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REMARK ON MIXED FOLIATE GENERIC SUBMANIPOLDS 

Barbara Opozda 

This paper is in final form and no version of it will be submit­
ted for publication elsewhere. 

0. Let M(be a Kahlerian manifold with a complex structure J1 

and a Hermitian metric ( 9 )• Let M be a real submanifold in M • 
( 9 ) will mean also the Induced metric tensor field on M. The 
norm defined by ( 9 ) will be denoted by II l| • We set 

jf- the normal bundle of TM in TM , 9 

IM 

p - the project ion onto TM in TM1. « TM©i/T9 
|M 

n - the project ion ontOv/f i n TM1 » TM ®d~$ 
IM 

P - a p o j ! 9 y » n o j ' 9 

ITM ! |TM 

£) « T M n J1 T M f or x 6 M 9 
X X X 

% « T M + J*T M for x6M 9 
X X X 

S)1 - the orthogonal complement to £) i n T. M 9 
X X X 

$) - the orthogonal complement to T M in X t 
X X X 

^jTli - the orthogonal complement to % i n T M1, 
X X X 

V» V - the Riemannian connections on M and M respectively 
D - the normal connection, i.e. the connection in <jTinduced by V , 
oc f A - the second fundamental form and the seoond fundamental 

tensor respectively for M in M' 9 

R1 9R - the curvature tensors (of type (1.3) as well as of type 
(094)) associated with V and \7 respectively, 
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h (X,Y) - n j'oc(X fY) - ot(XfPY). _ 
Since M ' i s Kahlerian h (XfY) - ( 7 y y ) Y » ^ V Y - D ^Y . 
Recall the equations of Gauss and Codazzi t 

(0 .1 ) Ri(WfZfXfY) » R(WfZfX,Y) + ( oc U f Z ) f oc(YfW)) 
- ( 06 ( Y f Z ) _ f ot(X fW) , 

(0 .2 ) (R ,(X fY)Z)± - (7 oc)(YfZ) - (V o0(XfZ) 
X Y 

for Xf Y,Z,W e T Mf x e"M. where -
1 denotes the normal part of a 

vector tangent to M '• 
If p and ps are J1- invariant planes in TM1, then the holo­

morphic bisectional curvature by p and p ' is given by 

H ' (pfp') »R'(XfYfXfY) + R
,(JlXfYfJ

4XfY) f 
B 

where X and Y are unit vectors in p and p ' respectively. If XfY 

are arbitrary vectors tangent to M1 at a point x f then we shall 

denote R*(XfYfXfY) + R*( JXf Yf J
1 X, Y) by H* (XfY). 

B 
' A real submanif old of M is called generic if dim £) is 

x 

x. • 
constant on M. If M is generio, then we set £)» U £0 

xeM 

S 1- U S ) 1 . X- U X of3L- UuT£,S) - U&o . 
x e M x x e M * 9 x e M x ° zeu * 

S) f Sj tHL9 Jf3tf S are vector .bundles over M. Ihe distribution® 
is called the hoiamorphic distribution. A real submanifold M of 
M1 is called a CR - submanifold if j'S 1^ © Q . A CR - subma­
nif old is a generic submanif old, ["4 ] . A generic submanif old is 
called purely real (reap, hoi amorphic) if g) «{o] (resp.S)1--{oj ) 
A generic submanifold is said to be proper if it is neither 
purely real nor holomorphic. A purely real CR - submanifold is 
called totally real. If M is a generic submanifold of M , then 
the induced f - structure on M is defined by 

{0 for X s S 1 

• 

J'X forXG© 
By a generic product we mean a generio submanifold for which the 
almost product structure (©t£>4 is parallel. Of course, it is 
equivalent to the fact, that M is locally .the Riemannian product 
of a holomorphic submanifold of M * and a purely real submanifold 
of M(. Since M ' id Kahlerian the parallelity of f is equivalent 
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to the parallelity of (S) $ SD1). In the next we shall use 
Propoaition 0.1 f[4j. 7 f - 0 if and only if <x(X,Y)$ JX 

provided X or Y belongs to S> • 

A generio submanifold is said to be mixed totally geodesic 

if oC(XfY) • 0 for X€$ and YG 9 1
 f L"2J. By a generic mixed 

foliate submanifold we shall mean a generio submanifold whioh is 

mixed totally geodesic and the holomorphic distribution 9) is inte­

grate e. 

fliis definition ie analogous to the definition of a mixed 

foliate submanifold in the case of a CR - submanifold , [2J. 

A CR submanifold is mixed foliate if and only if the tensor field 

h is symmetric f[5]. 

1. B-Y Chen and S.Montiel proved in [3] the following theo­

rems which generalize some earlier theorems. 
theorem 1.1. A generic submanifold in $ n is a generic pro-

due t if and only if it is mixed foliate 

theorem 1.2. Let M be a generio submanifold of a complex-

space-foxm with positive holomorphic sectional curvature. If M is 

mixed foliate, then M is holomorphic or purely real. 

We shall prove 

Theorem 1.3. Let M be a generio mixed foliate submanifold of 

a Kahlerian manifold M*. If the holomorphic biseotional curva­

ture of M is non-negative, then M is a generic product. If M 

passes through a point of M1 in which M1 has positive holomor-* 

phio biseotional curvaturef then M is holomorphic or purely real. 

Proof. Suppose that M is a proper generio submanifold. Let 

X €$) and Y e £ x . Using the fact that J1 Y « PY + yY we find 
x x T 

(1.1) 2 R'(JiXfYfXf y Y) - R'(XfPYfXfPY) - R*(Xf yYfXf yY) 

- R,(XfJ
,YfXfJ

,Y). 
On the other hand 
2 Rl(J,XfYfXf yY) - -2 R'(YfX,j'xf yY) -2 R'U.j'x.Y, yY) 

.- -2 R,(Jl2XfYfJ
lXf yY) -2 R

,(XfJ
1XfYf yY) . 

Using the foiraula (1.1) for R'( Jr( j'X)fYf j'xf y Y)f we obtain. 
(1.2) 2 R'(J*XfYfXf yY) - - R' (j'X.PY,j'XfPY) 

. + R'(j'Xf yYfj'Xf yY) + R
l(XfYfXfY) -

- 2 R'(Xfj'XfYf yY) 
Since M is mixed totally geodesic A^^iScS. if follows that 

A X m A X f where A
T denotes the second fundamental tensor 

yY yY 
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for a leaf of S in U1. By virtue of this fact, the faots that M 

is mixed totally geodesic and S) is involutive and by the equation 

of Codazzi, we have (oomp.(6.6) and (6.7) in [3]) 

(1 .3 ) - R!(Xf J ' x ^ t ipY) - (R f(X fj 'x)Y f yY) 
» (<x(Xf V , Y)f yY) - (0L(J*Xf V Y)f yY) 

J X X 

+ ( M v x - V J'X.Y), yY) 
j ' x X 

« (A X, 7 , Y) - (A JJXf V Y) 
y Y J X yY X 

« (A Xf V* Y) - (A j ' x f & Y) 
yY J*X vj/Y X 

- - ( A T Xf A T j ' x ) + ( A T J*Xf A T X) 
y Y Y yY Y 

« 2 ( A T Xf AT X) 
yY n J'Y 

» 2 NAT X | | 2 + 2 ( A T Xf AT X) 
y Y y Y PY 

- 2 || A T x||2+ | |A T xf- ||AT X | | Z - ||AT x| |2 

yY J'Y PY YY 

- | | A T X | | 2 + | | A T X | | 2 - j|AT X) | 2 « ||AT X | | Z + j | A 7 X ||2 

y Y J1 Y " PY y Y Y 

- ) ) A T Xll2 

PY 

Combining this with (1.1) and (1.2), we obtain 

(1 .4 ) 2 | | A T X | | 2 + 2 | | A T X i | 1 - 2 j|AT X f 
y Y Y PY 

« H1 (XfPY) - H
1 (X, yY) - H! (XfY) , 

B B r B 

If we use this formula for PY instead of Yf we get 
(1 .5 ) 2 ) | A T X | | 2 + 2 ||AT X | | 2 - 2 | |A T X | | l 

yPY PY P2Y 

- H* (XfP
ZY) - H1 (Xf yPY) - H ' (XfPY) 

B B B 

By virtue of (1 .4 ) and (1 .5 ) we have _ 
( 1 . 6 ) 2 | | A ' X | | 2 + 2 j |A T X| | 2 + 2 | | A T X i l - 2 ||A \ XII 

y PY Y y Y P2Y 

- H* (X,P2Y) - H* (Xf yY) - H1 (XfY) - H1 (X, yPY) 
B B B B ' 

fiie tensor f i e l d P i s skew-symmetric. In f a c t , (ZfPW) «(Zf J*W) » 
« - (J*ZfW) m - (PZ,W). Bierefore P 2 i s symmetric. Of Course 
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P Z ( S)x) c S)-1. Let Y Y be an ortonormal basis of S)1 

! • • • • • k x 

cons i s t ing of eigenvectors of P2. x . Let P2(Y.) « A; Y. for 

i « 1 f . . . , k . Since )|P2YJ| ^llYJI, A f < d for every i » 1 f . . . f k . 
The formula (1 .6 ) used for Y « Y^ has the form. 
(1 .7 ) 2 ||AT X | | 2 + 2 | | A T X H 2 + ( 1 - A f ) 2 | | A T X if . 

- - (1-Af) H1 (X fY ;) - H' (X, yY,<) - H ' (X, yPY,*) • 
B l B T B T 

The l e f t hand s ide of t h i s equal i ty i s non-negative. If there i s 
x6M f X £ © x and i e { l f . . . f k j such that the r ight hand s ide i s 
negative, then we have a contradict ion so M must be purely real 
or holomorphic. I t holds , for instance , i n the case where M 
passes through a point of M ' i n which the holomorphic b i s e o t i o -
Tial curvature i s p o s i t i v e . Now, suppose that the holomorphic 
b i sec t ional curvature of M1 i s non-negative. If for every x£M f 

X £S) and i 1 f . . . f k the r ight hand s ide of (1 .7 ) i s zero, 
x 

then A T X » 0 for any X 6 £ and Y e S 1 . I f means that 
Y Y r x 

A X « 0 for every Y&S)1 , X e2) and x € M. Since y i s 
y Y x x ' I S x 

an epimorphism onto g) and (A XfW) a (ot(X9W)f yY) for any 
o y Y • 

W 6TMf oc (XfW) 6 ML for any X € © and Wfc TM. By Proposition 
(0*1) Vf • 0 ,i.e. M is a generic product. The proof is comple­
ted. 

Suppose now that M is a mixed foliate proper CR - submani-
fold • Then (1.4) reduces to the following 
(1.8) 2 || AT Xlf- - H* (XfY) 

Y B 

for x e a and YeSD*. 
For a mixed foliate submanifold the equation of Gauss implies 

(1.9) H • (XfY) » R (XfYfXfY) + R (J XfYfJ XfY) 
B 

for X tS) and YfcS^- , T ' % 

In faot f i f X f e 2 and Y <-- S) 1 , ot(Xf Y) »oc(j 'x fY) » 0. Hence 
J RJ(XfYfXfY) « R(X.,YfXfY) - (<*(XfX) , <x(YfY)) 

(i.io) i x . ( . , 
I R (J ,X fY fJ

,X,Y) « R(J XfYfJ XfY) - (06 (JXf jX) f *(Y f Y)) 
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The holomorphio d i s tr ibut ion 2 i s integrable f so <x(j l X fj'X) • 
» (J1 XfX) « - oc(XfX) f ( s e e , for instance (/!])• 

Bierefore (1 .10) implies ( 1 . 9 ) . 
Consequently 
(1 .11) 2 j| AT X||Z - - R(XfYfXfY) - R(j'XjY,J lX fY) 

Y 

for X € 9 and Y G S ) 1 

If there are x € Mf X € S and Y s®-1 suoh that the right hand 
x x 

side of (1.11) is negative then we have a contradiction, hence 

M is holomorphic or purely real. If the right hand side is zero 

for any x€ Mf X^S) and Y^S) 1
 f then AT X « 0 f i.e. 

x x Y 

A X » 0. In manner as in the previous c^se we conclude from 
J'Y 
this that V f » 0. Ofcerefore we have proved 

Theorem 1.4. Let M be a mixed foliate CR - submanifold of a 

Kahlerian manifold. If the Riemannian sectional ourvature of M 

is non-negative, then M is a generic product. If at a point of M 

the Riemannian sectional curvature of M is positive, then M is 

holomorphic or totally real. 

REFERENCES 
11] Chen B.Y. s Differential Geometry of Real Submanifolds in a 

Kahler Manifold. Mh.Math. 91 (1981), 257-274. 
[2] Chen B.Y. s CR - submanifolds of a Kaehler manifold I, II. 

J.Diff.Geom. 16 (1981), 305-322, 493-509. 
[3] Chen B.Y. f Montiel S. s Real submanifolds of a Kaehler 

manifold, Algebras, Groups and Geometries. 1 (1984), 176-212. 
[4] Opozda B. s Metrio polynomial structures,to appear 
[5] Opozda B. s Generic submanifolds in almost Hermitian 

manifolds 

Barbara Opozda 
Instytut Matematyki 
Unlwersytet Jagiellonski 
30-050 Krak6wf Poland 


		webmaster@dml.cz
	2012-09-18T09:00:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




