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HORIZONTAL MAPS 

WITH HOMOGENEITY CONDITION 

József Szilasi 

1. Introduction. The first step towards a new development of 

differential geometry was accomplished by LEVI-CIVITA in 1917. Some 

years later - as S.KOBAYASHI pointed out in [ll] - a sequence of 

CARTAN's papers on connections, published between 1923-25, "made 

the most remarkable progress in the history of differential geo­

metry" . Elie CARTAN's ideas was rigorously established by Ch. 

EHRESMANN, by the above-mentioned S. KOBAYASHI and others from a 

principal bundle viewpont in the fifties. - It seems to the author 

that since the seventies a "reinterpretation" of the theory has 

taken place from a purely vector bundle viewpoint. This remark is 

supported by such works as VILMS [18] , [19], GRIFONE [6], DUC [3]. 

One of the sources of this approach is DOMBROWSKI's famous paper 

[2] . The utilisation of the vector bundle technique is simpler and 

more suitable in many questions and applications than the principal 

bundle technique. This is illustrated e.g. by the recent progress 

of the theory of FINSLER-connections (see [6], [lo] , [13], [14] ,) 

or of the differential geometry of higher order tangent bundles 

[12] . Taking for a basis a tensor product of vector bundles, we 

also have a particularly adequate setting for the formulation of 

BOMPIANI's tensorial connections; see e.g. [17] . 

In these notes we are going to sketch a foundation of the 

theory in this "new" spirit. Our main purpose is to discuss the so-

called homogeneity condition imposed on a horizontal map. The 

results of these considerations are formulated in two theorems 

which characterize the linear connections and the homogeneous ones 

summarizing and supplementing some known results. 

2. Notations. We will follow the terminology of the 

excellent monograph [5] , as closely as feasible. All manifolds 

are finite dimensional, Hausdorff, second countable and smooth 
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i.e., infinitely differentiable . A differentiable map /or simply 

a map/ also means a smooth map, unless otherwise stated. B, i, and 

i denote a fixed n-dimensional manifold, inclusion map, and 

identity map, respectively, throughout the paper. 

/i/ If M is a manifold, the C°°(м) is the algebra of real-

-valued smooth functions on M, T M is the tangent space at 

x є M. 

/ii/ Ç -• (E,Ж,B,F) will denote a vector bundle of rank r, where 

E, and Ð are the total spące, and the base space resp., 

ir : E •* B is the projection of Ç, F and Fx

:=s *~ (-<) 

are the typical fibre, and the fiber at x c B resp. 

/iii/ SecÇ is the module over C (в) of /smooth/ cross-sections 

of Ç. SecÇ is a topological vector space with respect to 

the pointwise convergence, the differentiability of a map 

SecÇ -* SecÇ means GATEAUX's differentiability of class C*. 

/iv/ т
м
 =- (тм,ir

м
,M,ғ) denotes the tangent bundle of the manifold 

M. Here F
x
:= T

x
м(x є. M), and dimF • dimM. Э-£(м) :=Secт

м 

is the C (м)-module of vector fields on M. 

/v/ TÇ -в (TE,dit,TB,lR ) is the tangent fibration of the vector 

bundle Ç. For its definition see e.g. [7], CҺ.IX.l ; we 

shall give a local description of Tç in the proof of the 

Theorem 1. 

/vi/ A^(B;ç) is the module over the ring C°°(в) of Ç-valued 

p-forms on в(p >, 0;A°(B;Ç):= Secç) , 

І(X) : AP(B;Ç) -» A->
-
1
(в;ç) 

is the substitution operator (Xe Э€(в) ; p ҙ̂  l) . 

/vii/ The indices i,j,k,... run over the range (1,2,...,n}, 

while the indices a,fЗ#... run over the range {1,2,...,r}. 

EINSTEIN's summation convention is applied accordingly. 

Remark: We recall, that ß e Ap(fì;ç):<=> П : x є B ь-> Q 

/smoothly/, where 0 : T BX...XT B —» F is a skew-symmetric 
X X X X 

p-linear map. If specially П € A^^B;^), then i(x)ň Є SecÇ, namely 

(І(X)Я)(X):= ßx[x(x)]. 

3. Vertical subbundle. The differential of the projection 

ir : E —* B is a strong bundle map dir : т
E
 —*• 1.̂  of constant 

rank, hence 

Ker dir:= V - (vE,w
ү
,E,ғ) 
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/where VE:= ü Ker(dтт) ; iт : VE —* E, Ker(dтг) з a r—• z/ 
zeE z v 

is a vector subbundle oftг , which is called vertical subbundle. 

The fibers
 V

Z

E : = S Ker(ďïГ) a r e
 mentioned as vertical subspaces. 

Let i denote the inclusion F — » E anđ let I be a 

/fixed/ identifying isomorphism F - •» T F /For example, the 

309 

map u € F H-+ I (u) := (dc ) \-ST\ t where c : IR —+ F , x zK J ^ uJ Idtl ' u x' 

T •—-> c (T) := z + TU is a straight line of F through the point 

z in the direction u. / 

The following well-known facts are collected for the readers 

convenience. 

/a/ VzE = lm(d±x)z /[5], Vol.1, p. 280/. 

/b/ The linear isomorphisms 

a_: = I^o (du )Z1 : V_E —• F_ 
z z xJ z z TT (zj 

generate a bundle map a : V —* £ inducing ir as the map of 

base manifolds, that is which makes the diagram 

VE 2 • E 

E • B 

commutative / [5] , Vol.1, p. 291/. This map a will be referred 

to as canonical map„ 

/c/ With the help of the canonical map, we can construct the vector 

field C : E —» TE,z *-» c(z):= i» a^1(z). This vector field is 

also called canonical; cf. e.g. [9] or [14] . 

4. Horizontal map: the basic constructions 

It is a simple, but fundamental fact, that the sequence 

/where dw(T E:= (dir) , and ir* (T ) is the pull-back of T B over 

ir/ is a short: exact sequence of vector bundles. A further basic 

result is that all short exact sequences of vector bundles are 

split: there always exists a strong bundle map H : ir* (T_) —•• T„ 

/̂ >-, B E 

such that d* • H « x : w* (TB) -• ir* (TB) . 

/The proof of this is much less trivial, the crucial point is the 

countability axiom presupposed for the manifolds./ 

The following notion, which is central in our treatment, is 

based on these observations. 
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Definition 1: The splittings of the short exact sequence 

o — v€ - - * , B - - ^ .• (,B) — o 

are called horizontal maps. 

Let H be a horizontal map. It is easy to see that rank H= 

=const., consequently one can consider the so-called horizontal 

subbundle ImH = ( H E , * ,E,lRn) of T , where HE /as a set/ is the 

union of the horizontal subspaces 

H E:= ImH , H := H| m D : T t >B —• T E . 
Z z ' z ' Tir(z) B ir(zJ Z 

It is very simple to prove the next 

Lemma 1: T „ -= ImH © V r /Whitney-sum/. D 
** /^,* t \ 

Lemma 2: The map dir T „ : ImH —->• w* IT-,) is a strong 
-~-™-—~~—~~ I JLmii v a 

bundle isomorphism. 
Proof: By Lemma 1 the restricted maps 

U * ) Itit. • H E —• T ( >B *• ''zlH E z тгlzj 
Z 

are linear isomorphisms. On the common total space of the 

considered bundles the map dir _ induces the identity in the 
I JLmii 

sense t h a t the diagram 
<~~' . 

HE " I 1 ' " 1 1 . U T , sB 
zeE ' ( Z ) 

projection 

E i > E 

commutes. These two facts together imply the assertion /cf. [5], 

Vol.1 2.1 Prop.I/. D 

The next important constructions are partially based on 

Lemma 2• 

Definition 2: Let a fixed horizontal map H : ir* (T
B
) — • T„ 

be given. 

11/ The map 

^--(SlJ-
1
. --(TH)-!*! 

is the horizontal lift belonging to H. 

121 The horizontal lift of a vector field Xe X ( B ) is the vector 

field 

X
h
e 3£H(E) :« SecImH, 

given by 
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Xh(z):= lh
z[x(*(z))], ij:- £ h L (z * E) . 

1 ir(z) 

/3C(E) is the module of all horizontal vector fields on E./ 

/3/ h:= H ° dir , v:= i-h , K:= gov are the horizontal projection, 

the vertical projection, and the DOMBROWSKI - /or connection -/ 

map respectively, induced by H. 

/4/ We say that H satisfies the homogeneity condition, if 

Vt € K s dy o h = h° dy where p. : E —* E , z •—• tz. 

For the introduced maps a simple calculation shows that the 

following relations hold. 
2 2 

Proposition 1: h =h, v =v, hov = voh = 0; 

K o Jth = a, K o c = l; 

K o h = o, K o v = K. 

Remarks: 

1/ The definition of I adopted here agrees with the definition 

given in [19]. It is a natural generalization of the con­

struction known from the differential geometry of tangent 

bundles /cf. e.g. [2]/. 

2/ Fixing some suitable properties of the vertical projection v 

as axioms, one can obtain a formally different, alternative 

approach to the theory. So for example the definition in [3] , 

Ch.II.8 formulates that peculiarity of v that it assigns a 

vertical vector to an arbitrary vector of TE, while the 

vertical vectors remain fixed /see the Proposition/. The so-

-called almost product structure P:= 2h-\ = h-v /for which 

P = t/ can play a similar role /cf. [6] , Prop.1.15, where, 

however, £ = TB/. 

3/ Starting from a linear connection of the tangent bundle, the 

connection map was constructed by P.DOMBROWSKI in his above-

-mentioned paper [2]. The importance - and what is more: the 

"career" - of the DOMBROWSKI - map in the foundation of the 

theory /especially in the infinite - dimensional generalizations/ 

is well-known; see e.g. [4]/. 

5. Local description. Suppose that the open set U c B is 

a trivializing neighbourhood for E with the trivializing map 

$ : U x F —* ir (u). Let u ,...,u be a local coordinate 

system defined on U, and let a basis of the conjugate space L(F) 
1 r be denoted by & , • • •, 1 • Then the system of functions 
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x := u o - У°:= t
a
- pr, г1 

(pr- : U x F —»• F) 

is a local coordinate system on *"-(u), which will be fixed in 

the sequel. Obviously, the restrictions of the functions y to an 

xJ arbitrary fiber F (x e u) constitute a basis of L ( F
X
) . If its 

dual is {e (x)}, then the maps 

e : U • E , x • » 

are such cross-sections over U, which provide a framing for K 

over U; this framing is called induced by the local coordinate 

system {x ,y
a
}. 

Fixing (x-,y
a
}, we have the basis {[JL-] , [—] } of the 

v
9x

1J
z
 v
3y

aJ
z 

tangent spade T E at an arbitrary point z e IT (u) . Here the 

vectors are basis vectors of the vertical subspace V E, 
v
3y

a
'z 

so it is easy to see that the local form of the canonical vector 

a d field is C = y
w 

эy
u 

For each horizontal map H : IT* (T
R
) 

B' 
T it is possible 

to find in a unique way the differentiable functions 

• IR such that the linear map H : T г " ^(u) 
w1 T E 

z 
/ z e IT" (U) is an arbitrary point/ is represented by the matrix 

i . 

-'£(«) 

of type (n+r) x n with respect to the basis-pair 

v9uXjir(z) ^3x^s 
}. These functions ra are called 

9yaV l (z) V3X~'Z 

the connection parameters for H /the minus sign in the defining 

matrix is traditional/. Having them, a simple calculation yields 

the local form of the maps defined in the previous section. 
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/a/ The vector a e T E(Z e * (u)) is a horizontal one iff 

a = a ^ M - J - r*(z)[—] 1 (axe JR) . in particular, the 
u9x 'z x laya'zJ 

vectors b. = U-̂ r-1 - r*(z)|-i--] constitute a basis of H E. 1 Ux^z l l iU y«J z 

If X = X1 -~- is a vector field over U, then 
3U 1 

Xh = (x1- ») f-lj- - r? — | , thus b. = p U . It follows, 

that { —K-\ , M M } is a basis of T E, which is called 
Uu l jz V8y

aJz
 z 

adapted basis. /This is analogous to the adapted frame, used 

in the case of £ =- tB ; cf. [20] . / 

/b/ The projectors h := hi „ , and v :« vl are represented 

by diagonal matrices of rank n and r, resp., with respect 

to the adapted basis. 

/c/ Let a = a1 - M + aaf—— e T E be arbitrary and let the 
^x 1 Jz v3y

aJz
 z 

restriction of the DOMBROWSKI-map K to the tangent space 

T E be denoted by K . The action of K is given by the 

formula 

a — * Kz(a) - (a" + aV^zJJeJx), x = ,(-). 

6. Connections. 

Definition 3: Let K be the DOMBROWSKI-map, belonging to 

the horizontal map H. The map 

V : Sees • A1(B;C) , o i—• Vo := K o da 

is called the general connection induced by H, and the maps 

Vx:« i(x)oV : Sec£ • Sec£ |Xe3£(B)] 

are called the covarlant derivatives by X with respect to V. We 

talk about linear connection, if V is induced by a horizontal 

map, satisfying the homogeneity condition. 

Retaining the notations of the previous section, we have 

Proposition 2: The covariant derivatives with respect to the 

general connection V act by the formula 

V
=XІ
fc-

 + Г
M

Є
a • D в

 " i»u 



314 JOZSEF SZILASI 

As we approached the linearity of the connection by the 

homogeneity condition it is important that we should have the best 

possible complex view of the power of this condition. In connection 

with this a summarization of the known results and their partial 

supplementation are given in 

Theorem 1; For a horizontal map H the following properties 

are equivalent: 

11/ H satisfies the homogeneity condition. 

121V t G 1R : dy o v = v o dy . 

/3/Vt 6 IR : K o dut - vt° K . 

/4/ The map K : T£ — • £ is a bundle map. 

15/ V z Sees — • A1(B;C) is IR-linear: 

v(o, + o2) = Vo, + Vo2 , 7(y o o) = tVo 

(al'a2 6 Sec^' t e e ) . 

161 Vo e Sec£,f e C°*(B) : v(fo) = 6 f A o + fVo / 6 is the 

operator of the exterior derivative/. 

PI The Lie-product [c,X ] vanishes for each vector field 

X£ 36(B). 

/8/ The restrictions of the connection parameters to the fibers 

are linear functions, namely 

where 

r i в 

Proof: 

Г i
B
í x ) : H-) ' 2 Є

 ""'W 
Әy 

/a/ First we briefly recall the notion of homogeneous maps. - Let 

F and H be /real/ vector spaces. A map F — • H , z i—• z' 

is called homogeneous if V t e R , z e F : (tz)' = tz' . The 

generalization of this concept to vector bundles is obvious. 

/Of course, the horizontal map H is homogeneous in this sense 

and the meaning of the homogeneity condition is totally 

different./ In particular a function f on the total space E 

of £ is homogeneous if ? t e R : f o y = tf . If follows 

easily from the classical EULER relation for a homogeneous 

function that f : ir~ (u) — • JR is homogeneous iff 

a. 3 f 
f = y . - As regards the maps p., it is useful to note 

3ya 
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that they are strong bundle endomorphisms of £ and their 

derivatives act as follows: 

K) 2 Mi) - M I ] ' K)zMr] = *K) • (*) 
z z Ux 1 Jz Uxljtz c ^y a Jz Uya'tz 

Now we have a look at the tangent fibration 

T£ «- (TE,dir,TB,lR2r) of £ • Its fiber at the point 

a • a H - M e T B is the set 

(dwj-^a) = { a ^ - U + b a f — ] »(z) = x , b ae R} , 
3̂x Jz ^3yajz 

equipped with the vector space operations 

. . ip j . (b« ,p)m 
*3xiJz+z' l3yaJZ+z' 

x [ . i [ » I + b«[jL] 1 = a-fJV] + Xba[-<U . 
1 Ux-1« UyaJzl Ux^Xz Uy°Jxz 

If o = o e is a section over 
a 

U and a = a1 [----] 6 T B 

(x e u), then l3x ' x 

(«•),(•) " ̂  N M
 + ̂ H N f , ' x l3x Ja(x) ^9uijx^y J o (x) 

which means that (da) (a) is an element of the T£-fiber 

(dir)~ (a). Conversely, every element of the T£-fibers has 

such a form, 

/b/ After these preparations, we come to the point. 

- First (l) <—> (2) is evident by the substitution v = i-h 

By (*-) 

•• *"*(;£),= ° [ t e P ( x ) ] = t ep ( x ) = (wt° o ) t ^ L ' 
so \i.o K -= y o 0 o v = o o dp ° v , from which we immediately 

get the equivalence (2) <«-> (3) . 

Now, let us consider the statements 

/4a/ K : T£ • 5 is a homogeneous map; 

/5a/ v : Sec£ — • A (B;^) is (R-homogeneous; 

/8a/ the connection parameters r? are homogeneous on fibers 

Fx (x e U) . 

By the observation given in /a/ it is clear that 
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VteiR : t[(da)x(a)] = d(pt.a)x(a) 

hence 

K[t(da)x(a)J = K[d(yt. a)x(a)] = 

Kfídtit)a(x)° (d°)xía)l = ^ J ^ W l 

and consequently /4a/ <==> /3/. On account of 
v(y. o a) := K«d(y . a) = K«>dy <> da we get at once /5a/<=> /3/, 
while from relation (*) we infer by a simple calculation the 
equivalence /8a/ <—> /l/. 

By section 5, 

M-f^-K-lfe-iф)] 
-(HИ-^Ь-

hence C,X =- 0 <—> r^ = y —g* , therefore /applying the 

EULER relation/ /7/ <=> /8a/. 

Again, with the help of a direct computation we get 

[v(fa) - fVa - « * . ] , (-i
r
)

x
 = 

= (r°[f(x)a(x)] - f(x)r-[a(x)])e
a
(x) , 

so the equivalence /6/ <—> /8a/ also holds, 

/c/ We have already proved: 

,H < > i2l <-=—,> 13/ < > /4a/ 

/6/ <—> /8a/ <—> /I/ /5a/ 

To complete the reasoning, finally we apply DOMBROWSKI's 

"clever observation" /M. SPIVAK's words, see [16], p. 8.58/. 

This guarantees: /8a/ +3D"T*(o) /FRECHET-derivative/ <-> r*L 

is linear, from which we obtain the desired form of the 

functions r^ as well. So /8/ <*=> /8a/. This equivalence also 

implies /e.g. by the local form of K and V resp./ that 

/4a/ <->• /4/, /5a/ <-> /5/. Since the implications /4/ —> /4a/, 

/5/ — > /5a/ are true automaticly, the theorem is proved. • 

7. Homogeneous connections. In this section we are going to 

investigate an "intermediate class" between the general connections 
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and the linear ones. 

Definition 4: Let H be a continuous splitting of the 

sequence 0 — + V »- T E — — * w* (T ) ** O . Suppose that the 

horizontal projection h belonging to H is differentiable over 

the total space 

TE , E:= U (F \ {a}) 
xeB x 

of the "slit bundle" made from x and it is not differentiable on 

the nullsection. - We say that the general connection induced by H 

is homogeneous, if 

v t e R : h o dy f c = dy fco h . 

THEOREM 2: 

/l/ Let V : Sec£ • A (B;£) be a homogeneous connection. Then 

V f e C°°(B) ,aeSec£ : v(fa) = 6ftsa + f Va, 

that is 

1° V X 6 3€(B) : Vx(fa) = (Xf)a + fVxa holds, furthermore the 

relations 

2° 7X+Ya = 7Xa + 7Ya ' 

3° 7fXa " f 7x a ' 
4° [^x[o^o2)][x) = (Vxax)(x) +(vxa2)(x), if o-Jx) = 0 are 

satisfied. Finally 

5° V xe3£(B), aQe Sec£ \ (0} : the map Vx : a i—• Vxa is 

differentiable at o^ and Vva^e SecC /i.e. Vva_ is a 
O A O A O 

differentiable section, too/. 

/2/ Conversely, let a map 
3£ (B) x Sec^ • Sec£ , (X,a) »—»• Vxa 

be given, satisfying the conditions l°-5°. Then there exists a 

unique horizontal map with properties listed in Definition 4 

and the covariant derivatives belonging to this horizontal map 

are exactly the operators Vx. 

Proof: 

/a/ Since the equivalence /l/ <«=> /5/ in the preceding Theorem is 

independent of the "clever observation", the statement 1 is 

an immediate consequence of our earlier considerations. By 

Proposition 2 the validity of 2° and 3° is evident. On account 

of the equivalence /l/ <—> /8a/ mentioned in the above proof, 

a-̂ (x) = 0 implies that r^a^^fx)) = 0 . Hence 
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[r a
r(«rt)]W - rJ(o2(x)) = (r°oa1 + rJ.o2)(x) , 

thus 

«iM - 0 - " [v
x(

0i+a
2)]W - (v i )W + (7x°2)W > 

so 4° is also satisfied. The verification of 5° is an easy 

computation, too. 

/b/ In this step /cf. [15] / we briefly show that the postulates 

l°-5° uniquely determine continuous functions r? : ir~ (u) —»- IR 

such that the assumptions 

HI Va = a a e e SecÇ 

V = x±(f7 + гï-)< 

= X i - Í 7 e 3 e ( B ) 
3u 

/ i i / r j . n t . t r ° ( t € R ) ; 

/iii/ the r?-s are differentiable on ir~ (tin E) are satisfied. 

- For this purpose we first define for all a e Sec£ 

section G.(o) : U — * E by 
• the 

G i ( a ) : s v_э_
a 

Эu
1 

Эa
w 

Эu 

With the help of the framing (e } it can be written as 

<-
±
0) = rJ(o)e

a
 , fjO) : U —> R . 

We claim: o^x) = o
2
(x) ~> rjOjIfx) = rJ(o

2
)(x). 

By postulate 4 

v
 3 (

q
l

 +
(°

2
-°l)) 

3U
1 

(x) -(v^oj (x) + (v^O^-o^jíx) 

Эu
J 

Эu
J 

Again by the same postulate 

L — J P ^ X 
0) - ( Ь ^ O X Í - P І W 

ЭU әu
1 

/where we had to omit the summation convention/. Since by 1 

a OS-o?) 
7 3_l°2 a l J e p 

i 
W - - L 2 - r i W « p W +K-o|)(x)(v 3 . ] ( « ) -

эu" 
Эu 

p P 17 J ( a - a ) 
r M x U (x) / p i s f ixed/ 

9u x p 
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we get a __ 

"' 3 (a^C^-o,))] (x) = (v 3 «J W + (^f " ̂ ) W - . W " 

3u 3u 

1 •"• 3u a 

On the other hand 

v___(ai +(«vai))l w - ('___ °2) w -
3 u i 

= (f«(a2))(x) +!!|(x)ea(x) , 

ӘU
1
 ӘU 

proving the equality
 r

i(
a
i) (

x
) *

 r
i(

a
o)(

x
) • 

The remaining detailes are left to the reader, 

/c/ Having the functions r?, we define the splitting 

H : ir*(TR) * T„ locally with the help of the matrices 

described in section 5. Then H will be the desired 

horizontal map, which is guaranteed by the above mentioned 

equivalence / I f <=> /8a/. Q 

Remark: A non-linear connection /i.e. in our terminology, 

a homogeneous connection/ was characterized by means of some 

postulates imposed on covariant derivatives by KANDATU [8] in the 

case of 5 *" T-,. Later P.T. NAGY pointed out in [15] that KANDATU's 
Jo 

postulates can be weakened. As far as we know, it was only M. AKO, 

who treated the problem somewhat more generally ( [l]), but also on 

the basis of KANDATU's original axioms. 
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