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INTERPOLATION THEOREMS FOR REARRANGEMENT INVARIANT p-SPACES
OF FUNCTIONS, O-<p-<1l, AND SOME APPLICATIONS

Nicolae Popa

In this paper we extend two interpolation theorems in the sett-
ing of rearrangement invariant p-spaces, for 0<£p«l.

Some applications of these theorems are given, particularly: we
extend Theorem 2.c.6 - [4] proving that the Haar system is an uncon-
ditional basis in a rearrangement invariant p-space X iff the Boyd
indices Py and qy verify the relations 1<pX and Qy& oo . Some non
locally convex Lorentz fonction spaces are examples of such rearran-
gement invariant p-spaces, while in [5] N.J.Kalton proved that only
the locally convex Orlicz spaces have a Schauder basis,

In the sequel we assume all the vector spaces to be real. p is
a positive real number less than 1,

Let X a topological complete vector space such that its topology
is generated by a positive function || “X’ called p-norm, which ful-
fills the following properties: 1) |x|ly = 0 iff x = 0; 2)]|0<X||x=|04'||>dk
for Xe€R, x€X; 3) l|x+y||jpc <|pc|&) + "y'b? fOI.' x,yeX. (We recall that
“ ux generates the topology of X if U = ix €X; ||XI|X<—%—} , neMN;
constitute a neighbourhood basis of origin for this topology).

We say that X is a p-Banach space, If p = 1 we find the classi-
cal definition of a Banach space.

A p-Banach space (X,|| ||) which is moreover a vector lattice, is
called a p-Banach lattice if

%) < Iyl implies that [l <liyll for x,yeX,

We shall give the definition of a rearrangement invariant p-spa-
ce of functions only in the case when the functions are defined on
I= [{),l:l . For more details about the rearrangement invariant p - spa-
ces see [5].
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A p-Banach space X of functions on I is called a p-K8the space
of functions on I if the following conditions are fullfilled.

a) X is a p-Banach lattice of p -measurable functions on I with
respect of pointwise order (p is the Lebesgue measure)., Moreover
the functions of X are p-locally integrable,

b) If fe¢X and geLo(I) (the space of all Lebesgue measurable
functions on I) such that |g} £ |f| p-a.e., then it follows that ge X
and |ig|ly <lIflly.

c) The charactel_'istic\.function 'XAE X for each Ac I such that
pld)< oo

d) The p-norm "f“x of X is p-convex, i.e, the p-measurable func-

2 1/p
tion ( ; Ifiip)- belongs to X for fl,...,fn&‘X and moreover

”( Zz; ]fi|P)1/p[lX < gz; "fiui)l/p

e) (Riesz-Fischer condition), If fl"“’fn"" are elements of

oo
X and z ”fi”péw, then the p-measurable function
1= X

22 1/p
( § |£5 () Py " belongs to X.
1=

The condition d) is very important and it is used to define a
subgtitute of a "dual" for the rearrangement invariant p-space.

More precisely, let X be a p-K8the space of functions on I, We
denote by X, the set {x : I —»[R; such that the function

t —> x(t)]'/p = |x(t)| 1/p sign x(t) belongs to X}.
Endowed with the usual operations,with the pointwise order and

p
the norm“x]](p) =“ || 1/p”X , X(p) becomes a K6the space of functions

on I, i,e, a 1-K&the space of functions on I,

For instance if X = Lp(o,l) then it follows that X(p)= 1,(0,1)..
We cen give also the dual construction,

Let X be a Kdthe space of functions on I, We denote by X(’p) the
set {x : I — [R; such that the function xP belongs to X}.

We consider for x X(p) the p-norm /
1/p
)P = fl Pl

Then x(p) becomes a p-K8the space of functions on I with respect
to usual operations and pointwise order.
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For instance if X = L;(0,1) then it follows that x(®) Lp(O,l).
If X is a p-K&the space of functions on I then it is obvious

that
(p)
X [( ) .
We can consider also the KSthe dual of X(p))E((p_l {g I—R;

§|f(t)g(t)| dt < o for all f€ x(p)j We introduce on E( :] the

norm
el = Ji’”sup S |f(t) g(t)| dat
“ (p)\ o
and E( becomes a Kbthe space of functions on I,

Then X is a vector sublattice of X" : ={ [X(p)] "}(p) ‘but in ge-
neral it is not a p-Banach subspace of it,

A p-KSthe space X of functions on I is called a rearrangement
invariant p-space of functions (briefly r.,i.p-space) in the following
conditions hold.

1) For every f€&X and every measure preserving automorphism

8: I — I the function fo3 belongs to X and moreover Ilf°"6|IX=llfi|X.

2) X is a p-Banach subspace of X" and X is either maximal 1i,e.
X = X", or minimal i,e, the subspace of all simple p-integrable func-
tions is dense in X,

3) We have the canonical inclusions

L o0 (0,1) €XcL (0,1)

such that the norms of these maps are less than 1, (We denote by ||T||
the expression sup{[]Tx“ i Nxliy < l} y where T : X —> Y is a linear
and bounded operator acting between the p-Banach spaces X and Y).

Interesting examples of r.i,p-spaces are p-Orlicz and p-Lorentz
spaces,

Let M : [0, 00) —> IR, be a continuous, increasing and p-convex
function., (We mention that a function M : [0,00) —» R, it is called
p-convex if

Ml:(o(j(p +p’yp)l/p]é¢xM(x) +BM(y) for x,yeR, end
oy BeR, such that &+p =1), If M(0) = 0, M(1) = 1 and if 1lim M(t)=
=09 we say that M is a p-Orlicz function, 100
Instead of an 1-Orlicz function we say simpler an QOrlicz func-

tion,
The p-Orlicz space LM(O,l) is the space of all Lebesgue measu-
rable functions £ : I —> R such that
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N .
SM(M) dt < o0
3 P

for some P)O.
The p-norm on LM(O,l) is defined by

1
£l = inf{p>o0; SM(-'if?i)l—)'dtgl} .
o

It is not so difficult to prove that Ly(0,1) is a r.i.-p-sPace

maximal,
We mention also that, for X = I_.M(O,l), it follows that X(p) =

=Ly (0,1), where M) (t) = m(t'/P),

(p)
Of some interest is also the subspace HM(O,l)CLM(O,l)

Lebesgue measurable functions f defined on [0,1] such that, for all

of all

1
f>0, we have SM (Ifyt | ) dt<ee , HM(O,l) is a r.,i,p-space mi-
o

nimal,
2P

If M(t) = &=L then Hy(0,1) # L,(0,1).
Another interesting class of r.i.p-spaces is the class of D-Lo-

rentz spaces,
Let O0< q< oo and let W be a continuous non-increasing positive

function defined on (0,99 ) such that 1lim W(t) = O,
t—>o

1 [ed
SW(t)/dt = 1 and 5 W(t)dt =oo,

0 o
Let O<p<q<«=0. Then the p-Lorentz space of functions Lw’q(O,l)
is the space of all Lebesgue measurable functions f on I such that

1
q 1/q
ety o = ¢ § E*] " winat)” <eo
o

(Here is £*(t) = inf sup If(s)]).
]J(E)=t s¢E

Then L, (0,1) is a r.i.p-space maximal, where 0<pg1l. We men-
. )
tion that, for X = Lw,q(O,l), we have X(p) = I.M’q/p(o,l).
The r,i,p-spaces are used in interpolation theory, More precise-
ly they constitute the natural framework for theorems of Calderon-Mi-

teaghin and of Boyd.
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In the sequel we present the extension of these theorems for
r.i,p-spaces,
First of all we introduce an order relation on L_(0,1).

Let £,g €L,(0,1), 0<p<1. We write £-<g if for all se [0,1]
we have

§ [f*(tilp at < i [g*(t)]p at
o [¢]

It is obvious that f'ﬁ g is equivalent to each of the following
relations: |f| —p< [gl; f£*< g*; Af< ag for all real numbers A # O.
P P
It is clear that f-§g and g—p(h imply that f"ﬁ h, Moreover f-p<g
and g f hold simultaneously if and only if f£* = g¥*,
Another useful relation is the following

* * *
(fl@fz) —p< £] ar’.
i = (£fP + £Py1/P
Here is f1®f2 = (£5 + £5)77°,
It is true also a relation similarly to Riesz decomposition pro-
perty, namely: Assume that g’ﬁfl ® f2 for positive functions g,fl,

f2. Then there exist the positive functions 81185 such that
g = 81682 and gy < fi, i=1,2,
P

Indeed gP—< frl) + fg and, by Proposition 2.,a,7-[4], there exist
1
€], 85»0 in L (0,1) such that g{ + g3 = gP and g{ < fg , i=1,2, We

conclude denoting (g{}yp by g5, 11,2,

The next proposition shows us that a r.i.p-space X is an"ideal"
for the order relation —< , Namely

Proposition 1., Let X be a r.i.p-space on [0,1] . Assume that
g f and feX, Then geX end |gl|<|If]] .

Proof, The case p = 1 constitute Proposition 2,2.8- [4] .

Let O<p<l. Then gp<1 £P and, by the same Proposition it fol-
ovs that 8% X(py nd el = &Pl cp) < 1Pl = €I - m

An operator T from a p-Banach space X taking values into a
p-Banach lattice Y is said to be guasilinear if :
1) |Texx)| =|¢|{Tx] for all scalars o and xeX.
2) There exists a constant C< oo such that
|T(xy+x,)|€ CU|T x| + [T x50y %p, XyeX
A quasilinear operator T is bounded if ||T||<e°
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Now we can state an extension of Calderon-Miteaghin's Theorem,
(See Theorem 2.a,10- [4]),
Theorem 2, Let X be a r,i,p-space of functions on [0,1] .
Let T be a guasilinear operator define on L (0,1), which is si-
multaneously bounded on L,(0,1) and Lp(O,l).~
Then T applies X into X and moreover
Il €2*P ¢ max (i, Wrlles ),

where C is the constant aforementionned.
Proof, Let feX and O«<s<«<l1,

£(t)-£*(s) if £(t) >£*(s)
gg(t) =

Put £(t)+£*(s) if f£(t)g -£¥*(s)
0 if |£(t)l < £%(s)
and hg(t) = £(t) - gg(t)e
It is clear that || | = £*(s) and, denoting by A = {t€ [0,1];
f(t)>f*(s§, B= fte[0,1; £(t)<- £¥(s)}, we have p(aUB) =
=pite[0,0; IE(E)> £%(8)} : = ap(£¥(s)) < 8.

Hence

1
Jeslly + o (7P = §Eot]” at + sfe"(a)] -
[0}

= ({[Ece)-ex)]P+[E*(e)] PRate §{ [2%(s)]P+ |£(t)+£% ()| Phat +
a B

(*) +[S-F(AUB)]- [f*(s)]pé 21-P{ S lf(t)ip*'(s-}l(AUB))[f*(s)]I.’}é
AUB

]
<(since S [f*(t)]P at = sup S [ £t)|P at) <
pt Ma)=s &

_H(auB) s 7 .
Szl-PLS P at+ § Ef*“)]pdt.lszl-p 5 [ a.
2 H(AUB) °

Since |Tf|< C (ITgsl + |Ths|) we have

s
BTf)*(t):]pdt= S{[T(f)(t)]p}* dt < (since f <g implies £¥< g*)<
o

o«

2 - 8
<« S l-( \%8s| * |m8[)P]*dtch S ([Tgg]P + |Tng|P)™ at<
[+]
8

o
8

<(since (£;@,)"< f{@f;)scp[g (|1gg|P at + § ths\p)*at]é
o o
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0P max(|7|, 1Tl ) (lagll} + o [£*(8)] P
]

<(by (%)) <2"PcP max dil, Nzl ) S [}*(t)]l’ at.

o
Consequently Tf—=< 21/p-1¢ max(llTilp, IPl|oo) ° £
Hence, by Proposition 1, it follows that Tf € X and [Tf||<
<l/p-1 T|| , ) gl
€221 ¢ max(nl, il )- el . o

The natural projection Py (f) = fXA, where Ac [0,1] is a Lebesgue
measurable subset end f€L_,(0,1), is the most common example of a
simultaneously continuous operator on Lp(O,l) and L_,(0,1).

Another, more intricate example is given by Tf(x) =

(o)
=Y (@ 3/P)e(x/Py, wnere £ el (0,1) and xe[0,1].
n=.
Indeed Theorem 3,2- fZ] shows us that, for every sequence(an)‘::l

of Borel functions on [__0,1-] and for every sequence (G‘n);o:l of measu-
rable functions on [O,JJ such that

o0
1 P =
(*%) su E a_(x)|* dux) = M< o0
}-I(B)EO f(B) n= _§_ ' n l t !
o, (B)

o0
the expression Tf(x) = an(x)f(o'n(x)), where f€L_(0,1) and

n= p

x e[o,l], defines a bounded operatur T : Lp(O,l) —_— Lp(o,l) such
that ||T]f = a-/P,

If T has the aforementionned expression it is easy to prove the
condition (**) for every Borel set B, consequently T is a continuous
operator on Lp(O,l).

[ aed
since [ITfl| o, < ( z n=>/P) li£ll,, for feLoo(0,1), it follows
n=

that T is a bounded operator on Lo(0,1) too, Hence T applies X into
X and it is bounded on it, (Here X is a r.,i,p-space),

As an application of Theorem 2 we give the following example of
a complemented subspace of a r.,i.p-space of functions on [-9,1].

Corrolery 3. Let X be a r,i.p-space, 0<p<l, and let 3 be a
G-gubalgebra of the G-algebra 13 of all Borel subsets of [0,1] conta-
ini the sets of Lebesgue megsure equal to zero,If there exist aeB
and g >0 such that
(1) JANB)2EWB) for Be 3_

and such that



206 NICOLAE POPA

(2) for all Borel substes CCA, there exists Be> | with BN4 =,

then X( 3~ () = {fEX; f being a Zo -measurable functionf is a com-
plemented subspace of X,

Proof, Let Py be the natural projection of L_(0,1) onto L_(4).
By (1) it follows that the restriction of P, on Lp( 5:0) = Lp((o,l),

>, »f) has a continuous inverse and (2) shows that P, maps LP(ZO)
onto L (A). Hence PA\LP( S ¢ Ly ) — L,(4) is a linear ho-

meomorphism, Consequently T = Q Pps where Q = E’A‘Lp(z):\ -l, is a
(]

continuous projection from Lp(o,l) onto Lp(z;). Using (1) it follows
that ”PAf“w = || £{lo for all feLoo(['o) = Laa((O,l),Zo,l.L) and by

(2) we get that PA(L,,‘,(ZO)) = Lo(A). Thus T = Q Py is a continuous
projection from L, (0,1) onto Lw(Zo). Applying Theorem 2 we get
that T is a continuous projection from X into X, If feXcL (0,1) ,
then Tfe¢ Lp(Zo)ﬂXCX(ZD). Conversely, if ge X(ZO)CLP(ZO),then
g = Tg and we are done. g

An example of a G-algebra Zo verifying the conditions (1) and
(2) is the following.,

Zo = {BUCUD; BC[O,l/Z—J a Borel set, C = &(B), where &(x) =
= x + 1/2 for xe [0, 1/2], and p(D) = O}.

Theorem 2 allows us to conclude that the linear operators simul-
taneously continuous on L,(0,1) and Lp(o,l) act continuously on eve-
ry r.,i,p-space X, Since there exist interesting operators which are
bounded only on some Lq(O,l) with p<q< o0, we shall study further
the r,i.p-spaces X which are "between" Lpl(o,l) and Lp2(0,l), in the

sense that every operator defined and bounded on these two spaces is
defined and bounded also on X,

In this purpose we recall the definition of Boyd indices,

For O<s4oco we define the operator DS as follows,

For every measurable function f on EO,]] , put

f(t/s) t<min (1,s)
(Dg) (1) =
(0] s<t<l.

Obviously “D <1 and

slloo
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)
su S ]f(t/s)‘p dt =8 for s<1l
lifllpél rd
liogllp = sup |pgE||D = 2
P Hflllﬁl P i ﬁugl S lf(t/s)\p dt €s for s>1,
vl
P o)

Consequently ||D s]'/P and, by Theorem 2, it follows that Dy

sllp =
acts continuously on X and ]|DS”X£21/IJ-1 max (1,sl/P).

Moreover (Dsf)*s Dsf* for every £ and 0 <s< oo , Consequently
we can compute “Ds"X using only nonincreasing functions f. Since,for
such a function f, we get D.f< Dsf, where O<r<s<oo , it is clear
that ||Dgj|; is a nonincreasing function of s, Moreover l|D
SHDP”X- \'\Ds!\‘X for all O«<r,s< oo .

Now we can define the so-called Boyd indices Py dy.

rs“X <

pX = lim _1.'_95_3__ = sup __l.gg._s— ,
s—e0 L0g[Pylly o> Loz gy
ay = 1im log s = sup log s

80" Log Dy O%e<L log Pyjly

If “DS“X = 1 for some s>1 we put Py = ©o, Similarly, if
[Dglix = 1 fpr all s<1, we put qp =oo, Obviously px = qg = p for
X = Lp(o,l) where O <p & oo«

Proposition 4, Let X be a r,i.p-space, Then
1) pgpy<qygeo.

2) p =p and q = Qe
Proof, 1) Since |Dgy||x€ 21/p-1 G1/p £on s>1, we get

pX:: lim _l_qg_ﬁ__>lim ———%:p.
log 2 p=lg/P

S—o0 loghDs”X 8 —o0
Bt sl Py 2 [Pygnlly = o coneeently

-1

_ . log 8 : log s =

py = Jlim —=& 3 « 1ip = Gy

X 8— o0 log"DBHX T s—00 log “D _1“X X
s

2) Obviousdy Pglly = ol ¢ m

Proposition 5., Let X be a r,i.p-space of functions on @,1] . For
eveg. P<P;< pX‘and qx<.qlgoo we_have qu(o,l)c'_xchl(O,l), the in-
clusion maps being continuous,

Proof, Proposition 2.b.3-[4| settles the case p = 1,
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For O<p<1l, by Proposition 4, we get lspl/p< pX/p = px(p) and
q = gy, <Q, <oo . Applying again Proposition 2,b,3-[4] it fol-
X(p) X/p = *1/p

lows that the inclusion maps L —>» X and X —> L are
%/p (p) (p) P1/p

continuous, Hence the inclusion maps Lq — X and X — Lp are al-
so continuous, g 1 1
We recall the Theorem 2,b,6- [4] which will be useful in the se-

quel, . .
Theorem 6, Let X be a<y.i. space, Then py (resp, qy) is the mi-

nimum (resp,maximum) of all numbers p with the following property
for every £> 0 and every integer n, X contains n disjoint functions
(£;)]-; equally distributed such that

n l/p n n . 1/p
1-6)( 1P .l € () ( AP
a-002_Jal® < |2 o =l 2 el

for every choice of scalars (ai);l___l.

We give further another interpolation theorem which extends the
Boyd interpolation theorem,

First of all we introduce the spaces I"r, , whre pgr,q<oco For
p<r<oo and pg Q< °° we denote by Lr’q(o,l) the space of all Lebes-

gue measurable functions on [O,Z\] such that
1
1/q
= 1/t oxey 2 dt]
i, qi= e § (47 2] [ e oo
)

For psr<oo we denote by Lr oa(o,l) the'space of all Lebesgue
measurable function f such that ’

( 1/r %
f = s8up t 7 (t)< oo «
" "r,oo 150

(For more details about the spaces L see [1]).

. Q.
Obviously L,  (0,1) = L,(0,1) and il Moreover we

ayq = [Ellge
have “fllr'q2éllf“ ryq for 0<qy<qyse0  [1], thus

Lr,ql(o,l) [ Lr’qz(O,l).
By Holder's inequality we get:
L 1)< l) <
I.3,‘”(0, ) er,ql(o, ) Lrl’qz(o’l)

where 0<rj<T,<rz& o and q;,q,> 0.
The spaces Lr (0,1) are topologically complete metrizable vec-
tor spaces; (See [.’L )e
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If pg<q<r, then the space I‘r,q(o'l) coincides with the p-Lorentz

space L‘Il,q(o’l)’ where W(t) = —g—- . tQ/r—l’ O<t<oo ,

It 1s interesting to mention that Lp’co(o,l) cannot be p-renor-
med such that the p-norm be p-convex,

Let now p&rig oo apd let T be a linear map defined on a subset
of Lrl(o,l) with values in Lo(o,l).

1) The map T is said to be of strong type (ry,r,) for a sui-
table r e [p,w} , if there exists a constant M>O0 such that

|I‘I‘f\|r24 uiifll, for every f from the domain of definition of T.
1l

2) T is said to be of weak type (r;,r,) for some r, e[p,oﬂ
if there exists a constant M> O such that

|
||5L‘:‘:||r2’°‘,4thlrl’p

for every f from the domain of definition of T, We make the conven-

tion that, for r; =oo, instead of |ifi| 0o,p @ DUt ||f”°°,°° =il -
H

It is clear that an operator of strong type (rl,rz) is also of
weak . type (rl,rz). Finally we remark that T is of weak type (rl,r-z)

if and only if there exists a constant M>O0 such that
1
1/r p/r,-1 p 1l/p
:ug t.(rl{se [O,]] ; ITE(8)] > t3) 25 M(p/ry S t 1 Et‘*(t)] at) .
>
°
We prove now the extension of Theorem 2,b,1l- [4] .

Theorem 7, Let O<p<l and P<Py;< q3<Ke0 and let T be a linear
operator acting from L (0,1) into L_(0,1).
P1sP ="

Assume that T is of weak types (pl,pz) and (q2,q1). Then for e-
very r,i.p-space X of functions on @,]J such that p,<py and qy<q,
T maps into itself and it is bounded on X,

The following lemma is en extension of Lemma 2,b.,12-[4].

Lema 8, With the same assumptions on T as_in Theorem 7 there is
a constant M< oo such that

1 -
-1 = /a,-1
()" 26)] P < [ S [£* ()] P el S F*(ta))P o 2 dx:J
° i

for every 0<t<1/2 end fel, ,p(O,l).
1

Proof. Suppose that T is of weak types (pl,pl) and (qy,q;) with

. tf 1) and for u,te [0,1] set
the constants M, end My . Le eLpl’p(O, ) te [0,1]
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f(u) - £*(t) if f£)> £*(t)
gy(w) =< £u) + £%(t) if £(u)<-£¥(¢)
0 if £l £%(t)
and hy(u) = £(u) - g (u).

It is clear that 8yohy eLp p
l’

is of week type (py,p;) to g; and of weak type (q3,q;) to hy. Note

(0,1) and we apply the fact that T

that g:(u) = 0 for ueft,=0) and g:(u)sf*(u) for O<u<t, Hence,for
t €I, we have

) /
£7R [(re) ") < Mgl(p/pl) S)c[g:(s):lp s "l asg

t 1
P p/py-1 p/p ~% oo P/Py-1
P * 1 geaP (2 1 py 1
< (p/py) ;[f ()] s dad (Dt § E )] Pa Y au,
since |h, ()] = min(|£w)|, £7(t)), for te [0,1], we have

79 [ ) * 0] P <} 2 "S"[h()]ps a5 &

o
t

&Mg]: % v ( § [f*(t)]p sp/ ds +S [:h (s )]p p/q =t ds) =

P p/q P/q_ p p/q;-1
¢ B ) Do ISExt u T aug

p/q q p p/p P p/gqy-1
af B¢ 1 15[_@@)_[ 1du+SLf(tﬂ 17 aw,
9 q s

Since |Tf| <|Tgy| + |Thy] it follows that

P - —
[(re)*(26)] ¢ [(Tgt)*(t)+(Tht)*(tﬂps [(re, )*(t)_]p + [(m )*(t)] R

SO, B+ ) S F* i) du+Mp LS £ @] ? o e,
This proves our lemma with M = —2 + Mp

PpPL ™
Proof of Theorem 7. Let p  &d g, be such that p; <p < py end
Qy<Qq,<Qqy. Then there is s >1 such that, for s> 8,, We have

1/p
1o o)
p I_—g'_og“Dsu . Consequently “Ds“xgs for e>/so.

1o

Since 8 —>» %€ Pl is an increasing function on (1,0°), it
slX

® for 2L 8520

.

1/
follows that there is K<e° such that “Ds“X<K 8
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1/
Similarly, we can assume that "Dsl x<$K s % for 0<s<2,
Let now g eX' = ['X(p)]’ such that |glly, = 1 and put on

- g(t) if t <1~
&(t) ={ 0 if t>1

Then we get

1
p/py-1 /py-1
[e*(tu/2)] Pe(tn’ 1 awat =S e

[o]
1
p/p . p/py-pP/P
o( S u 1

©0
( ¢ 2 (D, £ IP (t)g(t)at)due

oL
o LN

1 -1
o P/Py-1a, < kP. 0 P _
SS 1, g5 Ny -u LTSk 2 aw) [iell
rd (p) 0
p/p -1
2 °kP (B -E) |l for fe X, Moreover, for O<t~-2 ,
P1 Po

"

C e ' p/q;-1 = p/gg-l ¢ *
( S [£* (tu/2)] Pe(t)u aw)at= § u ( S (D, £ )P ()g(t)at)dus
1 0

o\ N+

p/p, °S° p/ay-p/ag"1
u u =

[

p/q;-1 _
§u T liny IR 1R aug 1R &P 2
J.

1

By Lemma 8 it follows that S BTf)*(t):]pf(t)dté M J|£ll; for gex
(o]

p/p
such that Ilgux, = 1, Here M, = MkP (p__ P—) 2 %+
b Py
p/a, -1 , N
+ 2 (%‘; - g—-) , M being the constant appearing in Lemma 8,
1

Hence (Tf)Pe [X(p;]" . In other words Tfe{[X(p)]"} (®) - X", Mo-
reover |lTfI®,, = “(Tf)pllx.(. )é My £k .
p

If X is meximal, then Tf€X and ||Tfll < M, ||£lly. Since qu(O,_l)
is a meximal r,i,p-space, then it follows as above that T(qu(o,l))c
Cqu(O,l). X being the closure of qu(o,l) for the topology of X"

it follows that T maps X into X and it is bounded there, g4

Since pX =qy = r>1, when X = L, p(O 1) where 0<pgl<r<oo
we get a r.i,p-space X non locally convex such that 1< Py<Qy<oo .

We shall give an application of Theorem 7,

Letdé be a G"-subalgebra of B (the G -algebra of all Borel subsets
of I = EO,l]) such that the Lebesgue measure restricted on# is ¢-fi-
nite, For fé»Ll(O,l), the Lebesgue-Nikodym theorem shows the existerce
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of a unique #-measurable and Lebesgue integrable function, denoted by
E'f, which verifies the relation

1 1
S =t)g at = S gf dt
o] o

for every bounded #-measurable function g on [O,l] .

It is clear that f —» E*i' is an idempotent operator, This ope-
rator is called the conditional expectation and has the norm one on
Ll(o,l) and Leo(0,1), Thus-the norm of E® is equal to 1 on Lq(O,l)
for all 1s$gsoo:

Corollary 9. With the notations of above, if O<p<l &Py <q $0°
and if X is a r,i.p-space of functions on E),l] such that P<Py <
€Qy <qy, then E*M X into a:seH and it is bounded on it.

Proof, Since P1>1 then E“"is an operator of strong types(pl,pl)
and (ql,ql). Thus by Theorem 7 E” maps X into itself and its norm
does not depend on &,

Now we give an interesting application of Corrolary 9., Recall
that the Haar system (7(:1):1:1 is given by 7(1(1;)‘:—: 1 and, for
=1,2,...,2% and x = 0,1,..., by

1 for te [(28-2)27%1, (2f-1)27k-1)
-1 for te [l-n2 ™, (2f,27F T
0 otherwise,

X (t)
2k+1
N.J.Kalton showed in [3] that in a p-Orlicz space X the Haar

system is a Schauder basis (i.e, every f €X admits a unique expan-.
o0

sion f = a-?%_, where (a.)" is a sequence of scalars and the sum
=T 1 i7l=1

converges for the topology of X) if and only if X is locally convex,

Particularly, the Haar system (7(“);;71 is not a Schauder basis
in Lp(o,l) for O<p<1l. (See [6]).

Thus it is natural to ask whenever the Haar system is a Schau-
der bagis in a r.i.p-space, for O<p<1l. In order to answer to this
question we associate to the Haar system an increasing sequence of
0-algebras {ﬁn}:__l of Lebesgue measurable subsets of [6,1] . §-al-
gebraaﬁt consiist of the vanishing set @ and [0,1] .For n=254+¢( ’
1« <2k, x>0, A& is the G-algebra spanned by A, and the intervals
[(2l-2)27%"1, (2-1)27%L), [(28-1)27%-1, 28.27%-1), 1t is clear that

‘ﬂ'n is the smallest §-algebra A such that the function {'Xl,..., Xn_z(

are £ -measurables,
We can now prove the following assertion.

Corollary 10. If X is a separable r,i.p-space of functions on
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[6 1] such that 0<p<1&P;< Pyg Qx< Y< oo » then the Haar system
(xn) -1 is a Schauder basis of X.
Proof. Since X is not isomorphic to Lg,(0,1) then

lim ||X = 0. Consequently every simple function on [0,1] can
21X, 0)llx ction on [0,
be approximated in the norm of X by the characteristic functions of

dyadic intervals 2°5,( +1)27%), 02X, k =0,1,...
It follows that the Haar system spans a dense subspace in X.
Observe also that for n m and for every choice of scalars

E’f“( a;x;) = i—[a.x.

and, by Corrolary 9, it follows that [|E “11 <&M for all nelN, Thus
V.8 )1_1 is a basic sequence in X, (see Theorem III 2 12-[6])._

Remark 11, The restriction imposed in Corrolary 10 that 1< px$
<< oe is necessary, since in the case pxsl or gy=9°° Corrolary
10 is not merely true.

For instance it is known (see [1]) that L, (0 1), where o0<r<1l,
0<q< oo and Ll, (0,1) for 1<q< oo , arer, 1.p—spaces X, where 0<Pp<
<r<1, such that X* = {0}. Moreover Py = ar <1,

View of Remark 11 it is natural to ask following question,

Problem 12, Does there exist a separable non locally convex Te.i.
-space X such that py =qy =1 having a Schauder basis ?

n
a; j=1 We have

It is clear that in L. (0 1), where 0<r<1< q<<° , the Haar
system is a Schauder bas:.s and however Lr (0,1) is not locally con-
vex,

We are further interested to know whenever the Haar system is
an unconditional basis in a r.i,p-space of functions on [O,JZ] . We
recall that a Schauder basis in X is an unconditional basis if the
expansion of every element of X with respect to this basis conver-
ges unconditionally,

It is interesting to remark that the relation 1< Py < Qy<eo is
a necessary and sufficient condition for the unconditionality of the
basis (xn)::l in every r,i,p-space X, We extend in this way Theorem
2,¢.6-(4]

Theorem 13, Let X be a separable r,i,p-space of functions on
E),]] . The Haar system (7(11);::1 is an unconditional hasis in X if and
only if l<pysgy<oee .

Proof, If 1<py< qy<ee then by Theorem 7 and using the fact
that the Haar system is an unconditional basis in Lq(O,l) for all
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l<q< oo (see Theorem 2 c.5-[4] ), we get that the projections E;from
X into the subspace [7( 1&0"CX where G< [N is a closed subset, are
uniformly bounded. Thus (X ):L =1 is an unconditional basis in X.

Conversely, assume that (X, )l =1 is an unconditional basis in X,

By Proposition 4, Py = Py/p -consequently Theorem 6 shows
(p)

that ‘epx( (n) spanned by positive disjoint .elements having the sa-

me distribution function are uniformly contained in X( . It follows
that X contains uniformly the spaces pr(n) spanned by positive dis-
joint functions having the same distribution function,

In other words there is M>0 such that for all ne N there are

n
2 disjoint functions (ui)?_=l having the same distribution function,
such that "u ” 1 and verifying the inequality .

on
(*) M( 2—-; “‘HHXX) >“ ; UiHX T LT huJ.H T )

Let (h; ) y the Haar system over (uy ) , defined by

i=1 i=1
-n/px
hl = 2 (ul + LN + u2n)
h 2-n/pX ( )
= u + LY + u -u =~ eee ~T u
.2 1 2n—l 211—1_‘_l on
. _n/p
_ X
B, =2 (u) =)
: -n/p
X
h =2 (u -u .
on iy 2t

Since X is separable we can assume that uy is a finite
linear combination of characteristic functions of intervals
(12.-1)2‘1‘, /f’..z'k) for some k non depending of i, Applying a suita-
ble automorphism of [0,1] we can suppose that on the first 2" dyadic
intervals of length 27" every uy is non-zero exactly on some of tho-
se intervals and takes there a value nondependmg of i, say 61' The
same fact is also true for the following 2n dyadic intervals of len-
gth 2 k, where _/>’1 is replaced by 52 and so on.,
Thus, for some m&[N and some scalars ((’3‘]‘)131=1 we have

m

1<ig 2,

= ( .x
R s (i-1+(5-102M)27%, (i+(§-1)2M275),
Remark that
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n/px Z
2 By = Uy +euut u2n-1 - "12n-1+l Toeee T uzn = ;F ﬁ.j ’X2k'n+3

=u +eeet U -u - see — U = )-’x
1 2n-2 2n—2+l 2n-l ZJ: r J 2k--n+1+2j_1

«h 4 2n-l +1

BX

k-n+l+2j ’

n/p
2 X +40et - u =

u - u “eoee
oh-1,,0-2 = Ton-l on-2) on

I=
and so on,

on
In other words {h i j=2 constitutes a block basis for a permuta-
o0
tion 97 of the Haar basis (Xn) n=1 of X, Thus the uncondltlonallty con-

on
stant Kn of {h } o (K is equal by definition, to sup{“Z a,;. 1“){’

|| Z; a-h.ngl; 8; = ¢ lj) is less than K, the unconditionality

constant of the basis (7( ) of X.

n=1
ny . _ A )

Let now Tn : [ui] i=1 —eﬁpx(2 ) given by In(ui) =ey, l1€is27,

be an isomorphism which (by (*)) satisfies the relation
-1 2
NIl ||y |l s M for all newW,

If s :l), (2" —>1_ (0,1) is the isometry given by S (e;) =

n Py Py n'-i

= 2n/pX‘ then U, = S_c¢ T_ verifies the condition
[(i-1)27®, 1 278y’ - "n”n
o Il ot < o n=1,2,...
and moreover we get
Up(hy) =X,

for 1$i$2n, n=1,2, ce o
Thus the unconditionality constant of the system (h ) -1 is the

same, up to a factor M2, as that of first 2" elements of Haar system

in Lp (0,1), If px§1, since the Haar system is not an unconditional
X

basis in L (O 1), then it follows that Kn —}Oo . Consequently

KX =00 whlch contradicts the fact that (‘)(n) is an unconditional

n=1

basis in X, Thus 1< Py and similarly we can prove that qxgoo .-
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Consequently the Haar system is an unconditional basis in
L, (0,1), where 0<gq<l<r<oo, in spite of the fact that this spa-
ce,ls not locally-convex,
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