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OPEN COVER OF A METRIC SPACE ADMITS €<& -PARTITION OF UN1TT 

Jan F r i e d 

The result stated in the title has been already proved indepen­

dently by Z.Frolik and J.Pelant. Our aim is to give an easy proof. 

The proof is a slight modification of Isbell's proof of the fact 

that every uniform cover admits an ^^-partition of unity. 

We recall that a partition of unity { f I ag A ] is an 

£so -partition if the pseudometric 

f ( x , y ) = sup { lfa( x ) - fa( y )| | a« A ] 

is uniformly continuous. 

Theorem : let { MR | a e A ] be an open cover of a metric space 

( X , d ) • Then there exists an ^ -partition of unity sub­

ordinated to { Ua I a 6 A ] 

Proof: it is enough to construct a partition of unity consisting 

of Lipschitz functions, since every Lipschitz function can be re­

placed by the finite sum of Lipschitz functions with Lipschitz 

constant ^ 1. Partitions of unity consisting of functions with 

Lipschitz constant ^ 1 are obviously T?^ - partitions. 

We may and shall assume that our open cover contains the empty 

set 0 • Take some well-order ^ on A, such that 0 has the larg­

est index. Take the lexicographic order < on GJ X A . For our 

purpose define sup 0 = 0 . Define 

gn,a ( x ) = min $ 1 i m a x { SUP i Sm,b
(xL) ' (m,b) < (n'a) 3 i 

sup { nd(x,X - UbM b ^ a ] ^ 

It is easy to see that : 

(i) gn o are non-negative Lipschitz functions with Lipschitz n, a 
constant n, 
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(ii) gn a(x) increase monotonically to 1, in fact for each 

x € X there exist m and b such that Uj (x)C U, , hence 

gn a(x) = 1 for all (n,a) ̂  (m,b), 

(iii) for limit indexes gn Q(x) = sup £ gm fe(x<) | (m,b)^ (n,a)^ 

Now, define 
fn,a(x> a S(n,a)*(*> - «n,a(x> 

for Ua 4 0 ( (nfa)+ -= min { (m,b) J (m,b) > (n,a) \ ) . 
It is clear that 

1) f„ 0 are Lipschitz functions 
n, ci 

2) f a(x<) > 0 only for finitely many n's and for x Ufl • 

Hence, { fn | nscJ, Ua ? 0 J is the partition of unity sub­
ordinated to the cover {U & | a £ A ^ and it consits of Lipschitz 
functions. 

Remark. It is obvious that the partition constructed above ( and 

hence the corresponding ^-partition ) is point-finite ( i.e. 

the cover { coz fn ^ is point-finite ), provided {Ua j a £ A^ 
is point-finite. 
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