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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

THE CAUCHY-RIEMANN EQUATIONS IN ANTICOMMUTING VARIABLES

J. Hruby

Starting from the deep relation between the system
of numbers / complex,quaternions,octonions / and exten-
ded supersymmetries N = 2,4,8 we obtain the constraints
for superfields.The supersymmetric complex and quaterni- -

onic Cauchy-Riemann equations are explicitly given.



I. Introduction

t is well ¥nown that for the ordinary cozzuting numbers
the extension of the real number is the complex number,the ex-
tension of the complex number is the quaternion and the last
extension gives the octonion,because the Hurwitz theorem is
valid [1].

We can use such extension on the anticomnuting numbers to
study the connection between this system of anticommuting num-
bers and extended 3SUSY +2

Recently geometric EP(n) models become more popular among
physicist and play crucial role in gauge theories [2].These mo-
dels are vmown O models,concretely the CP(n) model and HP(n)
wodel.The CP(n) model is connected with complex fields,which
are elements of the coset space W(ﬂl’ﬂ/su{m}»'u{'f),and the HP(n)
model is connected with quaternionic fields,which are elements
of the coset space SP(""‘“/SP{M)A -?—‘.(4)1

It is well known that supersymmetric extension of the CP(n)
model is connected with the complex SUSY [3].Aiso supersymmetric
extensior of the quaternionic models was assumed via supercoset
approach [4].

Here we shal show the connection between super HP(n) model
and quaternionic SUSY or the extended SUSY N = 4.The complex and
quaternionip superanalycity will play the role of constraints.

The last step which is not full clear yet is the connection
between octonionic super CaP(2) model and & = 8 extended SUSY.
This case is of course most interesting be-ause in the N = 8 ex-
tended supergravity models one has unified theories of fields
incorporating all spias.So as in the extension of numbers also
in the I = & extended supergravity models it is the last step of

the extension,if we want to have spin 2 for graviton [4].

+) SUSY = supersymmeiry
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2. The complex supersymmef;ric Cauchy-Riemann equations.

We shall start with the relation between N = 2 extended SUSY
and complex anticommuting numbers.we repeat :t:hat on the Bose le-
vel the coset space SU(”"“/SUlM-) UH) for the CP(n) model can
be identified with the complex projective space 1nvolves n com-
plex fields (f(X)e 'SU(M“/SUM) is= l 12500090 '

The fields (f' (xY ‘are satisfying a constra1nt~

q q& s /f (2-1)
and two fields related by the U(l) gauge transformation
) A.A‘x)
({L (X) = /L ({‘ (X) . (2.2)
It can be also interpreted so that the automorphism group

U(1) which preserves the norm of complex numbers is the gauge

group. '

oA

The U(1) local gauge invariant action of the CP(n) model has

the form: S : f'igd’;( (Db(f'f)(D(‘“‘f‘) v (23)

where Dh= a!‘ 4 A.A(_ and the Abelian gauge field Al"‘ has the form

A - ancf (2.4)

and transforms under (2.2) like A A - a A

The super CP(n)model can be obta:.ned via direct supersymmetri-
. —_— . L ad = -

zation l{i(x) ¢4 (",0) | Dp V‘c D»( A.(

in the action (2 3) and constraint (2 2) ,where

(P(xG) m'a&,}m* "E'C'Ffr)

-
D.t.= 99“ 49 Ia) j"a
As 8.0 . D D) | xelx x) €:(60)

are the scalar superfield,supercovarint derivative and spinor

gauze superfield respectively.

Ve shall conctruct the super CP(n) model directly in U(1l)- ga



ugze invariant way using the connection with complex numbers and
functions.The gauge group U{l),which preserves the norm of comp-
lex numbers,will give the complex SJSY that is equivalent to 2(2)
rezl extended SUSY.

we shall combine two real anticommuting variables
in the complex one: , . — . i

g, - Q,_HQ ' 0.:6 -:0, (2.5)

in the full analogy between real and complex numbers.

By analogy with the _f:omplex function we shall write a complex
cuperrieta  C(x,6,8) 2 C(x 0%:0)0"0"),

Tme SUSY transformation on the complex superspace (‘X 9 5)
was first defined in two dimensions by M.Ademollo et al. [6]

Ix. --—[2‘,94 £,9] do-=¢, JO-£ (2.6)

and on the superfields C(X 8 9) acts as follows

JC = [24 + £0] c
where Q’%’f?g 0 aa

'..'.hese supercharges antlcommute with the covariant derivatives:
A A .02 N-2 é} A/N1. N
sZasfo-d0min?) | Do dW- £(0%20Y).
we decompose the complex superfield into the real and imagina-
Ay n2 . 2
ry part C(X,G,Q) “A(-\'IG‘@)"'/-B(X,B:'O}.
Ey analogy with complex functions supersymmetric complex

Cauchy-Riemann equations are
P .
DA = DB (2.7a)
D‘B =- DA (2.7v)
Tt means the complex superfield will be an analytic superfield

[7].vnen (2.7a,5) are valid.But it means that the chirality con-

dition[6] -
DC = O 2.8)

is the analyticity condition.There this restriction was obtained

, p
usizs the new shifted variable X = X - “;_98 ( a complex Bo-

A4l

se ':ariable) .
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The sujeranalyticity conditiog actually plgz_s a role of the
invariant constraint: C(Xle‘f‘)) = Cx- ié’/o, 0) )
vhat means that the graded Lie alsebra in complex SUSY can be rea-
lized in a smaller parametric superspace_ﬂith the complex Bose
variable,but independent of the spinor 9 N

By the same way we can oEFain the complex superantianalyticity

DC-=0.
In analogy with the Laplace equation for real and imaginary

part of the complex function the superfield equations of motion

ooc =0 . (2.9)

The corresponding action has the form
y =
§= g ldxadB CC . ~ (20)

If we want to have this action also local U(l)—gauge-invariant

follows

we have to use the receipt.given in [BJ.We have to introduce the
vector superfield V( X '9,9) ,which transforms as
V= V+i(A-A), (211)
under the local U(1)gauge transformation:
C - C C = (2.12)
where A is also an anafytical superfield ’( DA = 0) .
It can be shown after [3] that the_gction
S - 'Z{ fd‘x dOdB[V - CCe”] (2.13)
is supersymmetric,U(l) -gauge-invariant and equivalent the super
CP(n) action and super constraint,which is obtained via direct
supersymmetrization.
' The constraints for ordinary fields in superfield expansion
will result from the ecuation of motion for the vector superfield.
cc =" (2.14)
In this way we have connected all components in richt and left
hand side of eq.(?.l#) and so vector superfield v/ acts as a con-

finin~ force between the scalar suverfields.
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Complex supersymzetric Tauchy-Riemann equations rlays also the role
of constraints.Acpually for the supersymmetric constraint from [9]
which there are as;umed "ad boc",follows from (2.'?a,b) and from
the anticomrutativity of the supercovariant derivatives

(D'D*-DD*+2iD'DDA=0 . (2:15)

3. The quaternionic supersymmétric Cauchy-Riemann equationg

we shall start with the relation between N = 4 extendedq SUSY
in eight dimensional superspace and quaternionic anticommuting
numbers.At first we repeat that on the Bose level the space HP(n)
can be viewed as the symmetric coset space splm*'” /S/){rk) x SI;(-I)

The Sp(l) -local-gauge-invariant action of the E{P(n) model

has the form

S=ﬂoux({ -d M)A(PJPJPJPJP) (3.1)

4
where mwv 4, 824,...,9; P = _4__..-(4“') _‘1{4)
a0l r L /‘V 6\1 /14/4,1‘, wout el
and A, ..., Mo are quaternionic coordinates.
The super HP(n) action,which is obtained from (3.1) via di-
rect supersy=mmetrization X {X 0) & - D

had to be eouivalent to the following SU(Z) gauge 1nvar1ant

S,-fc{'dﬂdb(l/nbu 4)!*“"’93"95’? }( .2)

= c
\ & + 1y 9 , (3-3)
V is here the aU(Z) gauge vector superfield and for quaterni-
onic units /(/jg follows:

[l'l.j z'm} 2&. [2" ] : 221.«-.»-“- | llh' " =4, 3,

[

superaction:

where

$CD>‘G'->

Ls in the complex case here can be shown the connection bet-
ween components fields in the expansion of the guaternionic su-
perfield.For the supercovariant derivatives and supercharges in

the guaternionic case is valid:



&

?~D>

]
D‘+1,L‘

) 3
Q,L ¥ Q: * 'e‘, Q‘

The supersymmetric quaternionic Cauchy-Riemann equations are

(3.3)

>

given by a concept of Fueter holomorphy in anticommuting variab-

ﬁ$ =0, (3.5)
what is 04)3 D,L (PI: ! .

D(P/m ﬁ“4)-’ Emka J;LP 0.

The condition (5 5),what is the Fueter grassmanian analyticity,

les:

whlch plays a role of constralnt'

(P( 9@) ¢ (x,. ‘f/b9/f(‘7,e,‘ £G4 01& 9) (3-5)

It means that quaternionic SUSY can be reallzed in a smaller
superspace,with hypercomplex Bose variable,but independient on §.

Similarly we get the Fueter grassmanian antianalyticity con-

(/ﬁﬁ = 0. (.7)

We remark that also ordinary fields have quaternioxiic struc-

dition:

ture.As instructive example is the case when ths\ quaternion is
composed from the two complex numbers Cq’C‘ ! C/'/ 2 c' + lsc .
This case corresponds the physical example of the SUSY dual su(2)
string model[10].

So as in the complex case in [6] the superanalyticity condi-

tion gives —_—
%. = DC /’k DC = 01 (3.8)
what is equivalent to the vanishing of the energy-momentum ten-

sor.For the SU(E) string the supzrcurrent is a vector isotriplet

(real) superfield given by

V( O“’ ‘)’LD C(G)d{/“daD C.aﬂ 42-4:,{2

S0 that tbe supersymmetric SU (2) invariant Cauchy-Rle:nann equa-
aa _-
tions give at the classical level V(., (XI (7',/ (2) = 0

In such a way quaternionic supersymmetric Cauchy-Riemann equa-
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tions acain play a role of the non-linear constraint which is

assuzed in ref.[lo] "ad hoc".

4. Comments

The open problem in this program of the connection between
super sigma models and extended supersymmetries is the possibi-
lity of the super CaP(Z) model and the connection with N = 8 ex-
tended SUSY.

¥e hope that a SUSY analytical constraints give all constraints

in N = 8 supergravity models on 232 ordinary fields.

The autor is indected to Dr.J.Soufek for useful discussion.
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