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4ÒB 

NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

On flatness and some ergodic super-properties of Banach spaces 

A.J. Pach 

Let X be a Banach space. The following implications are well-known: 

X super-reflexive 

X reflexive 

X has RNP X ergodic 

X not flat X R-ergodic X Q-ergodic X has FPP 

Recall that X is called super-P iff, for each Banach space Y , Y «< X 

implies that Y is P , vhere Y -< X means that for each finite-dimensional 

subspace F of Y and for each e > 0 there is a sub space F' of X 

vith d(F,F») < 1 + e. 

The following results vere known already: 

(1) X is super-reflexive iff X is super-non-flat. [3] 

(2) X is super-reflexive iff X is super-R-ergodic. [13 

(3) X is super-reflexive iff X is super-Q-ergodic. [2] 

Nov ve unify these results: 

Theorem 1 [5]. A Banach space X is not super-reflexive iff there 

is a Banach space Y vith Y -< X , Y completely flat, Y not R-ergodic, 

Y not Q-ergodic , and Y fails to have the FPP. 

Let us first define some of the used concepts. 

Definition 2. A Banach space X is ergodic (for isometries) iff for every 

(\ n i-1 V 
isometry T : X •*• X and for every x c X , the sequence I - I T x j , 

N i«-i / 
converges. 



* r t 

Definition 3. A real infinite matrix (p. .) is an R-matrix iff 

^ 3 i,j-i 

(4) I p. . -h* 0 if i -• » and 
j«l

 X
»

J 

(5) lim p. . • 0 for each j c IS 

Condition (4) means that Z p. . exists for each iel.. and the sequence 

J-
1
 ° 

diverges or converges to a limit ̂  0. (ь n ) 
чj-l L,J/І-1 
Definition 4, A Banach space X is R-ergodic (for isometries) iff for 

each i some try T : X -*• X and for each x e X , there is an 

R-matrix <P
if
j>7

f
j.i

 s u c h t h a t
 ( } °i,j T J

~
 X

) T converges veakly. 

To avoid too much technicalities ve skip the definition of Q-ergodicity 

(see [2] , [5]). 

Definition 5. A Banach space X has the.FPP (fixed point property) (for 

isometries) iff for each isometry T : X •+ X and for each closed bounded 

convex K c X vith TK c K , there is an x e K vith Tx • x. 

Definition 6. A Banach space X is flat if there is a function 

g : [0,1] + {x £ X : || x|| - 1} (called girth curve) vith g(0) - -g(l) 

and g is Lipschitz continuous vith constant 2. 

If X - span (g(t) : 0 ^ t . l ) then X is called completely flat. 

Example 7, L [0,1] is completely flat. The function 

3 ! t H " x [ o t ) + X [ t l ] i s a g i r t h curve' 

The importance of this example is demonstrated by the folloving 

Theorem 8 [4]. A Banach space X is completely flat iff X is (iso­

metric to) the completion of L [0,1] for a norm || . || vith for all 

f £ L![0,1] 

(6) I| fII , * | | f | | -t sup {|< j * ( t ) , f > | : 0 £ t S 1} , 

L [ 0 , 1 ] X 

(where j*(t) - - X-- . + Xr . -, c L " [0,1 ]) , and then the function j 

(as in Example 7) is a spanning girth curve. 



uo 

Nov we'll give an idea of the proof of Theorem 1. 

First note that L [0,1] has almost all the properties that Y in 

Theorem 1 should have. Indeed, L [0,1] is completely flat, and the iso-

metry T : L'[0,1] + L^O.l] defined by 

<7) T f (t) - { 2f <2t> « 0 s t * } 
1 0 if 5 < t <. 1 

can be used to show that L [0,1] is not R-ergodic, not Q-ergodic, and 

fails to have the FTP. 

E.g., if L [0,1] vould be R-ergodic, there vas an R-matrix (p. .) 

and an fft € L
J[0,1] vith v-lim I p. . T3"1 X r n n ° fn • ' 1,5"! 

u i.^» j«i X»J m - u f u u 

Then < j*(0), fft > - lim < j*(0), I p. . T^"1 X m n > " l i m * P* « • 
0 i-H» j«i x»3 L 0» 1 J i — j-1 X»J 

But also < j*(0), f0 > " lim < j*(2~n), fQ > , and for fixed n a simple 

calculation, using (5), shows that < j*(2 n ) , fft > • - lim £ p. . , a contra-
u i-x» i-i X»J 

diction by (A). J 

Also, if fft € K - co [2
n-Xj-0 2-n-, : n - 0,1,2,...} c L [0,1] is 

arbitrary, then for.any e > 0 there is a convex combination f of 

2nx (n - 0,1,2,...) vith || fn - f || < c , and a 6 > 0 vith 
[0,2~n] ° 

< j*(5)» f > > 1 - e. But for 2"™ < 6 ve have < j*(6), T m f > - - 1, 

so || fQ - T
111 fft|| > 1 - 3c , and therefore fQ i- TfQ . 

So L [0,1] doesn't have the FPP. 

Nov let Y be an arbitrary completely flat space, and identify Y vith 

a completion of L [0,1] according to Theorem 8. If T as defined by (7) 

can be extended to an i some try on Y, exactly the same reasoning as for 

I. [0,1] gives that Y is not R-ergodic, not Q-ergodic, and fails to have 

the FPP. 

So for the proof of Theorem 1, if X is not super-reflexive, ve vant 

to find a T as above, vith Y -< X. Note that, by (1), ve may assume that 

X is completely flat. (If Y -< Z. c Z •< X , vith Z. completely flat, then 

MX.) 
To construct Y , ve'll make a nev norm || . ||ft on the subspace Y Q of 

L^O,!] defined by Y -- span U L1[2"n, 2~n+1] (We consider L1[2"n, 2~n+1] 
0 n-1 
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as the subspace of L [0,1] consisting of the functions with value 0 

a.e. outside of [2~n
f 2~

n + J.) f and then take for Y the completion of 

<*0 . I M I Q ) . 

Take y € Yn . Then there are nn € K and y c L [2~n, 2~n* ] 
o tiQ 0 n 

(n - lf...fnA) with y - I y • If S - {stf...,s } is a subset of 
o n-*l n * n

0 

W with s, < s2 < ... < s n Q . define y^ -JJ T ^ yn , with T c > n the 

natural isometry from L ^ . n * ! ] onto L I K " ^ " ' - * * 1 ] . Now the foil, 

holds: 
rThere is a subsequence JHn of TS such that for all 

n0 ° 
y • I y c Yfl there is a number || y|L e B such that for all 

(8) f n"l I I 

E > 0 there is an n(e) c K with 11| y|L - || ysllx | < e when­

ever S - {s. s_ } c w and n(e) < s. < ... < s_ . 
1 nQ 1 no 

(For the proof of (8), for a fixed y c!fl apply Ramsey's theorem countably 

many times and use a diagonal procedure, and then repeat this for all y 

in a countable L [0-lJ-dense subset of Y n , and again diagonalize.) 
With y and S as above, it is easy to see, using (6), that 

II ysl'x * II y IIT ' ro ii and tnat *or anv t tnere *s a tc w*tn 

|< j*(0, y >| - |< j*<ts)t ys > N II ysll x .
 so 

(9) 'I ^'II1 co.13 *Hyllo ^ S"P<I< J*<t),y >| : o ̂  t ̂  1} ( y ^ V 
Now it is not hard to see that || . |L is a norm on Y Q , that the 

completion Y of (YQ f || . |L) is completely flat by Theorem 8, and that 

T as defined by (7) can be extended to an isometry on Y. 

To complete the proof of Theorem 1, we have to show that 

(10) Y -< X-

So let F be a finite-dimensional subspace of Y , and take e > 0. 

Then there is a subspace FQ of YQ with d(F,FQ) < 1 + e. Take a finite 

e-net for || .||L1 rQ n in {y € FQ : || y||0 « 1}. Then there is an n(c) 

satisfying (8) for all y in this e-net , and we can take 

S c K \{l,...,n(e)} such that with F. - {y : y £ FQ} c X we get 

1 + 2E 
d(ғ

0
 , F,) < 

2є 
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Remark 9. If we replace the requirement 'Y completely flat' in Theorem I 

by 'Y flat' , then we can add 'Y doesn't have the Krein-Milman Property'. 

Indeed, take Y** instead of Y. Then Y** is flat (but not completely 

flat), so it doesn't have the Radon-Nikodym Property, and as a dual space 

it doesn't have the KMP. 

Question 10. If X is flat , does there exist a Y with Y -< X , Y com­

pletely flat, Y doesn't have the KMP? 

Or, does flatness already exclude the KMP? 

Question 11. Does flatness already exclude R-ergodicity and/or Q-ergodicity 

and/or the FPP , in other words, does Theorem 1 say anything more than re­

sult (1)? 
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