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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1s81)

TRANSVERSE G-STRUCTURES ON
FOLIATED NANIFOLDS

Pierre MHolino

let ¥ bea éompact connected n-dimensional manifold endowed
with a q-codimension foliation &. All the structures are assumed to be

c.

1. Transverse fields ; transverse G-structures

We denote by P the subbundle of TM tangent to the leaves
of the foliation. Q = TK/P is the transverse bundle of (M,3).

If X is a foliated vector field, it defines a section X of

Q. X is the trensverse field associated to X. The set £(M,3) of trens-

verse fields has a natural Lie algebra structure.
We denote by ET(H,pt,GL(q.R)) the principal bundle of frames

of Q. ET is the bundle of transverse frames of (M, 3). It is endoved

with a natural structure form OT, which is a Rq-valued tensorial form.

Using eT’ we define on ET a lifted foliation 3![' in the following way @
xze TzET is tangent to the leaf of 31‘ at z iff :lxz BTz = ixszTz= 0.
We denote by P, tangent to the leaves of the

T the subbundle of TE

lifted foliation.

T

if eT(M,pT.G) is a G-subbundle of E, such that

PTz c Tz(eT) Yz € en

e, is a transverse [or fcliated] G-structure on (¥,3) [1] [3] [4].

T

2. Transverse parallelisms ; Lie foliations.

If G = {e), & transverse G-structure on (¥,#) is a transver-
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se varslleliesm [1] [5]. Such & structure is determined by q transverse
fields [il'""iq] which are linearly.independant at each point. In
this case, we say that (M.a) is a parellelisatle fcliation.
1f, moreover, {i‘.....iq} is a basis of a Qq-dimensionel Lie
subalgebra § of I(H,3), one says that (H,3) has a structure of Lie
g-folietion. lie foliations have been studied by Fedida in [2]. In [7],
we obtained
Theorem 1. If (M,¥) 4is a parallelisable foliation, then the
closures of the leaves are the fibers of a fibration n : M =W,
Moreover, there exists a lie algebra 8 such that & induces
on each fiber of m a Lie @-foliation.
First part of this result may be also obtained from a theorem of Sussmann
[sl.
If 111(!4) = 0, the structural Lie algebra § is abelian. Using
a well-known result of Tischler, the fiber of w admits, in this case,

a fibration on 11’ » vhere r =q - dim W. From these remarks, we deduce

Theorem 2. If M 1is a simply connected compact manifold, M

admits no 4-codimension parallelisable foliation.

3. Riemannian foliations

If G = 0(a), a transverse G-structure on (¥,3) is a
transverse riemannian structure. We say that (¥,3), endowed with such
& structure ep is a riemannian foliation. Riemannian foliations were
introduced by B. Keinhart [7].

It is possible, in this case, to introduce a transverse levi-

Civita connection @p on eT. Moreover, @ + eT defines a transverse
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parallelism on (eT.sT). This fact allows us to use results of the pre-
vious section ir orier to stuly riemsnnisn fcliastions. Several results

are ottained in this way ; for gxz-;mplg ,

Fa P

Theoren 3. If (¥,3) is a riemannian foliation, and n,(x) =0,
then there exists an algebra of transverse fields in the center

of £(X¥,3) whose transverse orbits define the closures of the

leaves.

Using the same methods, riemannian foliations are classified

in [6] in codimension < 3.
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