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Weak Fixed Point Property and Banach Lattices 
by 

J. H. M. Whitfield 

§1. Introduction. 

C , a closed bounded convex nonempty subset of a Banach space X , has 

the fixed point property if every nonexpansive mapping T: C -* C (i.e., 

||Tx — Ty|| < ||x - y|| for all x, y e C) has a fixed point. The study to 

determine those subsets of Banach spaces that have the fixed point property had 

its origins in four papers in 1965. 

First, Browder [4], using concepts from the theory of monotone operators, 

showed that all closed bounded convex subsets of Hilbert space have the fixed 

point property. Then Browder [5] and, independently, Gohde [9] extended the 

result to all uniformly convex spaces. In the fourth seminal paper Kirk [11] 

further extended the result to all weakly compact convex subsets that have normal 

structure. (Recall that x e C is diametral if sup{ ||x - y||: y e C} =- diam C 

and C has normal structure if every bounded convex subset of C with positive 

diameter has a non-diametral point.) 

Compact convex subsets of arbitrary Banach spaces and closed bounded 

convex subsets of uniformly convex spaces have normal structure. Also, certain 

generalizations of uniform convexity imply normal structure, for example, 

uniformly convex in every direction [8, 20] and k-uniform rotundity [19]. 

Karlovitz [10], Odell and Sternfeld [15] and others extended the theory to 

spaces without normal structure. Lim [12] renormed £.. to obtain a nonexpansive 

self-mapping of a weak*-compact, convex set that is fixed point free. 

The fundamental open question from the outset was whether or not weakly 

compact convex subsets of a Banach space have the fixed point property. 

Alspach [1] recently gave an example of such a subset of L-[0, 1] that is fixed 
1 L 

point free. Namely, let C = {f e Ln[0, 1]: / f = 1, 0 < f < 2 a.e.}. Then C 
L 0 

is a closed, convex subset of the order interval [0, 2] , hence C is weakly 

compact. Define T: C •> C by 

Tf(t) = 
2f(2t) л 2; 0 < t <- 1. 

2f(2t - 1) - 2 v 0; ì < t < l 

T is an isometry on C and has no fixed points. Subsequently, additional 

examples have been found, see, eg., Schechtman [17] and Sine [18]. 

The problem now is to determine which Banach spaces X have the weak 

fixed point property (wfpp), that is, every nonempty weakly compact convex 

subset of X has the fixed point property. In particular, is it true that all 

reflexive or superreflexive spaces have the wfpp? The purpose of this note is 

to indicate some recent results, which are lattice theoretic in spirit, con­

cerning this problem. 
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§2. Banach Lattices. 

For an introduction to Banach lattices the reader is referred to 

Lindenstrauss and Tzafriri [13] or Schaefer [16]. 

Let X be a Banach lattice. A sequence (x ) in X is weakly 

x -»• x weakly and 
n 0 

lim lim |||xn-x I A |x m-x ||| = 0 . C c X is weakly orthogonal if 

every weakly convergent sequence in C is weakly orthogonal. The Banach 

lattice X is weakly orthogonal if every weakly compact convex subset of X 

is weakly orthogonal. 

Clearly every weakly convergent monotone sequence is weakly orthogonal 

and every compact subset of X is weakly orthogonal. The following property 

is a sufficient condition for X to be weakly orthogonal. 

A Banach lattice X has the Riesz approximation property (RAP) if 

there is a family P of linear projections with P|x| = |Px| , for all 

P e P , which satisfies: 

i) P(X) is a finite dimensional ideal; 

ii) for each x e X, inf{I|Px - x|I: P e ?} = 0 . 

Proposition 2.1. ([3]). If a Banach lattice X has the RAP, then X is 

weakly orthogonal. 

Note that by taking P to be the standard bases projections it is 

easily seen that c (r) and I (V), l<.p<~, r any set, have the RAP. Also, 

RAP is preserved under lattice isomorphisms. 

On the other hand, I (O , c(r) and L [0, 1], 1 <. p <. «» , fail to 
oo p 

have the RAP and, except for c(T) , fail to be weakly orthogonal. 

The Riesz angle of a Banach lattice X is defined to be 

a(X) = sup{|||x| v |y|||: | |x| | <. 1, ||y|| £ 1} . Recall that the Banach-

Mazur distance between two Banach spaces X and Y is d(X, Y) = inf||U|I • |IU || 

where the inf is over all linear isomorphisms U of X onto Y . If the 

inf is restricted 

the Riesz distance 

inf is restricted to lattice isomorphisms, it is denoted dn(X,Y) and called 
K 

Proposition 2.2. ( [3] ) . 

a) For any Banach lattice X, 1 <. a(X) £ 2 . 

b) a(X) = 1 if and only if X is an M-space. 1 

c) If X is an abstract L space, 1 <. p <. », then a(X) = 2P 

d) For every pair of Banach lattices X and Y, a(Y) <.
 d
R0-» Y)a(X) 
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§3. Weak Fixed Point Property. 

Maurey [14], using ultrafilter techniques, obtained the following results. 

Theorem 3.1. (Maurey) Every reflexive subspace of L_[0, 1] has the wfpp. 

Theorem 3.2. (Maurey) cQ has the wfpp. 

Borwein and Sims [3], using classical methods, obtain Theorem 3.2 and 

most of the other known results and more concerning the wfpp. 

Theorem 3.3. (Borwein and Sims) A Banach space X has the wfpp if there 

is a weakly orthogonal Banach lattice Y such that dCX, Y) a 00 < 2 . 

Some of the consequences of this surprisingly wide reaching theorem 

are given in the following corollaries. 

Corollary 3.4. Let X be a weakly orthogonal lattice such that aCX) < 2 , 

then X has the wfpp. 

Corollary 3.5. A Banach space X has the wfpp if, for some V and 
1 

1 < p < oo, d(X, £ (r)) < 2 q where - + - = 1 . 
p p q 

Corollary 3.6. A Banach space X has the wfpp if either 

i) d(X, c(r)) < 2 , or 

ii) d(X, c (r)) < 2 . 

It is known [7] that d(cQ(r), c(r)) = 3 so part (i) does not imply 

(ii) and conversely. 

Corollary 3.7. X*9* = ( £ 0 0 , I M L ) , where ||.|| = (A | I • | L ) v ||.|| 
A P A \ P 

and l < p < r < . c o , X > 0 , has the wfpp. Indeed, Xp is a weakly orthogonal 

lattice and a(X^,r) <. max{a(A| M L ) . aC| | -1 lr)} = 2P < 2 . 

2 oo -it 
Corollary 3.8. All Banach spaces X such that dCX, X ' ) < 2 2 have 

the wfpp. 

The above two corollaries encompass several known results due to 

Karlovitz CIO], Baillon and Schoneberg [2]_ and Bynum rj>]. 

The next theorem, also due to Borwein and Sims, characterizes those 

order complete M spaces with the wfpp. 

Theorem 3.9. Let X be a countably order complete M space. The following 

are equivalent: 

(i) X has the wfpp. 
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Cii) X is isometric and lattice isomorphic to cQ(r) for some 

index set r 

(iii) X is order continuous, 

(iv) X has weakly compact order intervals. 

(v) X contains no (lattice or norm) copy of L 

(vi) X contains no isometric copy of L [0, 1] . 

Corollary 3.10. An abstract L space, 1 £ p £ oo , has the wfpp if and 

only if X contains no isometric copy of L-[0, 1] 

These last two results suggest the conjecture that Corollary 3.10 

obtains for arbitrary Banach spaces. This is further reinforced by Theorem 3.1. 

Every Banach space X embeds isometrically in some £ (r) . So the 

wfpp for X reflexive, respectively superreflexive, can be established by 

showing that all such subspaces of £ (T) are weakly orthogonal. Is this 

true? In particular, is it true for separable subspaces of £ ? If so, this 
00 

would include MaureyTs result Theorem 3.1. 

Acknowledgement: The author wishes to thank Jon Borwein and Brailey Sims for 

the reprint [3 ]a survey of which forms the substance of this paper. 
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