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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

On flatness and some ergodic super-properties of Banach spaces

A.J. Pach

Let X be a Banach space. The following implications are well-~known:
X super-reflexive
X reflexive

X has RNP X ergodic

X not flat X R-ergodic X Q-ergodic X has FPP

Recall that X 1is called super-P iff, for each Banach space Y , Y4 X
implies that Y is P , where Y { X means that for each finite-dimensional
subspace F of Y and for each € > 0 there is a subspace F' of X

with d(F,F') <1 + €.

The following results were known already:

(1) X is super-reflexive iff X is super-non-flat, [3]
(2) X is super-reflexive iff X is super-R-ergodic. [1]

(3) X is super-reflexive iff X is super-Q-ergodic. [2]

Now we unify these results:

Theorem 1 [5]. A Banach space X is not super-reflexive iff there

is a Banach space Y with Y{ X, Y completely flat, Y not R-ergodic,
Y not Q-ergodic , and Y fails to have the FPP.

Let us first define some of the used concepts.

Definition 2, A Banach space X is ergodic (for isometries) iff for every
i @

isometry T : X+ X and for every x e X , the sequence 1 z Tl-lx =1
i=1
converges. !



139

Definition 3. A real infinite matrix (pi j). is an R-matrix iff
Jelimition 2. Wile . RTmatrix
i,j=1

W T p,, -0 if i+« and

jm] 103

J
(5) limp, . =0 for each j e N

oo 1]
Condition (4) means that b Py j exists for each i € N, and the ;equence

- j=1 103 .

( b4 pi,j) diverges or converges to a limit # 0,

j=1 il B -
Definition 4. A Banach space X is R-ergodic (for isometries) iff for
each isometry T : X+ X and for each x € X , there is an

© [ ® j—] ©
such that Ip, . T 'x

R-matrix (p. .)
1 j=1 123 i=1

,ii,5=1 converges weakly.

To avoid too much technicalities we skip the definition of Q-ergodicity

(see [2]1, [5)).

Definition 5. A Banach space X has the FPP (fixed point property) (for
isometries) iff for each isometry T : X + X and for each closed bounded

convex Kc X with TK ¢ K, there is an x € K with Tx = x,

Definition 6. A Banach space X is flat if there is a function
g : 00,11+ {xeX: | x| =1} (called girth curve) with g(0) = -g(1)
and g is Lipschitz continuous with constant 2.

If X = span {g(t) : 0 <t <1} then X is called completely flat.

) .
Example 7. L'[0,1] is completely flat. The function
j:te -X[O,t) *x[t,l] is a girth curve.

The importance of this example is demonstrated by the following

Theorem 8 [4]. A Banach space X is completely flat iff X is (iso-
metric to) the completion of L‘[O,I] for a norm | .||

with for all
fe Ll(O,l]

X

© =l 2 || £]l 2 sup {|< ix(t), £>]: 05t s 1),
L[0,1] X

(where j*(t) = - x[O,t) + x[t.l] e L “[0,1]) , and then the function j

(as in Example 7) is a spanning girth curve.
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Now we'll give an idea of the proof of Theorem 1.

First note that Ll[O,l] has almost all the properties that Y in
Theorem ] should have., Indeed, Ll[O,ll is completely flat, and the iso-
metry T : 1'00,13+ 100,11 defined by

D T£(@) = {2f(2t) 055}
0 1f§<ts]

can be used to show that Ll[O,I] is not R-ergodic, not Q-ergodic, and
fails to have the FPP.

E.g., if L [0 1] would be R-ergodic, there was an R-matrix (p. )

- ’J j=
and an fo € l. [0,1] with w-lim I P; s TJ ! X[0,11 = . i,j=1
ise j=1 Bl o1
Then < j*(0), f, > = lim < j*(0), b Py s 1) Xt0,11> = lim % ;s

ive i=1 1 i+ j=1 1]

But also < j*(0), fo > = lim < J#(Z ), f > , and for fixed n a simple

calculation, using (5), shows that < J*(Z ), f >m=-1lim ¥ P N a contra-
diction by (4). ire j=1

. -_— 1 N
Also, if £ eK=To {2“3([0’2-“] :n=0,1,2,...} cL[0,1] is
arbitrary, then for .any € > 0 there is a convex combination f of

2%  _ (n=0,1,2,...) with || fo-fll<e,anda §>0 with
0,27

< j*(8), £> > 1-¢c. But for 2™ <& we have < j*(8), T® £ > = = 1,
so || fg - ™ f°|| > 1 - 3¢ , and therefore fo L Tfo
So Ll[O,I] doesn't have the FPP,

Now let Y be an arbitrary completely flat space, and identify Y with
a completion of LI[O,I] according to Theorem 8. If T as defined by (7)
can be extended to an isometry on Y, exactly the same reasoning as for
1.,[0,1] gives that Y is not R-ergodic, not Q-ergodic, and fails to have
the FPP.

So for the proof of Theorem 1, if X is not super-reflexive, we want
to find a Y as above, with Y £ X. Note. that, by (1), we may assume that
X is completely flat. (If Y < Zl cZ <X, with Zl completely flat, then
Y £ X.)

To construct Y , we'll make a new norm || . || on the subspace Y, of

L'00,1] defined by Y, = span U L'z®, 2 n+l] (We consider L'[27D, 27°*4
n=1



as the subspace of L’[O,l] consisting of the functions with value 0
a.e. outside of [Z-n, Z-n”].) , and then take for Y the completion of
S/ PO R

Take y € Y, . Then the'r‘(e’ are ny ¢ K and g € L'[z"‘. 2
(n= l....,no) with y -nEI Yoo U S= (sl,...,sn } is a subset of

-nﬂ]

n=] “S,n

n
. . 0 .
N with 5, < s, € 460 € sno , define ’s =3I T I, ‘,1:}; Ts,n the
L1[2750,2750%" ], Now the follw

natural isometry from tlf2™m,2-0+13 onto

holds:
Therg is a subsequence No of N such that for all

y =0 Yy € Yo there is a number I y|lo € R such that for all

(8) n=1
€ >0 there is an n(e) € N with I” y”o -1l ys”xl < € when-

ever S = {8,,...,8. } € N and n(e) < s, < «oo <5_ .
1° 'no () 1 ngy

(For the proof of (8), for a fixed y € Yo apply Ramsey's theorem countably

many times and use a diagonal procedure, and then repeat this for all y

in a countable L1[0,I]-dense subset of Yo , and again diagonalize.)

With y and S as above, it is easy to see, using (6), that
I ysl!x s |l y"Ll ro,11 and that for any t there is a to with

l< i*x(t), y >l - |< j*(t.s): Yg >|S " yS” X so

) ||y"Ll [0,13 2 || y"o 2 sup{|< j*(t),y >] : 0t s 1} (y € Yo).

" Now it is not hard to see that || ."0 is a norm on Y, , that the
completion Y of (Yo . ."o) is completely flat by Theorem 8, and that
T as defined by (7) can be extended to an isometry on Y.

To complete the proof of Theorem 1, we have to show that

(10) Y < X.

So let F be a finite-dimensional subspace of Y , and take € > 0.

Then there is a subspace Fo of Yo with d(F,Fo) <1 + ¢. Take a finite

e-net for || '”Ll fo,11 i® {y € Fy ¢ ] y"o = 1}. Then there is an n(e)
satisfying (8) for all y in this e-net , and we can take
S5c N, \{l,...,n(e)} such that with F, = {ys tye Fol c X we get

1 + 2¢

a(F. , F,) < 2 |
0* "1 1 - 2
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Remark 9. If we replace the requirement 'Y completely flat' in Theorem 1
by 'Y flat' , then we can add 'Y doesn't have the Krein-Milman Property’'.
Indeed, take Y** - instead of Y. Then Y** is flat (but not completely
flat), so it doesn't have the Radon-Nikodym Property, and as a dual space
it doesn't have the KMP. ’

Question 10. If X is flat , does there exist a Y with Y<X, Y com
pletely flat, Y doesn't have the KMP?
Or, does flatness already exclude the KMP?

Question 11. Does flatness already exclude R-ergodicity and/or Q-ergodicity
and/or the FPP , in other words, does Theorem 1| say anything more than re-

sult (1)?
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