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ON THE REPRESENTATION OF NORM ATTAINING POSITIVE
OPERATORS ON LP[0,1]

Ryszard GrzgsSlewicz

Let ([0,1],%,m) denote the unit interval, the Lebesgue
measurable sets, and Lebesgue measure, respectively. We denote by
1P , 14 pgoo , the space of all real-valued Lebesgue measurable
functions on [0,1] whose absolute p-th power are integrable .

By £(1P,1T7) we denote the Banach space of all bounded linear
operators from 1P into Lr . An operator T is said to be
positive, T>O0 if Tf> 0 for all £ 0.

A representation for operators on 1! has been established by
Kantorovi€ and Vulikh [5] . Using this result Ryff [8]
presented the representation theorem for doubly stochastic operators.

An operator T e ,L(Lp.Lr) is called a pseudo-integral
operator if there is a map y — /Ly of [0,1] into the space
of bounded Borel measures on [0,1] such that

1° if Be® and m(B)=0 ,then pny(B)=0 a.e.

2° for every Be® ,the functions y—)}ly(B) y Y—> I}Lyl (B)
are Borel measurable

30 1P ¢ ! ( ”"y” for almost every ye [0,1]

and

(Tf)(y) = &f(x) }Ly(dx) a.e.

for every f LP . An operator T 1is a pseudo-integral operator
if and only if T 1is order-continuous i.e. Oéfné telP and
f,—> 0 a.e. implies Tfr;—* 0 a.e. . The pseudo-integral
operators form a band ( order-closed ideal ) in the space of order
-bounded operators. If T € L(Lp,Lr) is positive, then T is
a pseudo-integral operator ( see Sourour [12] ).

An operator T € &(LP,1F) 1is called an integral operator, if
there exists a measurable function T(x,y) such that

(Pf) (y)= \ T(x,y) f(x) dx a.e.

for every felP. An operator Te¢ dLP,1T) 1is an integral operator
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if and only if T maps order intervals into equimeasurable sets
( Schachermayer [10], see also Schep [11]) . We recall that a set
Hec LY is called equimeasurable 1if for all € >0 there exists
X, with m([0,1]\X,) <€ such that {1X1h: heH} is
a relatively compact subset of L™ (cf.[2]).

The support of positive operator T € L(LP,LT) , supp T , is
a maximal set A & [0,1] ( modulo zero Lebesgue measure sets ) such
that T1,, =0 (ef. [3]).

Let

JV={r €X(P,1): 720, T attains its norm at some feLP with
suppf=supp T § .

Thus JYV° is the se% of all positive operators T smch that there
exists a function f of full support and T attains its norm
at f. If 1<rg&p<® ,then the set JY is norm dense in the
positive part of ,E,(Lp,Lr) ( [4],Proposition 2 ) . The proof of
this fact is a modification of Lindenstrauss’s result [7] .

The purpose of this paper is to present a representation theo=
rem for positive operators which attain their norm at a function
of full support i.e. for operators from the set N . For our
aim we carry Ryff’s representation of doubly stochastic operators
to the case of positive norm attaining operators. The same method
was been used to obtain certain properties of positive norm
attaining operators on Lp( [3]) and the characterization of ext-
reme pesitive contractions on ].Ip1 ([41) .

We denote

wir) ={r :uren-umo wen §oo.

Note that if T2 0 , then fé€ M(T) implies If| € M(T) , and the
set M(T) form a linear subspace of LY if 1<r<$p<<0 ([3]).

Let 04felP, 0<g €1’ be such that Nfll=|gh=1 . We define

T :[0,1]—>[0,1] and § :[0,11— [0,11 by

x x
Ux) = SO P am B(x) = S g¥ dm
0

The restricted mappings T \supp £ and Y |supp g are

increasing and onto [0,1] ,thus invertible ( modulo null sets).

Theorem. Let 1<rgp<o . A positive operator T e &(LP,17)
with  |\Tll=1 , supp T =[0,1] is in W' if and only if T admits
a representation
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1
1 d
gr'“y) dy S L(y,x) h(xydx yesuppg
0
(%) (Th) (y)=

0 y¢ supp g

where fe€M(T) 1is such that Wfl=1, £>0 , supp £=[0,1], g=7f ,
the kernel L 1is measurable and satisfies the following

conditions:
a/. L(0,x)=0
b/, Lyy) € Ly, ) iy, <y,

c/. L(1,x)= fp'1(x)
1

d/. g L(y,x) f(x) dx = B’(y)
0

1
e/. S L(© '1(3),x) h(x) dx as a function of s € suppg
0

is absolutely continuous for every h € P .
Proof. Let T € N with WTW=1 , T3>0 . Let fé€M(T) be such
that |fl=1 , £»0 , supp f=[0,1 . Put g=Tf. Note that Irff=1 ,
t£30 , TP = P71 ana (re)TT € M(T*) (see [3)).
The operator

P=VTU
where (U (x)= f(x)h ( T(x)) ,heLP
-1
W 1 (4 k ( 5‘1ls)) Kk eLT
g (6 )

is doubly stochastic (i.e. P20, P1=1 , P¥1=1 ) . The operator
U 1is an isometry on LP and V is a coisometry on i ( see [6]).
By the result of Ryff [8] we have

. d S K(s,t) h(t) dt

(Ph)(s) T 0 ’

where K 1s measurable on [0,1])([0,1] and satisfies :
1/. K(0,t) =0

1
2/ S K(- ,t) h(t)dt 1is absolutely continuous for
0

every heLT
1
3/. 8 = S K(S’t) dt
0
4/. Klsy,*) € K(sp,*) if s, < s,
5/ K(1,t) =1 .
Using the above representation we obtain
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H

|

—
gl

1
S K(G(y, ¥(x) £P-1 (x)h(x) dx
0]

(Th) (y) = yEsupp g

0 y ¢ supp g
and we get (x) putting L(y,x) = K(G(y», Txn) 27 (x) .
Clearly /. , 4/. , and 5/. implies a/. , b/. , and c/.
Using 4/. we get

&1 L (y,x) fix) dx= XK(G(y), T(x)) P (x) dx=§K(‘<‘>‘(y),t) dt=
0

®(y) . If heLP , then by H8lder’s inequality
-1

h (X _ (t)) € 1

£ (TN

. Hence by 3/. a function

1 1
g(s)= g L (6 _1(3),x)h(x) dx =[ K (s, Yix)) fp_1(x)h(x)dx =
0 6]

1 -1

i a

K Kis,t) h—(——1—(tl-)- dt is absolutely continuous.
0 £f(T-T(t))

How let 0<f€LP , 0<gel”™ be such that ffl=lgi=1 , and
suppose a measurable function L(y,x) satisfies conditions
a/.—e/. . It is not diffcult to see that a function Ki(s,t)
such that L (g,x)= K (S, %w)fP 1 (x) satisfies 1/.—5/.
and that the operator (Ph) (s)= Eisi- S K(s,t) h(t) dt is doubly

stochastie. We define T by (=) .
Let h €LP . We have W Th \\; =

1 r
\ 1 4 g L(y,x) h(x)dx\ gfty)y dy =
gfy) @ o
supp g
1 a (1 -1 T or
- I K (B, Tx)y) P N (xmhixydx g (y) dy =
g7 (¥) o
supp g

]
r
% \a% & K(s, Tx) £P7lex) h(x)dx‘ ds =
0

supp f

! \ d &‘ et L |F
Kis,t) 2—=—"%22 44| 4g =

go s ), £ (e N ))
1 -1 r 1 -1 r
Lo L2 (REEE e o, o(|28) =
0 "1y Nl £ TNt
1 1 -1 r
g = K(s,t) &:%t—’l dt de=
0 0 £(T ()
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1 -1 r 1 -1 r
[ki,0 - ko,0] | Ble_ ) |7 g |7|RlTZ )",

o £l () ol £ LT

)

SO |neo | P Tanex AT el - mIE

The first inequality follows from properties of doubly stochastic
operators. The second inequality is a consequence of H8lder’s
inequality. Hence TeL(Lp,Lr) and ITH<1. Clearly Tf=g , UT0=1
fe ¥(T).

Remark. It is easy to see that, we can write an analogous
theorem without the assumption sucrp ’1‘:[0,11 .

A doubly stochastic operator P can be represented by
1
(Pn) (s = g h(t) p(s,dt)
0

where a function p(+,-) : [0,1]xB—> R, satisfies
(i) for each 36{0,1] p(s,*) 1is a probability measure on B
(ii'} for each Be ® p(s,B) is a measurable function of s
(iif) X‘ p(s,B) X = m(B) , BeB
0

(see, e.g. [1]) .

If 1<r€p<oo , TeN with WTh=1 , T2 0 , then there exist
0¢felP and 0<gel’ such that Wfi=lgi=1 , fE€N(T), g=Tf ,
supp T = supp £ . Using arguments similar to those in the proof
of Theorem we obtain

(xx) (Th) t(y) = & ?::: q(y,dx)
supp f

where a function q(x,B) : [0,1]x® — R, osatisfies the
conditions:
(1) for each ye [0,1] a(y,*) is a probability measure on
(ii) for each BéeY q(y,B) is a measurable function of y

(- .
(111) gFtyy a(y,B) dy = fP(x) ax .
Y B

Conversely, if we have feLP , geLr with 4 fu=0gW=1 , £30 ,
g20 and a function q(x,B) satisfies (1)—(iii) then the
formula (x%) define Te &' such that WTI=1 , feM(T) ,
supp T = supp £ .
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Let m, v  be probability measures on ([0,1] ,B) . We say
that a measure A defined on ([O,1]X[O.1] ,B®B)is doubly
stochastic with respect to M and v if

A(ax[0,1])= w(a) and  A([0,17] X B)= ulB)
A,Be®. The relation

AMAxB) = & 1, Plg dm

determines a one-to-one correspondence between the set of all
doubly stochastic measures with respect tom and m { [1] , see
also [9]). Therefore , analogously, for every T e J¥ with ||Tl=1
the formula

\ r-1
(axx) A(4 X B)= S 1A g T(1Bf) dy

defines a doubly stochastic measure with respect to o and v ,
where feM(T) ,\fll=s1, f£3>0 , supp f = supp T , &=Tf , d/u.:fp dm,
dvi=gdm .

Conversely, let ogfer® , 0<g eLr with Nfl=)gi=1 . We
define probability measures u, Vv by dm= P dm , dv= gr dm .
Let A be a doubly stochastic measure with respect to & and v .
Then (xxx) determines an operator T in JY such that | T|=1 ,

feM(T), supp T = supp f .
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