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Summary 

A field equation of the Dirac type is introduced by using Hur­

witz pairs and its basic properties are investigated. A physical 

meaning of Hurwitz pairs is given. Isospectral deformations of the 

field equation define a soliton model of a Hurwitz pair. Main re­

sults are stated in Theorems I and II. 

Introduction 

In [3] and [4], A. Hurwitz considered the following problem and 

introduced a special kind of a pair of vector spaces: Find a pair 

(V, S) of Euclidean vector spaces which admits a bilinear mapping 

f : V x S + V with the condition ||f (x, y) || = ||x || ||y|| for xeV 

and yeS, where || || denotes the euclidean norm on V or S, re­

spectively. We set n = dimV and p = dimS<_n. Hurwitz [4] dis­

covered a remarkable fact that such a pair (V, S) satisfies very 

strong conditions on (n,p). We call such a pair a Hurwitz pair 

provided that it satisfies some additional conditions listed in Sec­

tion 1. Moreover, he essentially discovered the following fact: In 

terms of a Hurwitz pair, we can obtain p-1 hermitian n x n-

matrices Y1,...,Y * with the following anticommutation rela-

** The third named author was supported by the Polish Academy of 

Sciences and the University of L6dz when preparing this work. 
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tions: 

( 0 . 1 ) . T a Y B + Y g Y a = 2 I n 6 a e , a, f » - l , . . . , p - l , 

where I is the identity nxn-matrix. Then by recalling the rela­

tionship between Dirac matrices and the Dirac equation, we may hope 

to obtain field equations' by the relation (0.1). This is a moti­

vation of this paper. By extending the discussion about the-Dirac 

equation, we can obtain a deep relationship between Hurwitz pairs 

and the field theory. Then the restriction to (p, n) may give a 

"selection rule" or "exclusion principle" for choosing elementary 

particles. 

In [8] and [9]» one of the authors contributed to discussing 

a relationship between the complex analysis and Hurwitz pairs. In 

[5]- we have discussed a relationship between Hurwitz pairs and a 

special solution of the original K.-P. system (= Kadomtsev-PetviaSvi-

li system). 

In this paper we propose two field equations, linear and non­

linear, which are defined by a Hurwitz pair,. The first equation is 

given in the following manner:, For any positive integer n_>2, using 

matrices Y* * Y?' " * ' '^n-15 w e c a n def--ne a field equation with the 

following Hamiltonian ty on B p~ : 

(0.2) X = itf Z Y„ (3/3 x a). 
a=l a 

This may be regarded as an analogue of the Dirac equation with 

zero mass. Since ^ t = An-i> w e 0Dta:-n a wave equation, which may 

be regarded as an analogue of the Klein - Gordon equation. In special 

cases n = p = 2 and n = p = 4 our equation is reduced to the Cauchy 

-Riemann equations (2.4) and to the Dirac equation (2.5), respect­

ively. Moreover, we can obtain an interpretation of the Hurwitz pair 

in terms of solutions (2.6) of'our field equation. Finally we can 

give the second quantization of our field and obtain a Fermion field. 

Next we define a soliton model by using isospectral deformations of 

our Hamiltonian. This is an analogue lof the K.-P. system. Our iso-

spectral deformations are defined in|a special group whose Lie alge­

bra is generated by Yi > Yn» • • • > Y„, *• Then by using the framework 
X c. P~-* * 

of-generalised K.-P. systems which are given in [5J, we can obtain 

soliton models. In the special case n = p = 2, our equation is re­

duced to the original K.-P. system of a special type. 

We make some remarks on this paper. Here we are concerned 

only with an introductory part of field equations being obtained by 
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Hurwitz pairs. Detailed considerations will be given in a forthcom­

ing paper. In particular, relationships between linear and nonlinear 

soliton equations will be discussed in connection with the relation­

ship between the generalized Dirac equation and the nonlinear Hei-

senberg equation [6]. 

1. Hurwitz pairs 

In this section we state the definition of a Hurwitz pair and ( 
its basic properties. Let V and S be n-dimensional and p-di-

mensional vector spaces, respectively, n_>p, with the Euclidean 

norms || • || . We consider a mapping f: V x S -*V with the following 

conditions: 

j(l) f is a bilinear mapping, 

(2) ||f(x, y)|| = || x || • l|y|| for xeV and y € S 

(the so-called Hurwitz condition), 

(3) there exists the unit e € S such that f(x,e)=x for x«V. 

In order to exclude a trivial f, we introduce a concept of irre-

ducibility of f. V is f- irreducible, if f does not leave in­

variant proper subspaces of V. In the following we assume: 

(4) V is f-irreducible. 

D e f i n i t i o n (1.1). A pair (V, S) is called a Hurwitz pair 

if there exists a mapping f satisfying the conditions (l)-(4)« 

In 1898 Hurwitz [3] considered the.above mentioned pairs in the 

case p = n and proved the n of the Hurwitz pair to be 1, 2, 4 or 8 

only. In 1923 he treated [4] general cases n_>p and listed up all 

the possibilities admissible. The most remarkable fact is that a 

Hurwitz pair gives a very strict condition on a pair of dimensions 

(n, p) . We choose systems of orthonormal bases e., j = 1,. . . ,11, 
J 

and e , a = l,...,p of V and S, respectively. Then we have the 
k following n x n-matrices C =(C. ), a = l,...,p, by 

f(eJ'£a)= j , CjVk-
The Hurwitz condition (2) in (1.1) can be stated as follows: 

(1.2) tC C0 + CQ
tC = 2 5 . 1 , a,R = l,...,p, 

"a ß ß a aЄ n' 

(i.з) Ч w a = 1 -
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where I is the n * n-identity matrix [4], [7]. We define Y 1 9 . . . , 

Y _ by Y a = iC C a, a = 1,. . . ,p-l. Then (1.2) and (1.3) "can be 

written as (0.1) and 

(1.4) t Y a = - Y a 5 r e Y a = 0, a = 1,. . . ,p-l. 

We remark that Y is an hermitian matrix. The following lemma is 

obtained [8]: 

LEMMA (1.4). The problem of classifying Hurwitz pairs is equiv­
alent to the classification problem for real Clifford algebras with 
real antisymmetric generators i Ya • 

2. A field equation of the Dirac type 

In this section we introduce and discuss a field equation 

related to a given Hurwitz pair (V,S). We define a field equation 

with n components on the p-dimensional space-time x.,...,x _1, 

t by using Y_-.••>Yp__. 

Let (V, S; be a Hurwitz pair. Then we obtain ^-•••-Y-i 

in (0.1; and (1.4). We define the Hamiltonian K by (0.2), so it 

is a self-adjoint operator on 3RP~ = (x .,.}x ). 

D e f i n i t i o n (2.1). By the field equation defined by a Hur­

witz pair (V, S) or, simply, by the Hurwitz equation we mean the 

differential equation ' 

(2.2) (itf 9/9t -Tl)j, = 0, H~ ( f r $2'-">*n
) 

where t is a time parameter. 

Acting on (2.2) with the operator 

i-n d/dt + 'X, 

we obtain the wave equation 

(9 2/9t 2- Ap__)Y = 0, 

where A . is the usual Laplacian. This may be regarded as an 

analogue of the Klein-Goldon equation with zero mass. We are going 

to,treat the special cases n = p = 2 or 4 and to compare our equa­

tions with the well known field equations. 

PROPOSITION (2.3). In the case n = p = 2, the equation (2.2) is 
reduced to the Ccuchy-Riemann equations. 

P r o o f . In the case n = p = 2 we can choose 

-*łt ł = 1 [° " ^ ë - **=<»!..»-). 
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as the Hurwitz equation. Hence, if we set Y = (iH', ̂ p), we obtain 

0/9t)f_ = -0/9x)Y_ and 0/3t)Y_ = 0/3x)^_, 

which proves the assertion. 

Next, we consider the case n = p = 4. In this case, the follow-

ing Y _ > Y ^ > c =md 

0 
0 

ү~ a r e 
0 0 i " 
0 i 0 . 

a d m i s s j L b l e : 

0 - i 
i 0 

0 
0 

0 
0 

0 
0 

0 
0 

i 
0 

ү l = 0 
- i 

- i 0 0 
0 0 0 

, Y_ = ' 0 0 
0 0 

0 
i 

- i 
0 

• ү з = - i 
0 

0 
i 

0 
0 

0 

Then we obtain the following 

PROPOSITION (2.4). In the case n = p = 4, the Hurwitz equation 

4s the massless Dirao equation, i.e., the equation of neutrino. 

Proof. It is well known that the Dirac equation is defined 

by using the so called Dirac matrices y., j =1,2,3,4, as follows 

[12]: 

9̂  
ift Эt 

i-ñ Ii ̂ ү — + mү
)l
 V. 

a=l'a ~ a '4 
oX 

Hence we may regard our Hurwitz equation as the massless Dirac 

equation. 

Now we proceed to restate the Hurwitz condition in terms of 

solutions of the Hurwitz equation. We consider the eigenfunction 

of the form 

(2.5) Ч>=u
Q
e 
i k.x 

u = (u
1 

o
 v

 o «oЬ 

where k • x = k„ x„ + . . . + k „ x „ . Then we obtain 
1 1 p-1 p-1 

LEMMA .(2.6) . We choose a system of nxn-matrioes y^.-.j * 

and consider the Hamiltonian H given by (0.2). Then the following 

statements are equivalent: 

(i) (V, S) is a Hurwitz pair, 

(ii) Yi»•••*Y0.i satisfy the conditions (0.1) and (1.4), 

(iii) 31 is a self-adjoint operator, ||3lY||2 = 2ft2 ||k || 2 || Y || 2, 

and 7t does not leave invariant proper subspaces of V. 

Pro o f . (i)«->(ii) follows by Proposition (1.4). (ii) -->(iii) 

is a consequence of (Tlf, H?) = (̂ 2 ?, Y) = 2ft2 ||k||2p||2. It remains 

to prove (iii) =>(ii). Since ¥ is of the form (2.5), we have 

1 *1/)
к
а

и
о =2(Е

к
2)(1|и^|

2
). 

j,а 

so we obtain (ii), as desired. 
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By referring to X
 =
--

D-1
3
 w e
 can see that the eigenvalues of 

X are obtained by extracting square roots of the eigenvalues of 

A_ j. -Hence we may say that wave functions of the Hurwitz equation 

have the spin of half-integers [12]. 

By applying this fact we can define the second quantization of 

the Hurwitz equation and obtain a Fermion field. For simplicity sake, 

we treat our Hamiltonian on a (q - 1)-dimensional torus T
 1
 and 

consider the eigenvalue problem of X . Then we can obtain a system 

2 2 

of orthonormal -bases of L (T ., V), the L -space of vector-valued 

functions on T . . By labelling the bases in a suitable way, we 

denote them by ^-j.) (cf. e.g. [5], [12]). For y, , we define cre­

ation and annihilation operators a, and aJ*, respectively. V/e de­

note the Fock vacuum by | 0> and we can obtain the anti-symmetric Fock 

space and a Fermion field as in the usual manner [12]. In a similar 

way we can define the second quantization of operators [5], [12]. 

Summarizing the above discussion .we obtain the following 

THEOREM 1. Any Hurwitz pair defines a Hurwitz equation (2.2) 

on the (^-dimensional space-time, whioh includes the Cauohy-Riemann 

equations (2.3) o.nd the massless Dirao equation (2.4) as special 

oases. The Hurwitz condition can be expressed in terms of wave func­

tions (2.5). The second quantization is defined and a Fermion field 

is obtained in a standard (above described) way. 

3. A soliton model • 

In this section we obtain a soliton model defined by a Hurwitz 

pair. M. and Y. Sato have obtained soliton equations, called K. -P. 

-systems by considering isospectral deformations of 3x. We follow 

their idea by considering an isospectral deformation of K (0.2) 

in the case n = p = 2. In this case a Hurwitz equation is defined 

on B, so we can generalize Satos* theory in reference to our situ­

ation. In the case n = p = 2, the Hamiltonian of the Hurwitz equation 

can be written as 

<з.i) * - [ _ í э - V
x
] • 

We define an isospectral deformation of X as follows: We set 

where 

P = I
0
 + U л Әx"

1
 + U

 0
Эx"

2
 + . . . + U Эx

 n
 + 

2 -1 -2 -n 

U_
n
e gl(2, C). 

We introduce' infinitely many parameters t (n=l,2,...) and con­

sider P(t) whose element U „ depends on t . We consider the 
-n n 
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following isospectral deformation L of Ji : 

(3.2) L(t) =P(t)TlP(t)'1. 

Following M. and Y. Sato [2], we define a generalized K.-P. -

system for H by 

(3.3) 0/9tn)L= [(L
n) + ,L] , 

where 

(Ln)+= (PK
n'P_1) + 

and ( ) + means the part of non-negative order of the operator 3x'. 

D e f i n i t i o n (3.^)• The system (3-3) is called a K.-P. sys­

tem of Hurwitz type and any isospectral deformation L, which sat­

isfies the system (3»3)> is called its solution. 

In order to get the solutions, we have to introduce a special 

class of P: We choose a system of functions u..(t) (1<i, j < 2 ) , 

where u..(t) is a formal power series of t ..We denote the order 
1J Ji..n j n n 

of u.j. (t) by ord(ui, (t)) and ord t± tR = Z k = 1 k Jk-
We denote the order of U(t) = (u. .(t)) by 

ordU(t) = Min ord u, .(t) . 
l<i,j<2 J 

We consider the following sets: 

G={Z °° U(t) 9xn : Un(t)figl(2,C) and there exists N n——°° n n o 

such that ordU (t) > n - N for any n and U (t) 

is invertible}, 

and 

G + = { Z n = 0 U n ( t ) 3 x n« G>» 

G_={-n=
0_ooU

n(
t) 3xn«G: Uo(t) = I2}. 

Then .we can prove the following 

LEMMA (3».3) . G, G+ and G_ are groups and the following decom­
position holds: 

G = G_ • G+. 

P r o o f : see [13]. 

To get the solutions.of (3.3), we introduce the linear­

ization of (3.3): .we set 

(3.6) (a/atn)u= [H
n,U]. 
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LEMMA ( 3.7). There exists a one-to-one correspondence between 

the solutions of (3*3) and those of (3-6). By a solution U of 

(3.6), we obtain a solution L, of (3.3) as follows. We decompose U: 

U = W"1 V 

т - 1 ' by Lemma ( 3 . 5 ) . Then L=W" H W gives a solution of ( 3 . 3 ) . 

P r o o f : see [5] ( a l s o [ 1 3 ] ) . 

We investigate the solutions of (3.3) and show that they in­

clude solutions of well known equations. Firstly, we notice that 

ҡ 2 n = 
Эx 

2n 
0 

0 Эx 
2n 

and Ҡ
2n+1 

-i Эx 

0 i Эx 

2n+l 

2n+l 

Hence we consider an isospectral deformation of the following forjn: 

where 

u 0 

0 u 

u = Z ~ u
( j )

 Эx
 J 

0 

•i v 

i v 

0 

v=ïjľ 0v
( J )

 Эx"
J
, 

Then we can see that (3.6) implies 

3u
 r

^ 2n -, 9v 
Эt 2n 

[3x , u] resp. 
Эt 2n+l 

г
. 2n+l -, 
[Эx , v]. 

Hence we can see that our equations include special type of the 

original K.-P. system. 

Then we" proceed to obtain solutions of some well known non-lin­

ear equations.: We assume that L of (3.3) satisfies 

u i vl 
L = X. + U, where U = 

i v 

Then the isospectral deformation of L .implies that 

L Ф = Л i Ф , Ф= 
*: 

(3.8) 

and A is dependent of t^. This can be written as 

i(9/9x)^
1
-iv\p

1
-u$

2
 = - A i ^

2
 , 

i(3/3x)$
2
 H v ^ + u f ^ H ^ . 

At first we notice that (3.8) is of a similar form as the so-

called Abrowitz type ([10]). In fact we set 

L = a • L, where a =• 
0 1 

1 0 
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then 

L Ф = X Ф 
(7 

is nothing but an equation of Abrowitz type* Here we choose u = 0. 

Then the equations (3.8) are reduced to 

* l x x
+ ( x 2

-
v 2
-

v
x ^ l

 = 0
« 

2 2 
$

2
xx + (X - v + v

x
)$

2
 = 0. 

We set v = iv
1
. Then isospectral deformations of the equations of 

Schrfidinger type give 

v
!
 + 6 v

!
v ' + v ' =0 

t x xxx 

which is nothing but a modified K.-dV. equation ([10]). 

Next we consider an isospectral deformation of the following 

type: 

(3.9) 

where 

and 

L =ît +U + U/X, 
Ч 

*C " 

2i Э. 

-2i Э-

0 

0 iu 

-iu 0 

.° "
v 

Hence we consider an isospectral deformation of ^C^ 

plane. In the following we denote the coordinate of 

We consider 

(3.10) L}-iAiji. 

This implies 

2 i O $ 1 / 3 ? ) - 2 0 $ 1 / 3 n ) - i u $ 2 + (v/X + \i)$1 = 0, 

on t h e complex 

(C by z = n + iC-

( 3 . 1 1 ) 2i(ЭiJ/2/Эš) + 2(Э$ 2 /Эn) - i u j ^ - (v*/X + X i ) $ 2 = 0. 

Hence, if we choose a solution of the following isospectral defor­

mation 

lu x ; 

U = 0, 
2i(Э/Эn)ф + 

2i(Э/ЭÇ)ф + $ = 0, 
0 v/X 

[v*/X 0 _ 

we obtain a special solution of (3.11). 

If we choose v = e then (3.12) implies that 
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u = v1 v' + sin u = 0. 
n € 

Thus we conclude that the Sine Gordon equations are included in our 

deformations of complex form. 

Finally we prove the following 

PROPOSITION (3-13) . Any solution of (3-3) can be obtained by 

using a solution of the Hurwitz equation. 

Proof. By Lemma (3.7) 3 we may restrict a solution U of 

(3.6), . Then 

O/эt^ )U = Ctt, u ] . 

. Un o f u = E °° U 
П=-oo n 

Эxn 

( э / э t n . ) U J 
= ҠUj (, 

Hence U_ of U = Z U_ 9x satisfies 

(j =0, +1, +2), 

what proves the assertion. 

From the above discussion we can obtain the following 

THEOREM II. Soliton equations are obtained by isospectral de­

formations of the Hurwitz equation in the case n = p = 2. Solutions 

of the soliton equations include special solutions of the original 

K.-P. system and the modified K.-dV. equations. There exist ' linear­

ization equations of the soliton equations and the solution of the 

linear equations can be obtained by solutions of the Hurwitz equa­

tion. 

R e m a r k 1. In the case of a general Hurwitz pair, we can de­

fine soliton models in a similar manner. It is probably preferable 

to treat isospectral deformations by using deformations of super-

complex structures. This will de discussed in the forthcoming paper. 

R e m a r k 2. The isospectral deformations in the case n = p = -J 

will give us probably new understanding of the relationship between 

generalized Dirac equations and non-linear Heisenberg equations [6]. 

Another possibility is connected with a study of relativistic radial 

equations for spin-1/2 particles with a static interaction. 

Further investigations will be carried out in the forthcoming paper. 
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