =0 and

rank I' = 2km. So I' is an £(3, -1)-structure on JF (R, (see lyz|).

Now, we associate to I two canonical operators 1 and n given by

Then we have

and,so, 1 and m are complementary projectors locally given by

k k .
1(a/0t)= = 1y} a/ayh_ - (1P + 3 Vi By g 0y,
i=1 i=1 -
1(a/0y™) = a/3y" , m(a/ay™) =0 , (4.2)
1 1 1 .
k k ‘ ,
m(s/3t) = 3/t + & i y? a/ay?_l + (rB + 1 iy? p (1-1)B, a/ayi,

i=1 i=1
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In m, then we have that L and M are

complementary distributions on Jk(R,M), that is,

T Jk(R,M)
Furthermore, from (4.2),
and M 1l-dimensional.

{3/ay? , Ogigk} and M

In fact, L

MO L.
we deduce that L

S

is (k+l)m-dimensional
is locally spannéd-by

is globally spanned by the vector field

k k
_ _ . A A B . A _(i-1)B A
g = m(a/at)—a/at+.5 iy a/ayi_l+(r +-E iy, T A) a/ayk. (4.3)
i=1 i=1
From (4.3) we deduce that ¢ 1is a semispray of type 1 on Jk(R,M)

which will be called the

le = 1 and

canonical semispray associated to T.

Since we have I'm = 0, then I' acts on L as an almost
product structure operator and trivially on M . Because M = Ker T,
I 1is said to be an f(3,-1)-structure of rank (k+1)m and paralleliza
ble kernel.
Now, we put 1
1
h = — (I+r) 1, = = (I-T) 1.
2 2
Then we have
- Ay _ A (i)B B A, _
he = 0,h(3/3y;) = 9/dyy +(1/2)r 7, a/ayk,h(a/ayk) =0,
A (i)B B A A
ve = 0,v(3/0y%) = (1721 DB a/ay2,v(a/0y8) = a/0yE, (4.4)
Osiék-l, 1SA , Bgm.
If we put H = Im h and V = Inm v, then we have L =H & V , where V

is the vertical distribution defined by the fibration Jk(R,M%—afki(RM%

Hence, we deduce that

T 3 (R, M)

(So, T défines, in fact,

Jk(R,M)——>Jk_l(R,M)).
Let HP = h(a/ayl-\),VA =
1 1

_ A
re = 0, THJ
he = 0, hH?

A
vg =0, vHi

M®eL M®HOV .

a connection on the fibration

a/ayﬁ , Osigk-1. Then, from (4.4), we have

v

4

(4.5)
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From (4.5) we deduce that a dynamica&l connection T on Jk(R,H)
induces an almost product structure on Jk(R,M) ‘given by three comple
mentary distributions for the eigenvalues 0,+1 and -1. TFutthermore,
{E,H?, V?f is a local basis of vector fields on Jk(R,M) . In fact ,

M=<¢> H= <H? >,V = < V? > {g,’H? , V?} is called an adapted

basis to the f(3,-1)-structure defined by TI'. An easy computation in
local coordinates whows that the dual basis of l-forms is given by

{dat, e? , q;A }, where
A __ (A 1 ]; iyBp (1-DAy 4 _ 1 ]; p(E=1Ag B 4 AL (4.4)
v = 2 Wi B z .k pYi-1 T 4Yx -4).

Definition (4.2). H (respc M ® H) will be called the strong (resp.
weak) horizontal distribution.

Remark. Since Jk(R,H) is a fibred manifold over Jr(R,M), 1srgk=1,
we may consider connections oh the fibration Jk(B,M)——>Jr(R,M) ’
lg<rg<k-1 . The study of this type of connections will be elaborated in
a forthcoming paper

5.- Paths of a dynamical connection.
Definition (5.1). A curve s in M 1is called a path of a dynamical
connection T on Jk(R,M) if and only if sk is a weak horizontal
curve in Jk(R,M) , that is, the tangent vector sk(t) belongs'to
(M & H) Xk , for everyv teR .

s (t)
Since a tangent vector X to Jk(R,M) is in M ® H if and only if
wA(X) = 0 , we deduce, from (4.4), that s is a path of T if and

only if satisfy the following system of differential equations:

k+1 A k - i B

1 4y A 1 (i-1)a d7y
I =T + I — r q (5.1)
k. dtE+1 j=1 1 1)! B aet

From (3.3), (4.3) and (5.1), we easily deduce the following
Proposition (5.1). A dynamical connection I' on Jk(R,M) and its

associated semispray ¢ have the same paths.

6.~ Semisprays and dynamical connections on Jk(R,M) .

In this section, we prove that to each semispray & of type 1 on
Jk(R,M) there exists canonically:associated a dynamical connection.
Let ¢ be a semispray of type 1 on Jk(R,M) and suppose that ¢
is locally giwen by )
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£ = 3/3t+y?a/ayA+2y§8/ay? +oook kybasoyd ) +§A8/3yi (6.1) .

Then a direct computation from (6.1) shows that

A A
le,3/0t] = -3g7 /3t 3/3y,
... B
le,0/0y5 = -ag0/3y™ a/0yp o (6.2).
A ) A B,. A B ,
le 070y |= -id/3y; 4 -3e /dy; 3/3y) » lsisk.
Now, put
r=- 2.1 31+ k=1 (1 - 2 at).
k+1 & k+1
From (6.2), we have Xk
. A A 3-k LA 2 B ..,A, B A
r(s/st)= - ¢ iy, 3/3y. .+ — £'- —=— £ diy_ 3£ /3y, 3/d3y, -
i=1 1 =17 41 K+l i=1 & 1 koot
A, _ A 2 B,, A B e 6.3
r(a/ayi) = 3/3yi +T(:I dE /8yi+1 a/ayk , Ogigk-1 , (6.3).
A, _ A
r 3(s/ayy) = -3 /z:\yk .

From (6.3), we deduce that T is a dynamical connection on Jk(R,M)
whose associated semispray E is locally aiven by

k
v . A A vA A
£ = 3/3t +iil iy 3/ayi_1 + & a/ayk R

k+1
Let us remark that, if k=1, then TI= - L€3 and E = ¢, This case has
been discussed in |DLR1l| ; in the sequel we only consider the case

k22.

. Yoo P . .
Since ¢t is different from ¢, it is neccessary to modify I in order
to obtain a dynamical connection ¥ whose associated semispray is,

precisely, & . To do this, we put

r=r-( ¢ @adt .
A simple computation shows that -
- 2(1-k) EA
k+1

((E-g)@ dt) (3/0t) /vy (6.4).

((¢-¢) @ dt)(a/ay?) =0, Osisk .
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From (6.4), we easily deduce the following.
Proposition (6.1). ¥ is a dynamical. connectien on JK(R,M) whose
associated semispray is, precisely, &.(Qbviously, for k#l; we have
¥=r=-1% .

g
7.- The generalized time-devending Poincaré-Cartan form.
Let L: Jk(R,M) —> R be a non-autonomous reqular Lacranaian of order
k on ™M , that is, the Hessian matrix (32L/ay£3yi) is non-sinqular.

As it is well-known, the Poincaré-Cartan l1-form determined by L is

the 1-form 6, on JZk—l(R,M) given by
k i A .
er =.>:l py da;_, - Ep dt , (7.1,
l=
where
i ki j j A
Py =.zo (—1)J(dT)](BL/8qi+i) , lsisk , (7.2).
i= :
and k 5
E. =% dad; p, L .
Lo A

Here, {pl , 1l<isk } are the generalized Jacobi-Ostroqradsky momentum

cootdinates and EL is the Hamiltonian enerqgy correspondinc to L .

Taking into account (2.1) and (3.1), we easily deduce that ©, can

be re-written as

o, =d; L - —apds 1+ = q.%@3 m-...+-0F L— ak @ L ae,
1 2! 2 3! 3 (k-1): k

and the Hamiltonian eneray becomes
B, = CyL - = d (CoL+ == a2 (CyL)-e.u+ (-1 ——af™t (L .

2! 3! : (k-1)!
Consequently , the Poincaré-Cartan 2-form is aiven by

Q= d GL .

Then, from (7.1), we have

(szL),km / dt #0 (7.3).

Hence @ and dt define a contact structure on Jzk-l(R,M) (see

L

|BL|). Thus, there exists a unique vector €field £_. on JZk—l(R,M)

L
satisfying
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iEL Q=0 dt(g;) =1 (7.4).

Since dt(gL) = 1, then £ is locally aiven by

.2k
_ A A A A
£, = /3t +iil xi,a/aqi_l +£ a/aqzk (7.5).
Becduse i Q. = 0 , we have

g, L

o
|

_ B, _ B
a (Ep, 3/3q,,) = d eL(EL,B/BqZk)

2 A. B A A
Then, the remqularity of L implies that

A_ A
K= %x v
A A

Now, let us suppose that X;=a; lg<issg2k~-2., Then we have

_ A _ A
0 = QL(EL,B/qu_l) = d 6 (g;,3/3a_ ;)
2 A B A A
= - (37L/3qy 8qy) (dg_; - X__ 1) .
A A
Therefore, we also have X = dg 4 . Hence (7.5) becomes
s-1
2k
A A A A
£, = 3/t + £ g, 3/3_ + £ 3/3q
L i=1 17 95 k!
or, equivalently, 2k
£, = 3/t + % iyA a/ayA + EA a/oyR (7.6)
L jop Vi i-1 Yk ol
Then, from (7.6), we deduce that tL is a sémispray on JZk*l(R,M).
Moreover, we have
1 A
gL(pA) - 3L/3q" = 0 - (7.7) .

Now, taking into account (7.2), (7.7) becomes

A, A _1\k k-1 A A_
EL(B/aql) EL(dT(BL/qu)) +...+ (-1) EL(dtT (BL/qu))—aL/aq =0 (7.8).
Hence, if s 1is a path of EL.’ then, from (7.8), we have
i1 at

L
(-1) — (=) =0
0 ELIE 3a

I ™ =

i
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alonag the canonical prolonaation SZk_l of s to J2k—l(R,M).

Therefore, we have proved the following.
Proposition (7.1l). Let L: Jk(R,M)——> R be a non-autonomous reqular
Lagrangian of order k on M . Then the vector field 13 satisfying

2k-1

(7.4) 1is a semispray on J (R,M) whose paths are the solutions

of the generalized Lagranae equations (7.9).

We eall EL
Now, taking into account Proposition 5.1 and 6.1, we have

the Laagrange vector:field for L .

Theorem (7.1). Let L : Jk(R,M)m=>R be a non-autonomous reqular La-

grangian of order k on M and 1let ¢ be the Lagrange vector

L
field for L . Then there exists a dynamical connection FL on

J2k_1(R,M) whose paths are the solutions of the generalized Lagrange

equations corresponding to L . This connection is given by

r. =71 - (E—EL) 2 dt ,

where T = - L Y. o+ k-l (I-g. & dt ) and ¢ is the associated
kK 7e. "1 7 Tk L '

semispray to T. (Here, 31 is the canonical tensor field of type
(1,1) on 32T r,m)) .
Remark.- Obviously, if k=1 , we have

r. =1 y (see |DLR1]) .
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