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A COMMON GENERALIZATION OF BinomIAL COEFFICIENTS.
STIRLING NUMBERS AND GAUSSIAN COEFFICIENTS

B. Voigt

In this paper we present a common generalization of some basic enumeration pro-

blems. We show how well known recursion and inversion formulae fit into our model.

Let AO’AI’AZ"" be finite sets. For nonnegative integers n and k denote by

SE(aO,al,az,...) » where a; = |A;| , the number of words w = (wj,..

i "wn-l)

such that

(1) w contains k Tlabels, say at positions igseeaiyy o
(2)  all entries in w before position 10 belong to Ay , all entries in w
between positions iz and i£+1 , where £ =0,...,k-2 , belong to A£+1 s

all entries after position ik-l belong to Ak .

A M o1 A
-~ A P Pt — prm——
L N M . [ ] - - . .N N‘ . L [ ] .N I
io i iy o4l a1
i ig-inel n-i, .-1
As SE(?) = :> aoo : al1 o ... a k-1 s

05i0<11<...<1k_1<n

the numbers SE can obviously be defined for sequences of complex numbers.

Examples:
(1) 32(1,1,...) = (2) (Binomial coefficients)

(2) 32(0,1,2,,,,) = sﬁ (Stirling numbers of the second kind)
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2,

(3) SE(I,q,q yeel) = (E) (Gaussian Binomial coefficients)

3. -

(4) SE(q,qz,q secs number of affine k-dimensional subspaces

in the n-dimensional affine space over

GF(q) .
(5) 32(2,3,4,...) = number of Boolean sublattices P(k) in
P(n)
( P(n) = lattice of subsets of an m-element
set)
Theorem 1

Let n be a nonnegative integer and let L IRERRL be mutually distinct complex

numbers . Then

1 1 .11
% 4 ©%-1 %
2 2 2 2
4 4 © 41 %
det Do o
k-1 _k-1 k-1 _k-1
aO al e ak-l ak
n n n n
% A ©%%-1 %]
n -
Sk(ao,...,ak) =
[ i1 1]
ao al . ak-l ak
2 2 2 2
a a . a a
det 01 k-1 5k
k-1 k-1 k-1 _k-1
B 4 © 1 %
Kk kK _k
a a . a a
| %0 1 k-1 %k |
k n k -1
= X a; - T (ai-a.)
i=0 =0 J
J#i

Proof:
As the determinant occuring in the denominator is van der Monde's determinant and

the determinant occuring in the numerator differs from van der Monde's determi-
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nant only in the last row, the second equality follows immediately by expanding
the numerator with respect to the last row. Thus it suffices to show that

k k
n _ n -1
S (aps...5a,) = £ a, - T (a.-a.)
k*"0 k i=0 1 jeo 1
hfal
We proceed by induction on k , the case k = 0 being obviously valid. Let us

consider the case k + 1 :

k+l yp.-p. 4-1
n - -1
STy (ags - rapag) = > n o
-l=u_1<u0<...<uk<uk+1=n J=
n-k-1 3 io1
(distributivity) = = as - SP7'"
s 0 k
i=0
n-k-1 i k+1 1 k+1 1
(by induction) = £ ag © I a2'1' - m (az-a )"
i=0 2=1 i=1 J
j#e
K+ K+l kel .
(changing summation) = £ T (a£~a.) L oa, - az'
2=1 j=1 J i=0
k24
k+l k+1 n-k-1 .
(distributivity) = £ az - (a[a\.)'1 R aa . az'k'1'1
£=1 j=1 J i=
JHL
k+1 k+1
i -k _n-k -1 -1
(Cauchy-convolution) = Zil az . (ag —az ) - (ao—al) . jzl (az-aj)
jte
k+1 k+1
k n-k -1 -1
= ¥ a a (ap-a,) n (a,-a;)
PPl A o)L e
jre
k+1 k+1
n -1 -1
- T a (apn-a,) n (a,-a;)
S A
JEL
k+1 k+1 )
= ¥ a? - n (as-a.) 1
i=1 j=0
J#
k+1 k+1
- ag'k .z a? -om (ai-aj)-1
i=1 =0



342 B. Voigt

Hence it remains to show that

k+1 k+1 k+1
0 = ag conm (ao-a.)'1 + ag'k -z a% -om (a.-a.)’1
j=0 ° S S C
j#0 J#i
Multiplying with aé’n . n (as-at) yields the equivalent formulation
O<s<t<k+l
k+1 . K
0= (-1)7 cay m (ag-a,)
i=0 O<s<t<k+1
S#i
t#i

However, the expression on the right hand side is the determinant of the following

matrix (expanded with respect to the first row):

[k _k k _k
ag Ay ... q Ay
11 ... 1 1

a3 A Ay
2 2 2 2
a3 9 a4l
Kk Kok
_ao al “ee ak ak+1 ]

As the first and last row of this matrix are identical, the determinant is zero,

thus completing the proof of the theorem.

It is wellknown that e.g.

RN (| Ky _ 92 n
lim Sk(l,q,...,q ) = lim (k)

= () s
g-1 g~1

q

thus it is desirable to have an explicit expression for the numbers SE(aO,...,ak)

also if some of the ai's are equal.

Notation:

Let a be a complex number and let k be a positive integer. The k-tuple
kll

(a,...,a) consisting of precisely k a's 1is abbreviated by "<a>
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Theorem 2

Let n be a nonnegative integer and let Agseesdy be mutually distinct complex

numbers. Let ko""’kl be positive integers. Then

ks-1 .
k kl) £ K4 n-k +14y

¥ -k.
n 0 n 1 & j
S (<ap> “5eeer<a > =z x( ) - a. c = [ m(a;-a;) ]
(Zki)-l 0 £ i=0 u=0 ky-1-u i ! . i™%;

Remark:

By definition, the numbers S:(ao,...,ak) are invariant under permutations of the

arguments, i.e. for every permutation «t : {0,...,k} -» {0,...,k} it follows that

sQ(aO,...,ak) = SE(aT(O),...,aT(k))

Thus the theorem gives an explicit characterization of the numbers SE(aO,...,ak)
in general.

Proof:

We proceed by induction on the sequence (kO""’kt) .

The beginning of the induction, viz. k0 = ... = kl = 1, has been established in
theorem 1.

For the inductive step it suffices to show that the validity of the assertion for

the sequence (1,k0,...,k£) implies the validity of the assertion for
(kg*1skysenosky)

Assume that for all x which are different from L LRRRELY) it follows that

k k 4 -k
S;k.(x,<a0> 0,...,<a£> l) =x" . .q (x-aj) J
i Jj=0
¢ ki-1 n-k+14y
x5 (k j&_ ) - ! . -%—-
i=0 u=0 “§i7°7H e
u ¥ -k .

6 [(a.-x)'1 - nm (a;-a,) J]
éuai i P
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k k
The mapping s;k (-,<a0> 0,...,<a£> K) : € >0 is continous, hence
i
k k kat1 k
. N 0 Ly _on 0 L
Tim szk.(x,<a0> seees<ap> ) = Szk.(<a0> s<ap> Th..,<ap> )
x-a i i
0
We show that
k
k k 0 n-Kk.+u n 2 -k
1im S;k (x,<a0> 0,...,<a£> l) = X (k q ) "a 0 --lr . S [ n (ao-a.) J}
xwag i p=0 <07V M etag Lyl J
g k-1 n-k.+1+y " k-l 2 K.
+ I X (k —nl- ) - a, ! . L, .8 [(ai-ao) 0. g (ai-a.) J]
i=1 p=0 <77 B sty j=1
J#i
From'elementary calculations it follows that
k k -k 4 -k
1im S;k (x,<a0> 0,...,<a£> £) = 1im (x—ao) 0 (xn < 1 (x-a;) J
X3y i X j=1 J
ka-1
k 0 n-knt1l+y u L -k
0 n 0 1 [ -1 J
+ (x-ap) T ( ) - a CL [(a-x) M (a-a;) ])
0 1=0 ko-l-u 0 n! 6uao 0 j=1 07
ki-1 -
£H RS R U k-l £ -k,
vz z(k-l—) a; W (a-a)0 <M (as-a;) Y
isl =0 “iT7H Bt sMa i"%0 jep 103
J#i

0 k 0 n-k,+1+p n
<] 0 n 0 1. 6 -1
S Ttxeag) O+ = G 1) "3 dr 2 Tagn)
& Oy =0 0 [ a0
Hence
k
k k 0 Ja
Tim S;k'(x,<a0> 0,...,<a£> [’) = kL' © lim 6k [xn - m
x-a 1 0 X2 OX j=
4 ki'l n-k.+1l+y n -kn-1
A O T S R [(ai'ao) °
i=1 p=0 M77H L 5“ai
k
0 k n-k+u n £z
= ¥ (k -0) . k "nr!'-k T )I . ao 0 . 6 [ n (ao_aj
p=0 o7¥ ol -n-kg#u)! 8"a, Lj=
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2 k;-1 n-k.+1l+y word -k
+ ¥ I (k-l-) ay Ll S—[n(ai-a) J]
j=1 =0 i 7M osMal L=l
K J#i
0 n nkotv 1 & [ k;
=z (k _u) a i ; m (ao-aj)
u=0 "0 : <] 3 j=1
2 ki-1 -k, +1+y L -k
+ I (k -nl- ) a1 . _1_' 6 [ﬂ <ai'aj) J]
i=0 y=0 <iTTH Mosfay byel
J#i
This completes the proof of the theorem.
o
Remark :
Theorems 1 and 2 show that the numbers SE(aO,...,ak) are divided differ-

ences, see e.g. [6]. For a treatment based on the calculus of finite differences
see the forthcoming paper [2 ]. In order to keep this paper self contained we
continue to give elementary proofs.

For the remainder of this section let a = (ao,al,az,...) denote an infinite

sequence of (complex) numbers.
For convenience put STl(g) = 0 for every nonnegative integer n .

Theorem 3 (Pascal identity for the S- numbers of the second kind)
+]1,>» -
Sp (@) =85 (@) +a - S{@)

Proof: obvious.

Definition:
- -
For nonnegative integers let the polynomial pi(x) € C[x] be defined as follows:

N
pg(x) =1 , viz. the polynomial which is constantly 1 ,

- ->

pﬁ+1(x) = (x-ak) : pf(x) , i.e. pi+1(x) = (x-ao) ~(x—a1) Cae -(x-ak)



346 B. Voigt

Examples:

-

(1) For 3 =(1,1,1,...) itis pi(x) = (x-D¥ ,

(2) for a =(0,1,2,...) it is pi(x) = [x], , the falling factorial,
-

(3) for @ =(0,-1,-2,...) it is pi(x) = [x1¥ , the rising factorial,

-
(4) for 3 = (1,q,q2,...) the polynomial pz(x) = (x-1) - (x-q) - ... ,(x_qk-l)

is the k.th Gaussian polynomial.

Theorem 4 (Inversion from (Xn)nem to (pn)nem)

n
X' =

k

nmMs

"3 .03
. (@) - p(x)

Lemma:

Let k be a positive integer and let bo,...,bk be mutually distinct (complex)

numbers. Then

nMx
—
1
—
~
—
3
=
o
n
o

Proof:

We use induction on k , the case k =1 1is obviously valid. Let us consider the

case k+1 :
k+1 i i=1 by bg-b, k1 i i=1bjeby
= (-1) M =% = 5.+ .= (-1) mo
i=0 3=0 "07°j+1 07’1 =2 i=0 "o7bj
bbby boby ke i1 Pgtby  i-1 by-b,
=55, " bop, L5, (D) b-b, .M B-p.. 0
0P PoP1 =2 0°%2  j=2 P07Pj+1

using the inductive hypothesis on bo’bZ""’bk .

Proof of theorem 4

We prove the particular case, where the numbers 3ps3y5... are mutually distinct.
The remaining cases follow from continuity reasons.

According to theorem 1 we show that
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n k k k-1
M= = ( z a? -n (ai-a.)'l) - n (x-a.)
k=0 \i=0 =0 J j=0 Y
Jti
As both sides of this equation are polynomials of degree n it suffices to show
that
n k k k-1
az = I ( z a? - (ai-a.)'l) - (az—a.)
k=0 \i=0 j=0 1 =0 J
J#
for every 0 < £ <n . Fix any such £ . Consider, changing the summation:
noy, n k -1 k-1
(*) Ioay e ( s n (ai-a.) ) om (az-a.)
i=0 k=i j=0 J =0 J
J#i

For i =0,...,n then consider each summand separately in order to find out what

it contributes to the sum. We distinguish three cases:

Case 1:
k-1

i > £ , then the contribution is zero, due to the factor T (az—aj) which
j=0

vanishes as k > i > £

Case 2:

i = £ , then we have the contribution az , Viz

W0k oy kel .l !
ap < rn (az-aj) ) - om (az-a.) =a, - (’n (az—aj) ) -om (az—a.)

k=L =0 =0 J =0 =0 J
Jj#e n
= a
2
Case 3:
i < £, then the contribution is zero again, viz.
n i-1 k \ k-1
n -1 -1
a" -(z (n (a.-a.) )( T (a,-a,) ) n (a,-a,) =
TN \jg T jeieg 1 ) j=0 £
i-1 i-1 s k-1 a.-a
= a? - n (a1.-a.)'1 S| (al-a.) . [ T (-l)k . 5—%E—£;] =0
j=0 J j=0 I Lk j=i %791

as according to the lemma the sum in the square brackets vanishes.

Hence the sum (*) takes the value az , thus completing the proof of the theorem.
o
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Definition:

The numbers AE(;) are defined by the following identities:

z 42(3) . Si(g) = 62 (Kronecker-Symbol)
J>0 ‘ .

resp. = SN3) - 4&(3) = 6E , resp. pi(x) =% AE < xK
J'>0 J n

Remark: From the classical theory we know:

)M

K (Binomial inversion) ,

n -
8, (1,...,1) = (-1
8.(0,1,2,...,k) = sy (Stirling numbers of the first kind),

("k)
n+k ' q 2 (M

K (Gaussian inversion)

n 2 ky -
Ak(l’q’q 5005 ) - ('1) q

Theorem 5 (Pascal identity for the 4 - numbers of the first kind)

+]1,-» -
@) = 4 @) - a

8y . AE(;) ,

n

. N ind . .
where again for convenience ATl(a) =0 for every nonnegative integer n .

Proof:
- - -
Consider the polynomial pﬁ+l(x) =X . pﬁ(x) -a - pﬁ(x) and compare the
coefficients of xk in the expansion I Aq+1 cxd =
: J
i>0
= n J n j
= X 4., x- x a_ 4. +Xx
>0 371 0 "
Theorem 6
n-k-1
52 RSP moa,  forevery k<n.
i=0 i
Q5u0<ul<...<un_k_1<n
Proof:

We use induction on n . For n = 0 there is nothing to show. Thus consider the

case n+1 . The particular case k =n is treated separately, viz.
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n-1 n
:+1 B A2-1 “ % A: 0T iEO 4 % 62 = iEO 3
in accordance with the assertion.
Now let be k < n . Then
sp = sy -y o
TR S
0§p0<...<pn_k<n i=0 i
- (_1)n+k tap ::> nj;_l A
0§y0<...<un_k_1<n i=0 1
- (-pMR L > "
05u0<...<un_k<n+1 i=0 "

in accordance with the assertion.

-
The connection between the matrices [32(3)] R [AE(;)] and the sequence [p?)]T

written as a column vector is given by the following two inversion formulae:

0.T _ ;N2 E
%) { lpyl" = [, ()1 - [p] ,
21" = @)y - )

0f course, we also could have started from a given ascending sequence of nor-
malized polynomials (pn)neN , where ascending means that p, divides (w.r.t.

the ring C[x1) Ppe1 - As © s algebraically closed then pn+1(x) = pn(x) :

-

(x-an) for some complex number a_ . As pz =Py, for the sequence 2 of roots

n
we again obtain the inversion formulae (*) .

-

Particularly the sequence 0 - (0,0,...) yields that pg(x) = x" for every non-

negative integer n .

Nowlet 3 and B be two infinite sequences. From the inversion formulae (*) we

. ->
immediately obtain inversion formulae for transforming the polynomials (p?])nEIN
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B.
into (pn)nEIN and vice versa:

{ 217 = 1@ - IS)E)] - (b1
(*%) . .
217 = [ap(B)1 - 1sp(@1 - o317

Let us denote the numbers occuring in the matrices [42(3)] . [SE(B)] by
n,-»

Sk(a,K) . Analogous let us denote the entries of [AE(H)] . [SE(?)] by AE(?,B) s

more precisely:

Definition:
Sg@B) = T s5@) - sy(B) and s{(EB) = £ 41(B) © K@)
>0 J >0
An well known example are the Lah numbers [4] , let us consider here the un-

signed Lah numbers:

One immediately verifies that 62(0,-1,-2,—3,...) = [sEl , the absolute Stirling

numbers of the first kind. Hence

.Sj=sn

y
k = Sk

L' = x|t

((0,-1,-2,...),(0,1,2,...)) ,
g 1 ( )

the signless Lah numbers,satisfy the identity

no_ o
[x]" = kio L'y [x]k

The following recursion for the unsigned Lah numbers is well known:

L.n+1 - L,n

n
K k-1 * (k) - LYy

This recursion can be generalized as follows:

Theorem 7 (Pascal identity for SE(Q,B) and AE(?,B))

+1

Sg (@) = s 1(@.B) + (b-a)) - Sp(R.B)
+

st L @) = o) (B) + (a-b) - 4] (3.B)
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Proof:
We proceed by induction on n :
@B - x 43*1(3) )
J>0 ’
-5 (4" @) ~sj(3)>
>0 j-1 k
-5 (Af!(z) sg”(s’))
>0 \ Y
-5 (4".(3) ol (a)) + b
350 J k-1 k
= sL‘_l(a’,B) + (b-a,) * S

351

The next recursions generalizes an identity for Gaussian binomial coefficients

which has been discovered by Carlitz [1]

Notation:

Let £ be a complex number. By a - £ we denote the sequence (ao-ﬂ,al-ﬂ,...) s

i.e. £ is subtracted from each component of 3.

Theorem 8

(h S@ =z - siE-0)

(i) sp@ =z () -2 ShEe
J

(1) sf@ =z () - 2" - s)@w)
J

(1) sp@ =z () - &0 - 8T
J

Proof:

We prove (i) , the remaining cases can be handled analogously. Proceed by in-

duction on n . The case

case n +1:

n

=0 is obviously valid, thus let us consider the
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1 -
SPHR) = s @) +ay - S@)
- ((ﬂ).z"'i . sd (3-2)) o oa e x (ML si@Ee
>0 N k-1 k 350 J k
= Ny Lon=d L oed (2 p) .. <d(z
= (- (s G0+ e siE-)
>0
veex (M si@e
i>0 J
s (M2 820G ¢ o= (eI e (M eI s 3
0 k . J j-1 k
j>1
+1 1 -j j
= ("gh ™ Q@+ oz (h L s
J>1
=z (MY gy ,
>0 Y
completing the proof.
Remark:
The identity of Carlitz [1] appears considering (i) with a = (l,qz,q3,...)

. k)
and £=1,viz. (M. = £ (" - al
kg >0 J J

counts the number of k-dimensional linear subspaces W of the n-dimensional

where Agk) = Sﬂ(O,q-l,qz-l,..J

vector space (GF(g))" = {(xl,...,xn)lxie GF(q)} , such that every projection

T Vo GF(q) 1is surjective, where the projection m is defined by

ﬂi(xl""’xn) = X5 [5].

We should mention that theorem 8 (i) applied to Stirling numbers of the second

kind does not yield the familiar recursion S£+1 = 'Z (";1) Sﬂ_l , simply

because generally the numbers Sﬂ_l and Sﬂ(-l,o,.?;?k-l) are not the same.
However, the recursion SE+1 =z (ngl) . Sg_l is a unique feature of the
Stirling numbers of the second i%gd, more precisely:

Observation:

Let a = (ao,al,...) be an infinite sequence of complex numbers such that

n+l - n+l i =
s @) = = (M) -8 (@)
k 350 J k-1
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holds for every pair of nonnegative integers k and n . Then it follows that

. N2y _oon
a; =i, i.. sk(a) Sk .

Proof:
As Sg+1(3) = ag+l = (nal) . STII(E) =0 it follows that aj =0 . Assume by
induction that 3,1 = k-1 and consider S:+1(3) , viz.
sith@) = s @)+ a, - SIR)
" I () - si,@ "k D - a - S@
" 5 (5 - (sf_, @ + (k1) - S EN) + (k) 5 (3 - s)_1 @)
) (Jil (I Sia@®) + () S Fiil IEINED
k) 1) Sp @
I ("N - sl @) (e 5o ORCI

hence (ak-k) . 32(3) = 0 , which shows that a, =k . This completes the proof of

the observation.

Let us apply theorem 8 (i) to Stirling numbers of the second kind and see what
happens:

Consider the sequence (-1,0,1,2,3,...) . Call the numbers

n _éen
Sk(-1,0,1,2,...) = Sk

the reduced Stirling numbers. By 8 (i) then

n n an
S, = £ (%) S
Koo K

The following table contains some values of the reduced Stirling numbers:
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o :/7?
—
~n
w
E=
(8]
(o))
~
[ee]

—
1
—
—
o

6 [+1 -1 1 10 20 9 1 0

8 |[+1 -1 1 42 231 294 126 21 1

For k > 3 the reduced Stirling numbers admit the following combinatorial inter-

pretation:

Theorem 9

For k >3 it follows that

an P .

Sk = number of surjections f : {0,...,n-1} - {Ao,Al,...,Ak_l} such that
there existsan even nonnegative integer £ < n satisfying
10g) = 10,....83

(*) { F(£+1) = o, and f(£+2) = %, and

min f_l(Ai) < min f'l(A for every i =0,...,k-2

i+1)

Proof: One immediately verifies (using Pascal identity) that

Sg =1 iff n>2 and n=0 (mod 2)
=0 iff n<2 or n%1 (mod 2)
Now we use induction on n . The case n = 3 1is obviously valid, hence consider
. n+l 2 . -
n+l, viz. §7 =P+ (k-1) - S}

Let f: {0,...,n} > {Ao,...,Ak_l} be any surjection satisfying (*) .
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If still f]{0,...,n-1} acts surjectively onto {xgs-s2 1} there exist pre-

cisely k-1 possibilities for f(n) , viz. Aps+wesh . This explaines the

right summand. If f]{0,...,n-1} does not act surjectively, then f(n) = Neo1 -

But in this case f]{0,...,n-1} acts surjectively onto {AO,...,Ak_Z} . If still
k-1>3, fH0,...,n-1} also satisfies (*) . This explaines the first summand.
If k-1=2 and f satisfies (¥) , then it follows that £ 1(a;) = (n-1} , i.e.

n-2 1is even and hence Sg =1 . In both cases §E+1 turns out to be the right

number.

We give two more examples applying theorem 8.

Example 1 (homogenous Boolean sublattices)

Let P(n) denote the Boolean lattices of subsets of an n-element set. A P(k) -
sublattice L of P(n) 1is a homogenous sublattice provided that min L = min P(n) .
By hBE we denote the number of homogenous P(k) - sublattices of P(n) .

A homogenous P(k) - sublattice L of P(n) is determined by its atoms, viz.

by k mutually disjoint and nonempty subsets AO""’Ak—l . Without restriction

say that min A1 < min A2 < ... <min Ak . L can be represented by a mapping
f:{0,...,n-1} > {gseest g1 U {0} , where f(i) =, iff i€ Aj and

J
f(i) = 0 in all other cases. Then

(*) min f'l(xo) < min f'l(xl) < ... <min f—l(xk_l) .

On the other hand, every function f : {0,...,n-1} > {Xps...u0 3} U {0}
satisfying (*) determines uniquely a homogenous P(k) - sublattice of P(n) .
This establishes a bijection between homogenous sublattices and such functions f .

Hence hBD = s

K k(1,2,3,...)

Corollary 10

n _ ny L od
th = § (j) Sk
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(Bell-number)

Proof:

The first equality is 8 (i) . Concerning the second ineqha]ity one observes that

thE s (M) - s
k k j

n
M
S
M
(%]
<,

=s (M -8B, =8
J

where the last equality is well known.

Example 2 (Boolean sublattices)
By aBE we denote- the number of arbitrary (viz. affine) P(k)-sublattices of
P(n) . As a P(k)-sublattice of P 1is determined by k nonempty subsets

AO""’Ak-l which have pairwise the same intersection, it follows that

n:

aBk

n
Sk(2,3,4,...)

Corollary 11

"=z (M .M d

=
.,
=

Proof: proceed as before.

We conclude with an application of the inversion formula for the 4 - numbers of

the first kind, deriving a recursion formula for Mac Mahon numbers.
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Example (Mac Mahon numbers)

The Mac Mahon numbers BE » where n>1 and 0 <k < (2) , are defined by the

following identities:

n

(2) n K no,_ i
(*) T B ra =T ﬁfl"

k=0 i=1 -7
Foata [ 3] gives a combinatorial interpretation for the numbers BE .

n

Let [n]q = %E%r =1+ q+—q2+ ...+qn'1 be the g-analogue of the nonnegative
integer n . Then (*) can be rewritten as

(2) "

n k .

(**) T Bk - q = m [il]

k=0 i=1 A

Consider any sequence a= (ao,al,...) of complex numbers such that for every

nonnegative integer n the numbers a _ ,a s

ceesd
(5 ()41 (5)#n-1

are the (n+1)-st

roots of unity different from 1 . Say

Yy viTozen VT2 YTz YvT2e
e e e ,€e

_)=
i.e.
%}'V_-—I'Z-ﬂ .
a . =e" for every n>1 and 0 <j<n.
(5)+]
Then
n-1
(rxk) [n+l] = 1+x+ L+x"= o (x-ai)
N
1'(2)
and thus
2 n
P° (q) = T [i]
n i q
‘ 2 i=1
According to the definition of the 4 - numbers of the first kind it follows that
n
(2) ) K 0 .
b2 Ay q = ‘El [i q s
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n_ 2

hence Bk = Ak for every n > 1.

From theorem 6 we have the following explicit characterization for the numbers

O0<pn<...<u <
N

where the complex numbers a; have been defined above.

However, the Pascal-identity for the 4 - numbers of the first kind (theorem 5)

yields a recursion for the Mac Mahon numbers:

Theorem (Recursion for Mac Mahon numbers)

n+l _

" n+l + 8" - Bn

B k-1 "B - Bin o

B

where we put Bg =1 and B: =0 if k or n (or both) are negative.

Proof: wusing induction it follows from theorem 5 that

PHALES : (-1 (ZE iﬁl a ) - 4y
k i=0 v=0  MH, k-m+i

0§p0<...<u1_1<m

From (***) it follows that

1t => iﬁl a

n
= +
0<pg<e - <y <1 v=0 - (Q)*u,
hence
n+l n
n+l =A( 2 ) - 4(2)'*'!’1 i} ; An
k k k o0 Tk-n+l
i=0
n
AL g
i=0

and the desired recursion follows immediately.

= 3>
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