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ON HILBERT-SCHMIDT SPACES 

Hans Jarchow 

INTRODUCTION 

In this note, we are going to consider Banach spaces ("B-spaces") 

X which are characterized by the property that every operator on a 

Hilbert space which factors through X is a Hilbert-Schmidt operator 

("HS-operator") . We propose to call such spaces Hilbert-Schmidt 

spaces, or HS-spaces, for brevity. 

By using Dvoretzky's theorem [31, Bellenot [1] has proved that 

every compact operator on a Hilbert space factors through a sub-

space of an arbitrary given infinite-dimensional B-space . Thus, by 

appealing to a result of Lindenstrauss-Pelczynsky [13], we see that 

HS-operators factor through every prescribed infinite-dimensional 

B-space. Consequently, factorization through an HS-space of infinite 

dimension actually characterizes HS-operators among bounded opera­

tors on a Hilbert space. This may serve to justify our terminology. 

Our aim is to give several characterizations of HS-spaces, to 

derive some of their general properties, to present a few examples, 

and to touch upon their relations to some classes of B-spaces which 

have been studied extensively in the recent literature. 

NOTATION 

As for B-spaces, our terminology and notation will be standard. 

We shall also use results on ideals of operators between B-spaces. 

Here all details can be found in A. Pietsch's monograph [18]; the 

basic theory is also contained in [8]. Frequently, we will be con­

cerned with quotients of ideals; we therefore recall the definition. 

If d and 58 are ideals, then the component of the ideal si •$ ("left 
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quotient") for a pair (X,Y) of B-spaces consists of all operators 

T€_?(X,Y) such that, for every B-space Z and all S€.s4(Y,X), we have 

ST£58(X,Z). Similarly, the "right quotient" d • 58~* is defined. Note 

that the identity I of a B-space X belongs to d <>58(x,Y)(we shall 
_ i X 

simply write I € d ° 58) iff A (X , • )C 58 (X , • ) holds; the dot is to sub-
X -1 

stitute an arbitrary B-space. Similarly, I £J4*58 iff 58 ( • ,X )cd ( • , X) . 

Under favourable enough conditions, si • 58 and s4 ° 58 can be conside­

red as a sort of adjoint of some other ideal which simplifies a lot 

of the manipulations with such ideals. We do not repeat the details 

here; the reader is referred to Jarchow-Ott [ 9 l. 

We shall in particular consider the ideals % ,9 t9 ,Jf (0<p<°°) 
P P P 

of compact, p-summing, p-integral, and p-nuclear operators, further 

the ideals T (0<r<°°) of all operators X > Y, where X and Y are 

B-spaces, whose composition with the canonical (evaluation) map 

Y > Y" factors through an -£ (u)-space, and also the largest 

extension, 9 , of HS-operators to an ideal of operators between 
2 , 2 , 2 -1 -l 

B-spaces. Notice that .? _ „ = T • 1? o T . 
^ 2,2,2 2 2 2 
I am indebted to Professor K. John, Prague, for some valuable 

comments on the subject of this paper. 

GENERALITIES 

The following characterizations of HS-spaces are easily obtained 

from well-known results on 2-summing operators. 

1 . Proposition: For every B-space X the following are equivalent: 

(i) X is a HS-space. 

U i ) ^ 2 , 2 , 2 -

(iii) X* is a HS-space. 

(iv) Sg(Xf£2) = 92(X,t2) . 

(v) _?(._-,x) = ?2
ual(£2,x). 

(vi) For every B-space Y containing X every S € SE(X,l ) admits an 

extension S £ <£{Y ,1 ) . 

(vii) For every B-space Y containing X and every s€ %{X,l ) there is 
k 9 m 2 

a constant C such that E IIs*. II - C- £ ||y || holds for all 
i=l j=l j 
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sequences (x ) . in X and (y .) in Y such that 
i -><k j 3<m 

k m 

I | < b , x > | 2 < I | < b , y > | \ 
i=l j=l

 J 

(viii) For every B-space Y containing X every S 6 !#(£ ,X*) admits a 

lifting S £ !#(£ ,Y*) ; equivalently, every weak £ -sequence in X* can 

be lifted to a weak £ -sequence in Y*. 

Here (i) through (v) are obvious, and (vi) and (viii) stem from the 

fact that i£ -spaces and ^-spaces are HS-spaces, cf. Grothendieck 

[6] and Lindenstrauss-Pejtczynski [13] . (vii) is due to Maurey [15]. 

We continue by giving some further examples. 

2. Examples: The following two statements are dual to each other; 

they have been proved by Kisliakov [10] and Pisier [19]. 

(a) If R is a reflexive subspace of an X -space X, then X/R is a 

HS-space. 

(b) If Z is a subspace of an 1^,-space Y such that Y/Z is reflexive, 

then Z is a HS-space. 

(c) A recent result of Bourgain's [2] yields that the disk algebra 

A and the space Hoo of bounded analytic functions on {z 6 <C||z|<l} 

are HS-spaces. 

(d) If X and Y are infinite-dimensional B-spaces sucht that 

-/? (X,Y) = #(X,Y), or X® Y = X ® Y , then X and Y are HS-spaces. 

This can be seen by appealing to Dvoretzky's theorem [3]; 

compare also with Pisier [22]. 

In [23], Pisier has shown that every B-space E of cotype 2 is 

contained in a B-space Z such that 2® Z = Z® Z holds and both, 
e 7T 

Z and Z* are of cotype 2. This surprising result answers in the 

negative several problems on B-spaces and nuclear locally con­

vex spaces raised by Grothendieck [5] and others. 

That a B-space Z with Z® Z = Z® Z must be a HS-space can be 

seen without reference to Dvoretzky's theorem. In fact, if 

S: X—>.Y is a bounded linear operator between B-spaces X and Y such 

that S®S: X® Y > Y® Y is continuous, then the adjoint of S®S can 

be considered as the map #(Y,Y*) > § (X#X*): V > S*VS. In par­

ticular, for all A6#(Y,£2) and all T€<£(£ ,X), (AST)*AST belongs to 

^1^2'^2* = ^i (^2'^2 )' i* e" A S T i S a HSvoPerator, and consequently 

we have S ^ Q (X,Y) . 
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Let X be a HS-space and Y a (closed) subspace of X. By 1, Y [X/Y] 

is a HS-space if, and only if, every weak £ -sequence in Y*[in X/Y] 

can be lifted to a weak £ -sequence in X*[in X * * ] . But we do not 

know an intrinsic characterization of Y to ensure the HS-property 

for Y or X/Y. 

On the other hand, HS-spaces enjoy the following "three space 

property": 

3. Proposition: Let Y be a subspace of a B-space X. If Y and X/Y are 

HS-spaces, then so is X. 

To prove this, let S€!#(X,£ ) be given. By hypothesis, T:=S/Y is 

2-summing, hence T=T/Y for some T€9 (X,£ ). Since S-T vanishes on Y, 

S-T =A»Q for some A€#(X/Y,£ ) , Q being the quotient map X > X/Y . 

Again by hypothesis, A€9 (X/Y,£ ) , hence S-T and S are in 9 (X,1 ) . 

Moreover it follows from Heinrich [7] that every B-space which 

is "finitely dual representable" in a HS-space is itself a HS-space. 

In particular, ultrapowers of HS-spaces are again HS-spaces. 

RELATIONS TO OTHER CLASSES OF B-SPACES 

We know that, on Hilbert spaces, 9 just yields the HS-
2,2,2 

operators. By considering the appropriate norms for identity opera­

tors on finite-dimensional Hilbert spaces, we see immediately that, 

no infinite-dimensional HS-space X can contain uniformly comple­

mented the £ ' s . By Pisier [21], this means that X cannot be K-con-

vex, i.e. it must contain the Z 's uniformly, or else: 
4. Proposition An infinite-dimensional HS-space cannot have any type 

p>l. 

Being K-convex, superreflexive B-spaces cannot be HS-spaces un­

less their dimension is finite. On the other hand, the following is 

open : 

5. Problem: Do there exist reflexive HS-spaces of infinite dimen­

sion ? 

Let X be a reflexive HS-space. Then one easily checks the 

equation <£{Xri ) = Jf (X,£ ). Thus, if we denote by r,(x,X*) the 

locally convex topology generated by all continuous hilbertian semi-

norms on X, then we get a Schwartz topolgy [8] which, by Bellenot's 
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result [1] quoted in the introduction, has the following property: For 

every infinite-dimensional B-space Y there is a set M such that 

[X,r,(X,X*)] is linearly homeomorphic to a subspace of the product 
M 

Y . When do these informations lead to the conclusion that X must be 

finite-dimensional ? 

HS-spaces are closely related to B-spaces X which satisfy GT 

("Grothendieck*s theorem"), i.e. %{X,l ) = 9 {X,l ) . Actually, the 

spaces in 2(a),2(d), and the duals of the spaces in 2(b),2(c) satis­

fy GT. 

Every B-space satisfying GT is of course a HS-space and the diffe­

rence between these two classes is easy to detect. Let 

M> l'
=^~0<^x b e t h e i d e a l o f " (2,1)-mixing operators" [18]. The 

identity of a B-space X belongs to M iff T (#,X) = 9 (»,X) holds. 

In fact, using notation and results of [9], we may write 

M2,r r2'9l= tr~Cr2'rJA = C ' I W A • 'ir^r/) 1^. On the 
other hand, Y~ • 9 = [Y «r ] . Whence: 

2 1 °° 2 

6. Proposition: A B-space X satisfies GT iff it is a HS-space and 

I belongs to M 

It also follows that a subspace of a B-space satisfying GT again 

satisfies GT iff it is a HS-space. 

As it is well-known, I €M holds for every B-space X of 

cotype 2. Consequently, HS-spaces of cotype 2 satisfy GT. Let <£ 

and 9 be the ideals of cotype 2 operators and of Y~summ--n9 opera­

tors, respectively, cf. Linde-Pietsch [12]; from this, also a proof 

of the relation <£ = 9 • 9~ can be deduced. Us ing this we get: 

7. Proposition: A B-space X is a HS-space of cotype 2 iff I is in 
- 1 X 

%*9 . 
2 Y 

Here 2) i s t h e l a r g e s t e x t e n s i o n t o an i d e a l of o p e r a t o r s b e ­

tween B - s p a c e s of t h e t r a c e c l a s s o p e r a t o r s on H i l b e r t s p a c e . I t i s 

known t h a t 2) = 9^^* 9 h o l d s . 

2 - 1 
P r o o f of 7 : I f X i s a H S - s p a c e of c o t y p e 2 , t h e n I = I € (T • 9 ) • 

°{9o9~1) = ( r ; 1 * ? ) . ( P " 1 - .A C r l 1 . 9^ = 2 L . ? " 1 , c f . [ 9 ] . C o n v e r s e l y , 
2 Y 2 2 2 Y ~ - Y 2 Y 

i f I €2) o.?""1, t h e n o u r a s s e r t i o n f o l l o w s from %*9~ C 2> « 9~l = Vo 
X 2 Y 2 Y 2 Y 2 

ana .v?~Y
1-r;1 .^cr;1 .^ - r"1.^. a 
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This concerns in particular Pisier's spaces Z in 2(d) and their 

duals, and also H* and A*, by Bourgain [2]. 

A and H^ do not satisfy GT. It suffices to check liM . In fact, 

otherwise 9 (A,»)= 9 .(&,•) would follow (Maurey [14]) and every 

operator £(A,t ) would be nuclear (Kisliakov[11], Bourgain [2]). But 

the Paley projections yield non-compact operators in t£(K,Z ). 
_1 Z 

Finally, let us consider the ideal GL := 9 • V . Let X be a B-

space. By Gordon-Lewis [4], I €GL holds whenever X** is complemented 

in a Banach lattice. From 9~^Y = [9^9 1A= V • ( ^ u a l ) " 1
 w e infer 

1 1 1 1 °° 1 
that I €GL and I € GL are equivalent properties. Compare also with 

X X * 
Pisier [20] and Reisner [24]. 
[8. Proposition: A B-space X satisfies GT and has I €GL iff Iv€~ °~1' I X X 2 1 

This is also quite easy. If X satisfies GT and has I €GL, then 

Ix= Î € ( T " 1 * ^ ) * (9~X° Fx) C r "
1 ^ ^ Conversely, --~ * x

€ r 2 ̂  ' t h e n 

Iv€9
>~1*ri since 9^T . whereas ' ^~l^9. follows from £(£.,£„) == 

X l l 1 2 X 2 1 1 2 

91V£1,<£2) . 

9. Remarks (i) Part of 8 can also be obtained from observing that 

I (GLni „ is equivalent with " ^9~ *T. Note that GL and Mn 4 are X 2,1 H X 2 1 2,1 

both injective, so that the property "identity in GLH M " is inhe­

rited by subspaces. In particular, every subspace of an £ -space 

enjoys this property; see also [20]. 

(ii) By considering the canonical map H > H ,Peiczynski [17] 

proved that neither A nor H (nor their duals) do have the above 

GL-property. Another proof (for A) is as follows: Suppose ~ .£GL. 
-1 -1 

Since A* satisfies GT, I €T *T 1, hence *A^9 ° 2) . In particular, 

every 1-summing operator A > ft must be nuclear, which again 

is not true for Paley projections. 

(iii) Let Z be an infinite-dimensional B-space such that both, Z 

and Z*, satisfy GT(see e.g. 2(d)). Then I^GL. In fact, if Z* satis­

fies GT, then I €T *9 (compare with [19]). Thus I €GL implies 

Z 1 2 Z 

^1 ( Z'^2 ) = r i ( Z ' ^ 2 } = Jfi{z^2
)' a S i n ( i i ) " I f n o w » i n addition,Z 

satisfies GT, then even £(Z,l ) - ^ ^ ' ^ f o l l o w s ' hence X^.%^, or 

dim Z<°°. 

We do not know if this is also true if we only require Z* to satis­

fy GT. 
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