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REMARK ON MIXED FOLIATE GENERIC SUBMANIFOLDS

Barbara Opozda

This paper is in final form and no version of it will be submit-
ted for publication elsewhere. '

0. Let M'be a Kahlerian manifold with a complex structure J'
and a Hermitian metric ( , ). Let M be a real submanifold in M'.
( , ) will mean also the induced metric tensor field on M. The
norm defined by ( , ) will be denoted by Il |l . we set

J= the normal bundle of TM in TM'I ’
M

p - the projection onto TM in ™' = TMOJ,

| M

n - the projection onto J in m'l = T™ &,
M

I"p"Jll'm ’ *'n”]m ’
® =TMNJTHM forxEM,
X X X

M, =TM+J'TM for xeM,
X X X

®! ~ the orthogonal complement to ) 4in T. M,
x x x

D, = the orthogonal complement to T M in ¥, ,
x - x x
AU =~ the orthogonal complement to { 4in T M',

x x x

V,V - the Riemannian connections on M'and M respectively

D - the normal comnection, i.e. the connection in ( induced by V',

o o, A = the second fundamental form and the second fundamental
tensor respectively for M in ll',

R',R - the curvature tensors (of type (1.3) as well as of type

(0,4)) associated with V' and V respectively,
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h (X,Y) =n 3"« (XY = «(X,PY).
Since M' is Kéhlerian h (X,Y) = (V Y)Y = Y\7XY -D *,Y .
Recall the equa.tions of Gauss and Codazzi )
(0.1) R (W.Z,X.Y) = R(W.Z.X,Y) + ( Ot‘(x,Z) y ol Y,W))
_ - (o (Y,2) 4 o (X,W) ,
(0.2) (R'(X, 12} = (¥ 002 - (v D)

for x, Y,Z2,We T WMy X € ‘M, where 1 denotes the normal part of a
vector tangent to M

If p and p'are J'= :I.nvariant planes in T X', then the holo-
morphic bisectional curvature by p and p' 1s given by

; (pyp') = R'(X,Y,X,Y) + R'(J' X, X,J xvY) ’

where X and Y are unit vectors in p and p ' respectively. If X,Y
are arbitrary vectors tangent to M' at a point x , then we shall
denote R'(X,Y,X,Y) + R (J'X,Y,J'X,Y) by H' (X,Y).

' B

" A real submanifold of M is called generic if dim i) is

constant on M. If M is generic, then we set $) = U [}) .

xe M
Dla U‘gl, ge_. UZR 2= UJJL Q =UY,_.
xem * xem ¥ xenm xen

D, 5%, LD  are vector bundles over M. The distribution®d
is called the ho]o.omorphic dietribution. A real submanifold M of
M'1s called a CR - submanifold if J'O4C © . 4 CR - subma-

nifold is a generic submanifold, [4] . A generic submanifo
called purely real (resp. holomorphic) iD= {0} (resp.@‘h{ij )

A generic submanifold is said to be proper if it is neither
purely real nor holomorphic. .A purely real CR - subtmanifold is
called totally real.' If M is a generic submanifold of M , then
the induced £ = structure on M is defined by-

0 for X el
2(X) = ’

J'x for X e9 ,
By a generic product we mean a generioc subna.ni:told for which the
almost product structure (D,d!) is parallel. Of course, it is
equivalent to the fact, that M is locally the Riemannian product
of a holomorphic submanifold of M ' and a purely real sutmanifold
of M’ Since ' i8 Kihlerian the parallelity of f is equivalent
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to the parallelity of (D, D). In the next we shall use

Proposition 0.1 ,[4]c V £ = 0 4if and only if o (X, V)€ J X
provided X or Y belongs to ® .

A generic submanifold is said to be mixed totally geodesic
if o«(X,Y) = 0 for X€§@ and YeDt,[2]. By a generic mixed
foliate submanifold we shall mean a generic submanifold which is
mixed totally geodesic and the holomorphic distribution D is inte-
grable. .

This definition is analogous to the definition of a mixed
foliate submanifold in the case of a CR - submanifold ,[2].
A CR submanifold is mixed foliate if and only if the tensor field
h is symmetric ,[5].

1. B~Y Chen and S.Montiel proved in [3] the following theo=-

rems which generalize some earlier theorems.

Theorem 1.1. A generic submanifold in ¢ 2 is a generic pro-
duct if and only if it is mixed foliate

Theorem 1.2. Let M be a generic submanifold of a complex=-
space-form with positive holomorphic sectional curvature. If M is
mixed foliate, then M is holomorphic or purely real.

we shall prove '

Theorem 1.3. Let M be a generic mixed foliate submanifold of
a Kahlerian manifold M'. If the holomorphic bisectional curva=-
ture of M is non-negative, then M is a generic product. If M
passes through a point of M' in which M' has positive holomor-
phic bisectional curvature, then M is holomorphic or purely real.

Proof. Suppose that M is a proper generic submanifold. Let
b4 esax and Y ¢ 9; « Using the fact that J'Y = PY +yY we £ind

(1.1 2 R'(I'XLY,X, y¥) = R'(XPY,X,PY) = RU(X, y¥,X, yY)
. - R'(X,3'Y,X,J' V).
On the other hand
2 R'(I'5Y,X, ¢V = -2 RY(YL,X,J'X, yV) -2 R'(X,3'L,Y, y1)
=<2 R'(I?LY,3 X, y1) -2 RU(X,I'LY, ¢ 1) .
Using the formula (1.1) for R'(J'(J'X),¥,J3'X, V), we obtain.
(1.2) 2 R'(J'L,Y,X, y¥) = - R'(J'X,PY,J'X, BY)
'+ R'(3'X, ¢Y,3'X, 1) + R(X,Y,X,Y) -
- 2 RU(X%JI'%LY, yO .
Since M is mixed totally geodesic Aypl DcH, If follows that
A ¥ I=A TY X , where AT denotes the second fundamental tensor
¥y Y )
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for a leaf of ® in M'. By virtue of this fact, the facts that M
is mixed totally geodesic and ® is involutive and by the equation
of Codazzi, we have (comp.(6.6) and (6.7) in [3])
(1.3) = RU(X3'%Y, 1) = (R(KI'DY, gD

= (% v, DsyD - (o (J'x, VDY)

+ (VY , X=V 35V, yD
J X X

(A X%V D=-(4 IV Y

]
\‘/Y J X \VY X
1
=4 LV w-@ I5v vy
vY J'X vY X
e=(a7 X AT ') +(aT 3'x a7 D
yY- Y yY Y
-2(ATYX ATJ'IX)
Y ” -
=2 AT X|°+2(T x, 47 X
syY \yY PY
2 2
=2 a7 xPs AT xfF- a7 x)*- a7 x|
yY J'y PY vY
, P : 2=
w AT x)P e gal xjt- Al x)ta aT x e ol x)?
yY JY PY R4 Y
-)a” xij?
PY

Combining this Zith (1.1) and (1.2), we.obtain
(1.4) 2 a7 x| +2)aTxj*-2)aT xj?
yY Y PY
‘= ® (XPY) -H (X, vy - B (X7 .
B . B B

If we use this 2:l'o:mrula for PY 1nstea_?_. of Y, we get
(1.5) 2 o' x)F+2jaT xP-20a7. x|?
¢ PY PY P2Y

= B (X,P*V) - H' (X, ¢PV) - E' (X,PY)
B B B

By virtue of (1.4) gnd (1.5) we have 2 _ 2
(.6) 208’ xiF+2ilaTxl?+ 247 xil-2]a’ xll
YPRY Y yvY P2Y
=B (L0 -8 (L yD - & (XD - B' (X, yPD
B B B B

The tensor field P is skew-symmetric. In fact, (Z,PW) =(Z,J '") =
a=(J3'2,W) = - (PZ,W). Therefore P2 is symetric. Of Gourse
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P94 <DL Let Y.,  been ortonomal basis of oL
X

consisting of eigenvectors of P2|91_ o« Lot Pz(Yi) = A; Y, for
X

ial,...,k. Since |B*Y )| C\Y,Ily A <4 for every imlyees,k.
The formula (1.6) used for Y =2Y; has the form. s
(1) 2 AT xPP+ 28T X1+ (=43 28" xI -
a-(1=A) H (XY) - H (X, ¢¥;) - ' (X, yPY;) .
B B B

The left hand side of this equality is non-negative. If there is
x€M, X €D, and 1 €{1,...,k] such that the right hand side is
negative, then we have a contradiction so M must be purely real
or holomorphic. It holds, for instance, in the case where M
passes through a point of M' in which the holomorphic bisectio-
mal curvature is positive. Now, suppose that the holomorphic

bisectional curvature of M' is non-negative. If for every xe M,
Xc® andi 15000,k the right hand side of (1.7) is zero,
x

then ATY X a0 for any xc—,Qx and Y(:Q; . If means that

1}
A X=0 forevery Y¢cD' , X ¢® and x€M Since g _ is
Y x x | 9L
Y
an epimorphism onto O and (A X, W) = (o (X,W), '»fY) for any
o ¥ Y

WeTM, < (X,W) € AH for any X €9 and Wec TM. By Proposition
(0e1) V£ = O ,i.6. M'is a generic prdduct. The proof is comple-
ted.
Suppose now that M is a mixed foliate proper CR = submani-
fold . Then (1.4) reduces to the following
(1.8) 2 | AT XI* = = H' (X,Y)
Y B

for X €9 eand Ye Db
For a mixed foliate submanifold the equation of Gauss implies
(1.9) HB' (X,Y) = R (X,Y,X,Y) + R (J X,Y,J X,Y)

-

for X ¢® and YeOr. L~

In faot, if X €% and YGQJ‘70L(X,Y) =x(J'X, V) ;o. Hence
R'(X,Y,X,Y) = R(X,Y,X,Y) = (o (X,X) 5 x(Y,Y))
(1.10)

R (IX%,Y,3'X%,Y) = R(I'XY,J'%,10) - (o (IX,3%), (Y,Y))
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The holomorphio distribution 9 is integrable, so0 o (J' X,J'X) =
(J' x,X) s = x(X,X) , (see, for instance [1]).
Therefore (1.10) implies (1.9).

Consequently .

(1.11) 2 ) A; X)* = = R(X,Y,X,Y) - R(J'X,Y,3'X, Y)

for X e® and Y @4
If there are xcM, Xe€® and Y €9+ such that the right hand
x x
side of (1.11) is negative then we have a contradietion, hence
M is holomorphic or purely real. If the right hand side is zero

for any x€ M, Xec% and Yed!L , then AT X =0, i.e.
x x Y

4" X = 0. In manner as in the previous cgme we conclude from

J'y
this that V£ = O. Therefore we have proved
Theoren 1.4, Let M be a mixed foliate CR = submanifold of a
Kahlerian manifold. If the Riemannian sectional curvature of M
is non=negative, then M is a generic product. If at a point of M
the Riemannian sestional curvdture of M 1s positive, then M 1is
holomorphic or totally real.

REFERENCES

[1] Chen B.Y. : Differential Geometry of Real Submanifolds in a
Kshler Manifold. Mn.Math. 91 (1981), 257=-274.

[2] Chen B.Y. § CR - submanifolds of a Kaehler manifold I,II.
J.Diff,Geom. 16 (19819, 305-322, 493-509.

[3] chen B.Y. , Montiel S. 3 Real submanifolds of a Kaehler
manifold, Algebras, Groups and Geometries. 1 (1984), 176=212.

[4) Opozda B. ; Metric polymomial structures,to appear

[5] opozda B. 't Generic submanifolds in almost Hermitian
manifolds

Barbara Opozda

Instytut Matematyki
Uniwersytet Jaglelloriski
30-050 Krakéw,Poland



		webmaster@dml.cz
	2012-09-18T09:00:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




