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QUANTIZATION ON SUBMANIFOLDS 

H. D. Doebner and J. Tolar 

ABSTRACT. Extrinsic position and momentum operators are defined on 

a Riemannian manifold (M,g) via an isometric embedding i: (M,g)----» 

(R i8n)- An intrinsic Hamiltonian H describing free dynamics on 

(M,g) is constructed by an associated Riemannian submer3ion satis­

fying a physically well justified condition. 

1. MOTIVATION 

We consider a physical system moving on a smooth manifold. 

Such a situation arises e.g. in the clas3ical de3cription of a ma­

ny-particle 3ystem in terms of collective coordinates which are 

associated with its motion in the large. Then one deals in fact 

with an embedding i of a manifold M of configurations described by 

the collective coordinates, in a configuration manifold - Rn in 

most case3 - of the system as a whole. In quantum mechanics, the 

aim of such a procedure is to isolate a physically distingui3hed 

subsystem of a given system modelling more or les3 accurately the 

motion of the system when only the collective degrees of freedom 

are excited. 

In non-relativistic classical mechanics, the kinetic energy 

part of the dynamics in R11 is described by the Euclidean metric gn; 

then the classical kinetic energy on the submanifold M is given 

by the induced Riemannian metric g = i*^* In Section 4 we present 

a solution to the corresponding quantum dynamical embedding prob­

lem by using a Riemannian submersion cr : (W,g ) —-» (M,g) , W C Rn, 

associated with the isometric embedding i:(M,g)—^(Rn,gn^ and sa­

tisfying a physically well justified requirement II. This results 

in the free Hamiltonian on (M,g) proportional to the intrinsic La-

place-Beltrami operator, improving our earlier formulations [3] , [A\ . 

2. QUANTUM MECHANICS ON (R 1 1^) 

Let (tiPfg) be the n-dimensional Euclidean space, i.e. the 
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space Rn with global Cartesian coordinates (rlf...,r > for r e Rn 

and endowed with the Euclidean Riemannian structure g . Quantum me­

chanics of a system moving freely in (Rn-g^ is based on the phy­

sically well justified canonical position operators Q., momentum 

operators P., j = 1,...,n, and the free Hamiltonian H . They act 
j o 

as e entially self-adjoint operators on a dense invariant domain 
C ^ J c L2(Rn, dnr) as o 

and 

(Q^fKrí = r.ffr), P.f ír) = -i i-f(гj, f é C^(Rn; 
t 

EL = y ž- P 2 
o T 4- P-Г = -Ґ 

4^ is the Laplace-Heltrami operator on (Rn,g )• 

3. THE CONSTRUCTION OF POSITION .AND MOMENTUM OPERATORS ON (Mfg) 
BY ISOMETRIC EMBEDDING 

Consider an embedding i: M9 q •—-*iq 6 R11
, where m = dim M < n. 

It induces a Riemannian metric g on M via 

g(X,i; = (i*g
n
)(X,l) = g

n
(i^X,i^Y

y
) , X, Y £ TM, 

where î  : TM—*-TRn is the induced mapping of the tangent bundles. 

Hence (M,g) is a Riemannian manifold and i is an isometric embed­

ding (M,g;—(Rn,gn). 

The embedding i permits to define natural restriction of the 

Hilbert space L (R11, dnr) via the pull-backs f, dfo of the wave 

functions f and of the Lebesgue measure dnr, respectively. The re­

sulting Hilbert space is L (M, &/**) where 10 is the Riemann 

measure associated with g. 

We want to define position and momentum operators Q. and P. 

on iM acting as symmetric operators on C*(iU) 'C L (1M, d/d . 
The definition of Q-, j = 1,...,n, is obvious: 

CQ-j ?)(±q) = (iqJjj fftqj , ?* C ^ i M ) , 
with (iq).4 being the Cartesian coordinates of iq € iM in Rn. 
Since, in general, there exists no global coordinate system on M, 
it is not possible to define global position operators on M which 
act on C^(M) as the Q. act on 0^(Rn) . Our operators Q. belong to 
the class of smooth position operators Q(Fj, F e C^&iU, introdu­
ced in [9] and defined by 

[Oft) ?JGLq) = F(iq)f(iq;, f e C**QM) . 
To define P. on iM we first observe that the isometric embed­

ding i induces, via iA : TM—^TR11, at each iq € iM a decomposition 

T^ R11 = ^in^^^ia' w h e r e the normal subspace N. is specified 
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uniquely as the gn-.orthogonal complement of T- iM in T. R
n. Now 

P. 's are proportional to the constant vector fields E. = ? . = ?/^r. 
J y-, , # J J J 

in K . If E. s are perpendicularly projected at each iq onto T. iM, 
we obtain n vector fields E. = B. <?v 6X(iu), where (B^ ) is at 

j J --- j 

each iq a perpendicular projection nxn-matrix of rank m < n. Con-
cerning linear independence of vector fields E. we have the follow-

J 
ing 

L e m m a 1. The constant vector fields E., j = !,•..,n, 
**•" J 

yield by perpendicular projection E. r-* E. exactly m linearly 
J J 

independent vectors at each point iq 6 iM. 
P r o o f follows from the observation that ( K ) is a pro­

jector of constant rank m C8l. 

R e m a r k 1. In general there are more than m non-vanish­

ing vectors at iq, i.e. sufficiently many, but linearly dependent. 

Conversely, let a family {x^} of n vector fields be given on (M,g) 

which span T M for each qeM. We may then ask whether they can be 

obtained by projection from some orthonormal vector fields on 
(Rn,g ). The answer is positive f7] if the components of X. in a 

n j 

g-orthonormal basis in T M at each q eM form an nxm matrix with 

rows being g-orthonormal. Then n-m further rows can obviously be 

added to it to form an orthogonal nxn matrix. The resulting vector 

fields are in general not constant, so the construction is of local 

nature; it yields a family of orthonormal vector fields which do 

not vanish only in a tubular neighbourhood of iM in R . A global 

statement would require special topological tools. 

Then P. s are defined as the unique symmetric operators in 
2( \ J. ~* 

L (M, d/«.) with the 1st order differential operator parts -iE., 
We have 

L e m m a 2. P. = -i ( B £ ? ^ + *£Vj) on C ^ M ) , where 

m = dim M and 7, are Cartesian components of the mean curvature 

normal of (M,g) in ( R 1 1 ^ ) . 

P r o o f is based on the formula [5],L1J 
P. =- P(E.) = -i(E. + £ d i v E . ) , 
J . J J . J j • A 

where the divergence with respect to us can be expressed in terms 
of the second fundamental tensor of (M,gJ in (R ,gn) £8] 

divE. = pcBj = H £ , = **ir 

4. THE CONSTRUCTION OF THE HAMILTONIAN ON (M,g) BI RIEMANNIAN 

SUBMERSION 
Considered as an operator in L2(Rn, dnr)> the free Hamiltonian 

H is proportional to the Laplace-Beltrami operator J^ on (Rn,g )• 
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Then a suitable restriction of A^, to the submanifold (M,g) will 

be identified with H . However, because the restriction has to be 

performed via a submersion [2J , it will depend strongly on geome­

trical properties of its fibres. We put two physically motivated 

requirements to arrive at the unique result: 

I. In order to achieve correct decoupling of the dynamics on iM 

from Rn-iM we assume that submersion <r is Riemannian, i.e. O^ 

preserves the lengths of horizontal vectors [6]. 

II. In order that the Hamiltonian H be a candidate for a meaning­

ful quantum observable on M we assume that H is symmetric in 

For a given but otherwise arbitrary submersion 6* : W —»»M, 

where W is a tubular neighbourhood of iM in Rn L6i, the restriction 

Aj of A^, is defined as 

where f = f • <T € C**(W )[2] , £l0] . Since many submersions 6* are in 
general possible, ^ i s not unique. This non-uniqueness is present 

even for a Riemannian submersion and is explicitly stated in 

L e m m a 3. Let 6* : (w,* }—•• (M,g) , W c R31, be a Riemannian 

submersion. Then the restriction A^ of 4 ^ is given by 

A^ = A + fn-m) 9 on C*fa)9 

where A is the Laplace-Beltrami operator on fM,g) and & is the 

mean curvature vector field of the fibres (f^Ol) at points *q «̂£M. 

P r o o f consists in retaining the omitted term in Wallach' 

s proof of his Proposition 7.1 Do.K 

Adding further requirement II., we arrive at the 

T h e o r e m . Let M be a paracompact C^-manifold. Let (R11, 

a ) be the Riemannian Euclidean space and ^^its Laplace-Beltrami 

operator. Consider an embedding i: M — ^ (Rn,gn) which endows M 

with a Riemannian structure g = i*gn» Let 0" be a Riemannian sub­

mersion mapping a tubular neighbourhood W of iM onto M. Then the 

following assertions are equivalent: 

(i) -^is a symmetric operator on C^(M) C L (M9IL) ; 

(ii) the mean curvature vector field & of the fibres of 6* va­

nishes at the points iq 6 iM; 

(iii) A? = A on c"(il) . 

E r o o f becomes trivial after deaomposing ^ i n t o the 

symmetric and skew-symmetric parts 

Ar - (A - -2-py-div e) + (*-*xe + -t d iv^ ; . 
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Assume 0 + £div# = 0 on M and & t 0, div & t 0 only on a 

compact subset U c M. Talcing in C^YM) f = const. / 0 in U c U , 

f -* 0 smoothly in U-UQ, then (9 + £div 6) f ?- 0 on U leads 

to contradiction. Thus (i) <$=> (ii) . The other implications are ob­

vious. 

R e m a r k 2. Usually only the sufficient condition is used 

that the fibres <T~*(q ) are totally geodesic submanifolds in fw,g 1 

Being totally geodesic is equivalent to the vanishing of the second 

fundamental tensor, hence implies 9 = 0, but not conversely. See 

[3],[4],D>],[10]. 
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