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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

PRODUCTS OF IDEALS OF BOREL IETS

Kartin Gavalec

The natural definition of the product dxy/ of ideals in
the fields B(X), B(Y)of a1l Borel sets in topological spaces
X, Y sounds as follows:

for any A€ B(XxY) we set
AtIxYy = fueXj{yeYj(eyecA3d}I¢l.

This definition is meaningful if

(%) the sets fAJe Y; (uclna)eﬁ} for x€X are Borel
in Y , and if

(¥#) the set {UK‘/Y" fﬁé Yj (w,a)éﬂ} ¢J} is Borel in X .

The first condition is elways satisfied, the second one
depends on the ideeal }' .

Let us denote by IL‘K the ideals of 211 Borel sets in the
real unit interwvsl I s Of the Lebesgue measure zero, or of the

first Baire category, respectively.

Theorem 1. If the ideal } is a product of finitely many
ideals, eech equal to L » Or ta K , then the condition (##) is
satisfied.

Theorem 1 enables us to form products of ideals LI K , in
arbitrary order. The following theorem describes an important

property of such products.

Theorem 2. If the ideel ?’ is the product of ~v ideals, esch
equal to L or to K » then is countably complete and the
boolean algebra @(Im)/} fulfills the countable chain condition.
The algebra 6(1‘)/}/ is, therefore, corplete.
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Complete booleen algebras and their corcplete boolean pro-
ducts are closely connected with booleen-vslued models of the
exiometic set theory. In[1], [2] the property of local disjoint-
ness is described, whicﬁ is fulfilled in a complete booleen pro-
duct if and only if the corresponding model classes are disjoint

over the basic model.

Theorem 3. If the ideal } is the product of m ideals, .£

of which (not necessarily the first ones) are egual to L. and m-£
m

are equal to K, 0< £ <, then the complete product & (I )/}

of algebras 6([")/[_"1 7] {Im'-'z)/l}(m-"' induced by the natural
embeddings, is locally disjoint.

Remarks. 1. By the well-known Fubini’s theorem, the algebra
B (I)’)/ LL is isomorphic to the so-celled random al-rebra
R = 6{1)/L.Analogous1y, 5{1"-&)/’(“.& is isomorphic to
the Cantor algebra @ = 3(1)/K « Thus, Theorem 3 is a tool for

constructing infinitely many non-isomorphic locally disjoint
products of algebras @, €.

2. The product of algebres g ,€, described sbove
are non-isomorphic when considered as products. It is a problem,

if they are isomorphic as boolean algebras. E.g. &re the boolean

algebras /5] (I")/Lx K ) 6(1"‘)/’()([_ isomorphic 7
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