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KIKTH WINTER SCHOOL OK ABSTRACT ANALYSIS (1981) 

Separation of orthogonal sets of measures 

* Michel Talagrand (Results of G.Mokobodzlri.) 

Let K be a compact space. Let X be the set of positi­

ve measures on X of mass < 1 . A subset of X is said to be 

measure-convex if for each compact set L c A and each Radon 

measure M, on L we have ft&A (*) c A . 

A function <f i [0fl]
 W —* B is called a medial limit 

if it is strongly affine (i.e. universally measurable, and 

i f ( f J - d / t C x ) ) « f * f t i ) d>u(i) "". for each Radon measure AL on 

[0,1 ] W ) and if for each x « (oc,̂ ) € [0 flj^ f • 

lim inf x Q $ *{(*>) '£ lim sup x n .Mokobodzki* proved that 

continuum hypothesis implies the existence of a medial limit 

[l]. (It is known now that Martin s axiom is enough to imply 

the result). 

Theorem (Mokobodzki) . Assume there exists a medial limit. Then 

given two K-analytic measure convex sets AfB c X which are 

orthogonal (i.e. /fceA f i> € B -=> /wli/) there exists a 

universally measurable set VcK with jUC A =*^(V) » 1 f 

fie B =-> /i(V) - 0 . 

Note that, as the result of D .Preiss shows, it is impossi­

ble in general to take V Borel. 

Proof. We first think to X as a convex sompact set of its own, 

forgetting about its special structure. For any set A C X f 

±£ X f let 
1AW= sup {ytt*U)f £</* } 



ipf 

where £*, is the Dirac measure in J6 f jue M (I) f and < is 

the Choquet order, i.e. S^ -<A <=-> fix ) -£ A (f) for each con­

vex continuous f . It is classical that if A is compact 

1A (j6) « Inf £f(X) | f affine continuous, 1A-£ f} (1) 

Hence for each decreasing sequance (An) of compact sets, 
Л 

1 (X, ) - inf 1 (* ) . 
n A
n *

 A
n 

Now f o r A f B c X f l e t 

€'(AfB) « Sup 1 ( * ) + 1 ( * ) - 1 
n A B 

If (An), (B ) are two decreasing sequences of compact 

sets, ̂ (HA^, HBn) . inf tf^W • 

Por AfBcX f let 

£(AfB) « Inf [t i 3 f strongly affine on X with 

1* f 1-1 B**} . 

let ^i B
n *>© two increasing sequances of sets in X . 

Por each n let € n* 2"n + CCA^.S^) such that 

1A ̂  f < 1 - 1B + € n , where fn is strongly affine. 

Let f(*)'- *f( (fn(*)) where f is a medial limit (note 

that fn(*)C C0fl3 , yn ,f* ). Then f is strongly affi-

ne, and 1̂ * f ̂  1 - 1£ + E , where £ « limsup f n • This 

proves that ^(Ul^UB^ « sup ̂ Un,Bn) . 

ôw, suppose AfB compact. If lA-£ f < 1 - lg + £ where 
A A 

f is strongly affine, from (1) we get lA-£ f < 1 - 1B +1 
A A A .A 

so 1A + I3 - 1 <
 g • ---oreover, if 1A + 1B - 1 < £ , then 

A A *A A 

1. ss 1 - ljj • £ , and since 1A is concave u.s.c, 1 - lfi+£ 

concave ''•s.c., the Kahn-Banach theorem shows that there 



m 
exists an affine continuous f with f l^g f < 1 - I3 + £ • 

We have shown that <£(A,B) »^'(AfB)# 

We have shown that *£(A,B) is a capacity. Let AfB c I 

as in the statement* The capacitability theorem shows that 

*eUfB) . Sup{^(AlfB1) f A-jCA, BjC Bf A ^ ^ compact}-

Since AfB are measure convex, we can assume A-.fB1 convex. 

Let &e X . It is easy to see.that J& » ay + (l-a)y = by'+ 

+ (l-b)y' where a « 1 J (£ ) , b - Ig (*) , y^A^ y £ B1# 

Now by hypothesis there exists a Borel set VcK with 

y(V) « 1 f y'(V) « 0. Hence w e get i-b 2 JC(V) & a and so 

a + b -1 * 0 f that is tfU.B) » «(AlfB]L) = 0 . HenCe 

£U,B) « 0. Using again medial limits, we get a strongly affi­

ne f on X with 1A £ f £ 1 - 1B • Let g on K given by 

g(t) « f( ̂ t) for teK # Since f is strongly affine, for 

each measure /A on K f f(^) * fg(t) d^-(t). It is clear 

now the universally measurable set V = {t € K; g(t) « lj* works. 

[l] P.A.Meyer, Limites mediales, d'apres Mokobodski 

Seminaire de Probabilites de Strasbourg,1971/72,Springer, 
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