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Generalized inverses of elliptic systems of 

differential operators with constant coefficients and 

related REDUCE programs for explicit calculations 

F - B r a c k x . R.Delanghe and. J.Van hamme. 

In this paper it is.shown how the theory, of .. generalized inve:.es 

for .closed, densely, defined linear, operators £ J ..H.t ....-•.. H2_., Ht. and, H 2 

being Hilbert spaces, may be applied to the_ ca.se where. .£ = £( D) is 

an . elliptic matrix differential operator with, constant- coeffi­

cients. For £(D) the gradient operator in R 3 ..an example -is worked 

out and the explicit solution is constructed by means of a REDUCE 

program, 

1 . Introduction. 

Let Ht,. H 2 be Hilbert spaces and let £ : Kx -» H-2 be_. _a.. closed, 

densely defined linear operator with domain dom(£). kernel. 17l£). and. 

range /?(£). Furthermore call C (£) = dom(£) n t\(£) ; then 

dom(£) = C(£) © 7?(£) and £ admits a generalized inverse £--• with 

dom(£--) .= /?(£) 0 R(£)L and R(£'1) = <?(£). As is well-known 

-;"1 :.. H 2 ._-> Ht is. also . a closed densely defined, linear... operator... 

Moreover L .= £ £ _ is a non-negative self-adjoint operator and . £. 

admits, the _ polar decomposition • £ = RVJ-.. _whereby.._R _:.. H4...-* H_2_ is_ a_ 

partial isometry.. called, the .elementary operator associated wi.th.iL-. 

Denoting by M the spectral measure associated . with _ L*. .£. and £__1 

admit, the following spectral.decomposition..JL5.ej=. „E2JJ 

ľ /t dRM , £--• = ľ — dMR* 

í í л 
* whereby RM and MR are so-called generalized spectral measures, 

w.r.t. R (see also [33). 

Now assume that L = L|y(£) is a positive definite operator having, 

a pure point spectrum -*->'-€N; then, if <Lf,f> £ Cllfll2 for all. 
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f € domlL ), there exists an orthonormal basis (f .) ._.., of eigen-
r 3 3 — IN 

vectors of L with 
r 

Lf . = X .f . , j€M 
3 3 3 

0 < C «. X <x1 < . . . < -X . < . . . 

and 

lim X . = +«> . 

The following theorem may then easily be proved : 

Theorem. Let £ be a closed densely defined operator from H± into 
* . 1 

Ĥ ,, such that, if L = £ £, L = L | 7? (£) is a self-adjoint positive 
-* r 

definite operator haying a pure point spectrum (X.) -_w. Further­

more, let (f .). •-*• be a corresponding orthonormal basis consisting 

of eigenvectors of L , let R be the elementary operator associated 

with £ and let g. = Rf., j€lW. Then 

(i) ( g ) .,fci is an orthonormal basis for R(R) = R(£) 
3 3€fc! 

(ii) dom £ = lf£H. : E \.|<f,f .>|2 < +~J-
1 * 3€N -' ~ •' r 

( i i i ) dom £ = «{g~H2 : E X . | < g # g . > | 2 < +«»}• 
j € M ~ ~ 

( i v ) d o m I E - 1 ) = H 2 and dom U * - 1 ) = H 1 

( v ) £ f = E /X~~ < f , f •> Rf . , f e d o m ( £ ) 
3€N " ~ ~ ~ 

( v i ) £ g = E /X~7 < g . g . > R g . , g e d o m ( £ ) 
j € M . ~ ~ ~ 

( v i i ) £ ~ x g = E ------ < g . g > R*g . , g e H 2 

j € M /X~T ~ ~ 
K 3 

( v i i i ) £ * - - - f = E — — < f . f •> Rf • . f G H x 

jew / X - ~ " 

(ix) £ _ 1 and £ - 1 are compact operators. 

1 1 * 
Corollary. For each JEN, g . = £f . and f . = £ g .. Moreover 

~ / x " ~ ~ /x~" ~ 
v 3 K 3 

Rf = E <f.fH> g. . f e H± 

j€N J J 

and 

R*g - E <g.gH> fH , g e H, 
j€N "• J 

Remark. In this context the results and examples of M.R. Hestenes 

in [6] should also be mentioned, 
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2. Elliptic systems of differential operators 

In what follows £ = £(D) stands for an elliptic system of differen­

tial operators with constant coefficients in IR , i.e. 

£(D) = (£>k(D)) , j = 1 M ; k = 1 N 

whereby 

(i) £ .. (D) = E c ., 3 
3k î it? -ka a, a_ 

Of^r., J x i. . .x n 

•jk 1 n 

n 
with a = (a.. <*_) e Mn , |a| = E ^ , Cjka€-C * r j k € N 

3=1 

(ii) If r = mаx r .. 
3 k 

£. .ID) = E c .. „ 3 
x:i |o|-r 3 k a 

and 

£(D) = (£±:j(D)) , 

then the equation 

£(iy) T = 0 , ? € <D 

r 
<*i < * _ 

1 n 

Nx1 

-.n admits for each y € IR \{0} the unique solution £ = 0. 

Hereby £(iy) is the matrix obtained from £(D) by replacing 

— by U y ) 1 . 1 = 1.....H. 
3x 1 

У Putting £+(-D) = (£*(-D)) whereb 

lal l«l " 
£ . (-D) = E (-1 ) c 3 kjv u/ , t~ jka a4 an a V * r ., x < l

1...x n 

ak 1 n 

we then have that 

L(D) = £+(-D) £(D) 

is a strongly elliptic operator of order 2r (see [4]). Moreover, if 

for fi c IRn open and 3 £ M, L (O) stands for the space of 

<D X -valued L -functions in O, then we put H± = L M ^ * ' 
H2 = L-> M ( 0 ) a n d V = W^ .AM. - _ , M 2 , N 
In the sequel we assume that r = 1 , i.e. L(D) is a second order 

. 1 

strongly elliptic operator, that 0 is bounded and of the class C 

and that the Qirichlet problem for the operator L(D) is well-posed 

inj/c L, Jfil. 
2 , N £ 

Taking dom(£) = W0 .AO) , we thus obtain that L = £ £ is a positive 
2 , N 

definite self-adjoint operator with dom(L) = X (see also C21). 

Moreover, as the embedding of W* . A n ) into L_ N(0) is compact, L is 



24 BRACKX, DELANGHE, VAN hAMME 

an operator having a pure point spectrum, whence the results from 

section 1 may be applied. Hence we have a.o. that 

f-1 : L„ _AH) .-* L„ _.(0) is a bounded operator such that for each 
Z,M Z , N 

g e - (ft) 

£-Mg) E f- <g.£f-.> f . 
JЄN

 X
j
 э D 

(*) 

(f .) .
 w
 being an orthonormal basis of L

 N
(f-) consisting of 

eigenfunctions of L with corresponding eigenvalues X.. 

3. The gradient operator in IR" 

3.1 T a k e O to be the unit ball B in (R , H± = L (B), H
2
 = L,_

 3
< B ) 

and £(D) = grad = with dom[£(D)) = V = W f ( B ) . Then 

£ +(-D) = - \ B B a i r - div and L(D) = £ +(-D).£(D) = (-A). 

An orthogonal basis of L ?(B) consisting of eigenfunctions of (-A) 

is given (using spherical co-ordinates) by : 

i siny> _m. ... -1/2 _ . , 1+4-
u_ . = e r P. (cos9 r J_ - ifi, * 
1 ,m, k 1 1+-J- *k 

1 = 0,1,2,... ; m = 0 , 1 1 ; k = 

the corresponding eigenvalues being given by 

r ] 

1 , 2 . . . 

X = L ( 1
**Ч 

X
l,m,k [

Д
k J 

1,2, 

1+ł 

where fl 

Bessel function J 

Putting 

2 a. , = <u_ . ,u_ , > l,m,k l,m,k l,m,k 

represent the positive zeros of the 

ГГ+T ( l-m)! l J l * 4 l Д k -J 

and 
b l . m , k " < 9 - 9 r a d - _ , „ . , _ > ' 9 £ L 2 . 3 ( B ) ' 

the unique solution f in V of the system 

grad f = g , g € L 2 3 ( B ) 

is given, accordingly to formula (*) of the previous section, by 
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f = E-Чg) = 
1 

Ľ 
1=0 n=0 k=1 l.m.k l,m, k 

b u 
1,m,k 1,m,k 

Given an arbitrary g e L q(B) the computation of the solution f by 

the above formula is practically unfeasible. Therefore we developed 

REDUCE programs, which take over the by hand calculations; we used 

the version 3.2 of REDUCE [5] implemented on a VAX 750 computer. 

For a brief introduction on the nature of REDUCE see also [1]. 

3.2 The corredtitude of the REDUCE programs had first to be 

checked on a case where the computation of the solution was 

possible by hand. 

Therefore we focussed on the special case where g € L <*(&) i s 

spherically symmetric, i.e. has the specific form g = g(r)e . In 

this case the constants 

1 = m 

are easily seen to be zero unless 
l.m, k 

0, which reduces the form the solution takes to 

f = £ - M g l = 5 l i C -A b sin(kTrr) 
9 4TT k r , . V l < 0 . 0 . k k7Гr 

In this way the (known) potential of the unit ball B with homoge­

neous electrical charge may easily be computed. The electrostatic 

field is radial and of magnitude proportional to the distance to 

the origin, say g = re . This yields for the potential vanishing on 

the sphere 9B : 

E 
k=1 

(-1)
k + 1
 sin(kTrr) 

"k*
-

kwr 

where the series is uniformly convergent in [0.1]. 
3 

From the Fourier series of the function (r ~r) it follows at once 
2 

that the obtained series converges to the function (1-r )/2, of 

course the expected potential. 

Our REDUCE program calculated exactly the terms of the above 

series; we show the first seven terms : 

term(0,0.1) 

termí 0,0,2) 

term(0,0,3) 

term(0,0,4) 

termí0,0,5) 

termí 0,0,6) 

termí0,0,7) 

= ( - 6*SIN(R*PI))/(R*PI**3)$ 

= (3*SINÍ2*R*PI))/Í4*R*PI**3)$ 

= ( - 2*SIN(3*R*PI))/(9*R*PI**ЗÎ$ 

= (3*SINÍ4*R*PI))/(32*R*PI**3)$ 

= ( - 6*SIN(5*R*PI) )/( 125*R*PI**3)$ 

= SIN(6*R*PI)/(36*R*PI**3)$ 

= ( - 6*SIN(7*R*PI))/(343*R*PI**3)$ 
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3.3 Next by the same REDUCE program we solved the system 

grad f = g , f € V 
2 

for g = 2r cosO e + (1-r )/r sin6 ert , the solution of which is 

seen to be f = (r -1)cos© . We computed the first seven terms 

of the series solution and found, after having introduced the zeros 

of J q / ? with their numerical values : 

termd.0.1) := (COS(TH)M - 0 . 0875874*SIN(4.493409*R) + 

0.3935659*COS( 4.493409*R)*R))/R**2$ 

term(1,0,2) := (COS(TH)M - 0.0059394 *SIN(7.725252*R) + 

0. 0 4 5883 6*COS( 7.725252*R)*R))/R**2$ 

term(1.0.3) := (COS(TH)M - 0 . 0040778*SIN(10.90412*R) + 

0. 04 4 4 64 8*COS( 10.90412*R)*R))/R**2$ 

termd .0.4) := (C0S(TH)*( - 0 . 00 1 1 64 3 *S IN ( 1 4 . 066 1 9*R ) + 

0.0 163 7 7 7*COS( 14.06619*R)*R))/R**2$ 

term(1.0.5) := (COS(TH)M - 0.0009338*SIN(17.22075*R) + 

0 . 0 160806*COS( 17.22075*R)*R))/R**2$ 

termd,0.6) := (C0S(TH)*( - 0 . 0004089*S IN ( 20 . 37 1 3 *R ) + 

0.0083294*COS( 20.3713*R)*R))/R**2$ 

term(1,0,7) := (C0S(TH)*( - 0 . 0003496*SIN(23.51945*R) + 

0.008222*COS( 23.51945*R)*R ) )/R* * 2 $ 

The value on the sphere 9B of this partial sum turned out to be 0, 
— 8 

with an error less than 10 

3.4 We conclude this section by showing an excerpt of the REDUCE 

program to give a flavour of what it looks like. The complete 

programs can be obtained on simple request. 

comment : This program computes the bessel-functions of order 

n+(1/2) ; 

operator J; 

J(1/2):=(2/(PI*z))**(1/2)*SIN(z); 

J(3/2) : = (2/(PI*z) )**(1/2)*(SIN(z)/z - COS(z)); 

for i:=N1 step 2 until N2 do 

<< begin scalar u; 

u : = i / 2 ; 

J ( u ) : = 2 M u - 1 )*J(u-1 )/z - J ( u - 2 ) ; 

end >>; 

; end ; 
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comment : this program computes the inner product of the 

function G = GR e(r) + GT e(th) + GF e(fi) 

with grad u(1,m,k); 

procedure b(l.m); 

begin scalar 6 1,62,63,64,65,66,67,68,69; 

e1:= G R * d r u ( l , m ) + ( 1 / r ) * G T * d t h u ( l , m ) + ( G F * d f i u ( l , m ) A / ( r * S I N ( T H ) ) ; 

e2:=INT(e1,FI); 

e3:=sub(FI=2*PI,e2) - sub(FI=0,e2); 

e4 : =SIN(TH)*e3; 

e5:=INT(e4.TH); 

e6:=sub(TH=PI,e5) - sub(TH=0.e5); 

e7:=r**2*e6; 

e8:=INT(e7,r); 

e9:=sub(r=1,e8) - h o s p ( e 8 ) ; 

return e9 

end ; 

; end ; 
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