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THE RANK OF VECTOR.. FIELDS ON GRASSMANNIAN MANIFOLDS 

by Ulrich Koschorke and Julius Korbas* 

Introduction. 

It is an old and central problem in topology to decide when a 

given vector bundle n over a manifold M allows a nowhere va­

nishing section. If n is the homomorphism bundle n = Horn(a,3) 

of vectorbundles a and 3 over M, the question can be refined 

considerably. Indeed, for each point x of M the fiber n con­

sists of the. linear maps from a to 3 r and it is natural to 

distinguish their rank (and not only whether they vanish or not). 

So we are lead to ask 

Question. When does n = Horn(a,3) allow a section exceeding a 

given minimal rank everywhere? 

This question is at the base of the singularity theory (cf. 

[Koschorke 2]) which has numerous applications in the theory of 

immersions, frame fields and other vector bundle monomorphisms (and 

more generally, whereever morphisms of a given minimal rank are 

studied). 

The present paper is inspired by the observations that some 

very classical vector bundles have a canonical interpretation as a 

homomorphism bundle, and so our question applies. In particular, it 

is wellknown that the tangent bundle of the real Grassmann manifold 

Gm ^ of p-planes in ]Rm has such a form 
m,p * * 

T Gm D = HomtY.Y1) r m,p **-w-*̂  

where Y <= JRm is the canonical bundle over G , and y*~ is its 

complement (for details see e.g. [Koschorke 1], p. 97). From a cal­

culation of the Euler number it is known that G^ ^ carries a no-
m,p 

where vanishing tangential vectorfield if and only if m is even 

and p is odd (and hence G is an odd-dimensional manifold). 

Under these dimension assumptions we will actually construct a very 
This paper is in final form ana no version of it will be submitted 
for publication elsewhere. 
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concrete "linear" vectorfield, study its geometry and deduce the 

following 

Theorem. Let p = 2r + 1, q = 2s + 1 and m = p + q. 

-_.,_ , Г + S v ,r + S + 1 v , Г + S + 1.. . -з-, j, .
u 

If (
 r
 ) or (

 r
 ) or ( ,. ) is odd, then the 

real 

Grassmannian G allows no vector field v which, when 
m,p 

considerr-

ed as section in Hom(Y/YM / h a s rank > 1 everywhere, 

So if we define the vectorfield rank of G by 

m,p
 J 

rk(G ) = max{rk(v) { v tangential vectorfield on G } 

where rk(v) := min{rank(v : y •+ y ) | x 6 G }, we see that 

x x x m, p 
rk(G rn ) = O i f p or m - p a r e even m, p 

and 

r k ( G m f p ) = 1 if P E m - p H 1 ( 2 ) and/ O o r / ^ j o r / ^ j i s o d d . 

Remark. It follows from [Koschorke 2], proposition 5.3., that 

rk(G , ) < 1 whenever the "Hankel determinant" of Stiefel-Whitney 
P+q/P 

classes 

V̂Ŵ-*,1*_-1
 = d e t ( W

q-1-i
+
J

( Y l e Y l ) )
1^i,J<^1 

is nontrivial. However, this criterium seems to require hard cal­

culations which can be avoided by our explicit geometric approach. 

E.g. if m is even and p = 3 , or if m if 2(8) is even and p = 5 , 

we get from the theorem that rk(G ) = 1. Already in the first 

case, where the Hankel determinant is simply W,(Y) (with 
m — 4 

k = —-5—) , it takes a very involved computation to establish its 

nontriviality directlym 

§ 1. The "linear" vector field v, on G_ 
A m,p 

Throughout this paper let p = 2 r + 1 , q = 2s + 1 and 

m
 = p + q = 2(r+s+1). So we can identify IR

m
 with (C

r + S + 1
 and 

consider the composed vector bundle homomorphism 

h : y
.

c G
 x 3R

m I d X A
 - G xlR

m
 P

r
°1 i

 Y m,p m,p 

over the real Grassmannian G where A : IR —• 3R is just. 
m,p 

complex multiplication with i = /^T\ Interpreted as a section of 
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the homomorphism bundle HomfY/Y"1") = TG , h gives rise to a 
.~+*~*^ m, p 

tangential vectorfield v on G which we are going to study 
now. 

Given any point g £ G , note first that the kernel of 
• • ni,p 

h : g c IRm 1 > ]R m pro:i ) <f is obviously g := gfli(g), the 
m r+s+1 largest complex subspace of the real p-plane g c 1R = (C . The 

locus of minimum rank of h is 

N = (g(j,e^Gm | 9(Z
c:^r+S+ complex r-plane,£c (g^f real line} 

on this flag manifold h has rank 1. 

For any point g = g © £€N, the resulting decomposition 

nRm = g © £ © i6 © gl = g © gl gives rise to a chart 

\p : U = {g1 EG | g' complementary to g-1 in lRm} • L^g/g^) 

defined by I|J~1 (L) = graph L = (id,L) (g) € U for L e i ^ l g ^ 1 ) , and 

similarly to trivializations of Y|U and Y |U. 'Using these to 

calculate the tangent behaviour of v at gGN, one sees that the 

principal part of T (v ), which is an endomorphism of T (G ) 

= L^(gff© £ , g.p©(i t )) , is multiplication with 1 - e on 

Le(gc, gj) = a e i ^ , g£ | i • L = e . L - i} 

for e = ± 1 . 

Next consider the manifold <CF(r,s,1) of complex flags 

f i 4 | e c C of the indicated dimensions, and denote by cp, K 

and X the corresponding vector bundles so that e.g. 

cp©K©A = C . We have a natural fibration 

TT : N * (CF(r, s, 1) 

gce^ > (gc, gj., (leti)) 

with fiber real projective line P . Choose a generic section a 

of the complex vector bundle Hoiru (iT*(cp) ,TT *(K) ) over N and let 

SczN denote its zero manifold. Extending a to (a tubular neigh­

bourhood of N in) G and adding it to the "linear" section v, 

of Hom(Y/Y ) = TG studied above, we obtain a nondegenerate 
*—*—»-»v n i , p 

1-morphism u : Y — ^ Y over all of G (as we had seen above, 

vA alone is not nondegenerate); the singularity of u, or in 

other words, the locus {g€ G | rank u = 1}, is precisely S. 

Thus we can use the results of [Koschorke 2], in particular 
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proposition 5.3 and fact 9.7, to compute the dual class 

_D(S) €H*(Gm ; 7Z0) as follows 
m, p _: 

0(S) = det(w q. 1_ i + j(T
A«r ,')) u l f j.p.! 

= <-et(w
p
_

1
_

l+j
(ү ү ) ) ^ . ř .^,, 

If rk(G ) > 1 / i.e. if there exists a 2-morphism u : y -* y1 

(with empty locus of rank 1 points!)/ then S must be zero bordant 

in tt.(G ). *v m/p' 

In particular, we have the following logical implications: 

rk(G ) > 1 —ppr—•JUS) v a n i s h e s in H*(G ;_Z 2 ) 

' (2) ' [ S ] = ° i n H * ( G m / P
; f f i 2 ) 

« — ^ — > [ S ] = O i n H*(N;_Z 2) 

* ( 4 ) * ^2rs . i2°i l l(C ( 7 T * ( c p ) '^*{K))) = 0 i n H*(N; ffi2) 

' jgi ' w2rs(Homc(tP/K) ) = 0 in H*(<EF (r f s f 1 ) ; 2__2) . 

Here conclusions (1) and (2) follow from [Koschorke 2 ] # fact 9.7; 

to see (3)/ note that the inclusion N c G restricts y to 
m fp 

Y,-, © A and hence induces an epimorphism in ZZ^-cohomology; (4) 

follows from the duality of the two classes under comparison; final­

ly (5) follows ftom the theorem of Leray-Hirsch which shows that TT* 
2* 

is injective on H (- ; 2__2) . 
Now, if the top Stiefel-Whitney class of Horn (cpfK) vanishes 

over (CF(rfs,1), so it is also trivial when restricted to the 

fiber <CG , or when multiplied with the Euler class of r+sfr ^ 
Honuftp/A) of of Horn.., (A/K) . After relating Horn (cp/K) | CCG __ , /*_«_»»_. ( L <>%—-—' (L ..«_-»_-_»' (L r "r s / r 
Hom^ (cp/cp̂ ) and Horn (K*^/K) to the tangent bundles of the complex 

Grassmannians CG , , (EG , , . and <CG . ,., _, and after r+S/r r+STi/r I+STi/S 
applying the theorem of Leray and Hirsch again repeatedly, we con­

clude in particular that the Euler numbers of these Grassmannians 

must be even if the Hankel determinant _D(S) is to vanish. Since 

by counting Schubert cells (see OMilnor-Stasheff], §6) we always get 

X<CG

m,p> = <p> ' 

this concludes the proof of the theorem stated in our introduction. 
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