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CHARACTERIZATION OF THE EXTREMAL RAYS OF THE CONES OF
POSITIVE ELEMENTS IN TENSOR ALGEBRAS

Gerald Hofmann

In this paper we give an explicit characterization of the
extremal rays of the cones of positive elements in tensor algebras.
This is an answer to a problem formulated in /3/, /1/.

In section 1 we give definitions and some basic properties of the
cones of positive elements in tensor algebras. The fact that the
cones of positive elements are generated by its extremal rays
follows. In section 2 the extremal rays of the cones of positive
elements are explicitly characterized. First we discuss the
special case of the algebra of polynomials in one real variable
and then the general case of tensor algebras. In section 3 we
illustrate the results by some examples.

1. Tensor algebras and their cones of positive elements

Let EC?] be a locally convex space with a continuous involution "*".

Then the tensor algebra E® over E is defined by
E®=C.QE©(E®E)@(E®E®E)@... )

C is the field of complex numbers, i.e. the elements of 5& are of

the type

f‘=(f—‘0,f‘ ..,FN,O,O,...)

1"

with £ eE®- E @ E®...0 E (i times), E¥°=C.
ﬁg becomes a *-algebra with unity by the following componentwise
defined algebraic operations:

(f+g)n =f +9.
(fg), = > f, ®g.,
n i+j=n i ]

(), = fMrgeDag . @ rDx ror
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for Fn=F(1) ... ®f(n) and their continuous extepsion to
E@", n=0,1,...,

Fioo9; €E%, i=20,1,2,...

The element 1=(1,0,0,...) is the unity.

In the f‘ollowmg the subindex n of F(i) denotes f(i)EE and the
index i of f‘( i) is a numeration 1ndex Grad(f) denotes the highest
index N with f,#0.

The cone of positive elements of E@

@ {ﬁl p(1)up (i), (l)éE MeN}

Eé induces a semlor‘derxng on the hermitean part E —{f‘eE ; f= f‘*}
of E,. This semiordering is given by a<b iff b-a éE® a, beE;.
h +
= ; < = -
@.b] = {x €Egi asx<bf=(a+EQN( E®)

is the order intervall between a and b, see e.g. /15/. Further

is defined by

{rk; keEg, A20f
is an extremal ray of E‘g if x 6[0,k] implies x= pk, 0<p €1
This is equivalent to the condit(:i;m tha% )k=k( )+k 2).
1 2 . . 1 2
k( ), ( )eEQ, implies k= pk""7= pok + By, >0.

Let us regard the projective tensor product topology T, on E<9n

oo
and the direct tensor product topology <%g of (oo g®n [‘C_'n]
n=0

on E@. Some properties of the topologies on tensor algebras are
investigated in /9/, /11/, /21/.

The physical motivation for the investigation of tensor algebras
comes from quantum field theory and is due to /2/, /18/.

First let us prove the following key lemma.

Lemma 1.1:
Let Fr(,])éE@n an % f‘(])*F D 0 for a fixed index n.

Then flgl):f‘r(‘z)=. (M)-o follows.

Proof:

@ with

Let fl’(ll );40 and Tn be a hermitean linear functional on E
Tn(fr(11 ));!0, 1'6{1,2,...,M}. Such functionals exist because of
the theorem of Hahn-Banach and the isomorphism & between the
hermitean linear‘ functionals W on E_ and the real linear functionals

(W) on E given by W(g)--z(ocw(g+g*)+1 «W(g-g*)). Then

T, ® Tn(j‘é1 e(Dxeli)y o j§1 [ eN0)2 7 (e 1))1250,
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M . R
But this is a contradiction to 2 F'(]])*Fr(|])=0.
j=1

The central properties of E’ are sumed up in the FolloWing theorem.
The notions are in the sense of /10/, /15/.

Theorem 1.2:
a) Eé is a proper and generating cone in Eg .

b) E has no order unity with respect to the semiordering

[~ 3=4

induced by Eé . Further E; does not have the Riesz

decomposition property. Thus Eh, £ is no vector lattice.
If ECT] 1is a nuclear LF-space, then

oo
=+ _ (i),.(i), (1) i -
c) Eo = {i§1 FRxpt 0 p T EEg, the sum is Ty convergent}

( = denotes the topological closure with respect to T

~ ®

in the completed tensor algebra E® ).
d) Eé is a proper and generating cone in EQ .
e) EQ, 'E; have no topological interior points.
f) Eé is not locally compact. .
g) The order intervalls with respect to Eé are compact sets,/1/.
h) There are locally convex topologies 4 on E@ with the

+ .
property that E® is = -normal and ‘»ZI\ on = ’Z’n.
E
Proof:

a) k, -k eEé implies k=0 by lemma 1.1.

Because of f= -‘17'((1+f‘)*(1+f‘)—(1-f)*(1-F)) for f=f* we have
EN=e* g}

o ® @

b) Let k6E® be an order unity with Grad(k)=2N. Further let
f€[0,k], Grad(f)=2M. But M>N implies -fZMeEé which is a
contradiction to a). Thus M&N and k is no order unity.

Now let X=29, ® 9, y=292 @ 9, with 9,=9% €E, gz=g*2*eEQ2. Then
h+(0,gl,gz,0,....)(0,91,92,0,...)=x+y for
h=(0,9,,-9,,0,...)(0,9;,-9,,0,...). Thus h efo,x+y]. f eco,x] and
g €[o,y] imply £=(0,0,f,,0,...) and g=(0,0,0,0,g,,0,...).

Thus h f[o,x] + [0,y] and the Riesz decomposition property is not
valid.

c) The proof for E= ¥ (Schwartz space) is contained in /4/, /7/.
Afterwards other proofs were given in /1/, /16/.

d) is a consequence of a) and c).

e) In every Tg-neighbourhood we find elements géE® with the proper-

ty that Grad(g) is an odd number. But a consequence of keEé is
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that Grad(k) is even. Thus every Tg-neighbourhood has elements
not contained in Eé, /20/. Because of c) the proof is valid for q;,
too.

f) is a consequence of e).

g) Because of h) and /15,V.3.1/ the order intervalls are bounded.
The statement follows by the nuclearity of Qsttaland /14, 4.4.7,
5.2.2/.

h) was proved in /8/, /9/, /11/, /21/.

Remarks 1.3: -

a) Because of theorem 1.2.f) the theorem of Klee (/10/) on the
representation of a cone by its extremal rays is not applicable to
the cone of positive elements in tensor algebras.

b) qéfTb] is complete by /15, II1.6.2/ and dualnuclear by /14,4.3.2/.
Thus Eé is the closed convex hull of its extremal rays by a

theorem of E.G.F.Thomas (/7/), cf. /1/, /22/.

c) Because of theorem 1.2.c) every extremal ray of ﬁ; is an
+

and vice versa.
®

extremal ray of E

2. The extremal rays of the cones of positive elements

a) The algebra of polynomials Ce

Let us start with the simplest case of a tensor algebra. This is
the tensor algebra over the field of complex numbers C. c® is
isomorphic to the algebra of polynomials in one real variable t
and with complex coefficients. The following isomorphism holds:

A 2 N,
(ag3 P=(P0:P1,-‘-,pNIO,-..)<———a[)(t)=po+p1t+p2t +oooepyt

p*e—p(t),

(f(t) means the complex conjugated value).

Theorem 2.1:
a) pec’! iff P(t)»20 for all teR.

D
ct==Cr .
®) Cp = o
c) The element p=c*c, c €C_, 1is an extremal ray iff ¢C(t)

®
has only real roots.

Proof:
a),b) were proved in /12/.
c) We assume that C(t) has the decomposition
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c(t) =_’r:r (t-(a;+ib.)) ﬁ- (t-a.), a., b. €R,
j=1 i ] it

j=r+1
i is the imaginary unity. Then

cxc a—s T ((c-a.)Zm?) T (t—aj)2=

j=1 J j=r+1
n r n r n
2 2 2 2, 2 2
= t- b t-a. b_b t-a. N
jT=T1( aj) +s§1 s j-E ( a]) +S’%=1 SO ( a]) o4
s#j s&t ii; (1)
]
+ b2 b2
1+++bn -

If S(t) has complex roots, i.e. r2, then

c¥*c = x(l)*x(1)+x(2)*x(2)+...+x(m)*x(m), m32, x(l),...,x("')ec®

Thus c*c is no extremal ray. n
N\ .
Now let €(t) have only real roots,i.e. c*c(t):'}T(t—aj)z,
N

a. €R, and we assume that c¥*c is no extremal ray. That means that

) .
ve = x(May (1) (2, (2) ()

c c;épjx. , pj>0, j=1,2.

On the other side x(j)*x(j)?t)=ﬁ'(t—ar)2 7Dy, P30,
r=1

for all teR, j=1,2, and P (£)+p@ (t)=1 nas to be fulfilled.
This is a contradiction to our assumption.

Remarks 2.2:

a) Because the elements on the right hand side of equation (1) are
extremal rays equation (1) gives a decomposition of an arbitrary
kecé into extremal ones. This decomposition contains only finite
many terms. Thus this is a sharper statement than that which followed
by the theorem of E.G.F.Thomas, cf. remark 1.3.b).

b) Let f‘=(f‘o,f‘1,.. f,,0,...) €E_ . f is called to be generated

A NI ®
by one element f‘i if
o
aj f‘iog @f‘io for ]=mi0
f. =
) 0 otherwise

Ajéc, jom=1,2,....
Let us regard the *-homomorphism ,3 from E@ into c® given by
BF) = (FciiCpiueeiCpyi0 unss)
with 2j if f‘j= Ajf‘lom e ® Fio
0

cj=
otherwise
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If ECT] is a nuclear LF-space then ﬁ(E;)Cc; and ,’:?(Eé)cc& .
c) A consequence of theorem 2.1 is the following assertion:

Let f be generated by one element fi . Then f*f is an extremal
N\ (o)
ray of Eé iff [3(f) has only real roots.

d) psq iff p(t) £d(t) for all t €R. Thus the order intervall
[0o,p] is given by

fqecgy 02§(t)<P(t) for all te Rf.
Consequently q € [0,p] implies Grad(q) 4Grad(p). The following two

examples illustrate the theorem 2.1:

: ~ 4 2 A~ ~ . A 4 2

i) Let P(t)=t"-2t%+1. Then P (t) € (0.p] iff P (t)=c(t™-2t%+1),
0<c £1, see figure 1.

ii) Let q(t)=t+1, al(t)=t2, G,m1, Ty(0)=gt?Jte3. Tt is

q; € [O,q], i=1,2,3, and q,+9,=9. see figure 2. Further qg=c*c
with ¢=(i,1,0,...).

fa)
1§
A
I
s A
e —) — ;4_—71\-
L
t
Figure 1 Figure 2

b) Arbitrary tensor algebras

In this section we prove an explicit characterization of the
extremal rays of the cones of positive elements in tensor algebras
over arbitrary vector spaces. Let us start with the following lemma.

Lemma 2.3: ( M D (1)
i) _ i i _
Let £, g, e E®  and Fx @ fn-i; g, *® 95", n=1,2,.
Then gr(]‘)= ,\r(ll) Foo Ar(l‘)ec, i=1,2,...,M, holds.
Proof:

Let Fn= {cf‘n; c eC}cE&‘, n=1,2,... . Let us regard a direct

decomposition E@"=Fn o Gn and the corrosponding projectors P, Q.
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(1)

I’l

(1) (i)

@ Qg
ﬁl o{Vr e g§i>=<}f1<pg,§i>>* ®re{!)) o (ﬁl(pgf‘“)* ® og' )
1= = e

-Pg and thus

s M :
v (g @ rg{t)) @ (izl(og,ﬁ")* @ ag{!)).

% g(i)* ® g(i)eF;®Fn holds by the assumption. Hence

i=1
% (ag{P)* ® ag{-o.
This implies Qggi)=0, i=1,2,...,N, by lemma 1.1.

A consequence of lemma 2.3 is the following corollary.

Corollary 2.4:
The elements F;: 2] Fn’ h=1,2,... are extremal rays of Eé .
Lemma 2.5:

Let f=(F

o f Ny (i>=(g(()i) (1) (i) 4

Fore N O 9y e .,gNi o, ")65&

and f*f= Z g(‘)*g(‘). Then ggi)= Agi)f‘(]), ?\g‘)ec,
i=1 \
j=0,1,...,N, i=1,2,... M.

Proof:
Grad(g(l))=Ni 4N follows by lemma 1.1 and g(i) A(i)

i=1,2,...,M, follows by lemma 2.3. Now let g(l) 3(1) f, for
ker+1,r42,... N, r €N. We put F, {cf ; cec} j= 1 2, . Let
(i )¢l= for an i'€{1,2, ,M}. On E we define a linear

hermxtean functional Tr with T (F )=0,

l4k=2r

1<k
and T (Qgr(.i ))ﬁo with a decomposition €®P=Fr ® G and the
corrosponding projectors P, Q. Then

M

(i) (i)
T.®T( f* ®f - 2 g *® ) =
reor e 1T K igl lek=2r 1 %

. (1) (1) A1) (1) ]
T.®T( > (fl‘g’(fk‘gﬁl k) (FE-2 A1 7970 ® £,)=0

M . .
T @102 (g @ (agt) £ T @ T (agt! v @ (agt! ")) =

-|Tr(ogr(,i'))| 220 .
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But this is a contradiction to our assumption and thus g(i) k(l)f
i=1,2, /M. The assertion of the lemma follows by finite many steps.
In the following let fs(f‘o,f‘l,.. Fy:0 ,...) €EE., Grad(f)=N,

~'=max(r-N,0),

M :{(r',r-r") riel,r-r'-1),...,([r/2] ,r‘—fr/z])},

L —{(u V) EM_; Re(fX @ f )=0} ,
where [r'/2] denotes the greatest integer which is less or equal to
r/2 and Re(f:; ® f‘v)-f(f‘a’ ® ’_?v + fr® f‘u). Further let

i ) el .

{(u,gemr gu,v Re(Fl";' X f‘v)-O, su,v €R, 1=1,2,...,lr}
be a maximal system of linear independent nontrivial relations
between the elements Re(Fﬁ ® Fv), (u,v) EM_, 5’1 ER.

u,v
We put T=1_+1.+...41 Now let us regard the (N+1,N+1)-matrix

2 73 2N-2°
s(tl,...,tl) with the elements
1
1 1 +
1 t +...+© POy ) for p<gq
2 9p q lp+q—1+1 S)P:‘i 1p+q-1+lp+q
°p.a Y %a.p for q<p
1 2p
t gt t for p=q
9p,p 12p-1 S’p 12p-1“2p

p.q=0,1,...,N, depending of the real parameters tl,tz,:..,t»i.
Further let A be a (N+1,N+1)-matrix with the elements
1 if (p.q) EMNL,

p.q .
0 if (p,q)eLr , p,q=0,1,....,N.

Then N

F*f = ...t Re(f* ® f 2
=0(ap’q+splq( 1 1)) Re( p® q) (2)

holds for itr‘ary tiGR, i=1,2,...,T.

Theorem 2.6:
{ﬁf‘*f; 0} is no extremal ray iff there are t €R,
i=1, 2,...,?, such that the matrix A+s(t ceeity ) is positive
semidefinit and rk(A+S(t ceenty %)) 2
(rk(.) denotes the rank of‘ a matrix .).

Proof:
a) Let s°-s(tg,...,tf) and U be a real symmetric matrix which
diagonalizes the matrix A+s°, i.e.
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/H° ')
U=(A+s°)u= fa
0 .

/N
with p_, ... py 20, pi s g >0, 0yl efo,1,...,Nf,

S

s=rk (A+s°) 22. we put
c(i)=(c(i),...,c(i))=(0,...,0,pi,0,...,O) U .

Then we get N
=5 ¢ (1) (D
°p.q" pqi=1 ‘q .
and the decomposition F*f=g( )* @, ..+g(N)*g(N) with g( 1)¥0,

.,.,g(ls)#o, s>2, for g(i)-(c(l) ii)fl,...,cﬁi)fN,O,...)

by equation (2).

b) Lemma 2.5 implies that every decomposition of f*f is of the type
(2) because otherwise there would be some new independent relations
between the elements Re(F*'Qp F ). Thus f*f can not be decomposed

if there do not exist parameters t €R, i=1,2, ...,i, with

A+s? is positive semidefinit and rk(A+s ) 2

Remark 2.7:

We constructed a decomposition of f*f in part a) of the proof.
But the items of these decompositions are no extremal ones in
general. We investigate this problem in a subsequent paper.

3. Examples
We demonstrate the main theorem by some examples.
a)

Let f‘=(1,f‘1,0,...)€E®

and S(t)=0. f*f is decomposable because A is positive definit

and rk(A)=2. This decomposition is given by F*F=g(1) (1) (2) ( )
with ¢P=(1,0,...), g(2)=(0,f1,0,...).

b)

Now let f=(1,f,,f,,0,...) with f} ® f =4Re(f,)#0, Re(f,)40,

Re(Ff ® F2)¥O, fE ® F2¥0. Then

1 0
with £ #0 and Re(f )=0. Thus A= (O 1)

1 1 1-2t
A+S(t)= 1 1+t 1
1-2t 1 1

A+S(t) 1is positive semidefinit iff t2>0. rk(A+S(t))=3 for t >0
and rk(A+S(0))=rk(A)=1.
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Let us construct the decomposition for t=1/2. The eigen values of
A+s(1/2) are p;=1, p2=%(5-7§3), p3=%(5+V§§) and the normed eigen

vectors are c(1)=(1/V§20,—1/V?), c(2)=2v5'Vss-?s?"l(l,l(l-iiﬁ),l),
3)=21/" V33+7§3'-1(1,%(1+V§§),1). Hence the decomposition

Fxf= EE g(l)*g( with g(1)=(1/¥§20,(-1/1?)f2,o,o,...),

i=1
o@2Ervr-la, L TV 0,000
¢ =2vzv337 T (1,(1+f‘3f 0,....)
'holds.
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