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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980)

REMARKS ON DIMENSIONS OF GRAPHS

. Ji¥{ Vindrek

l. Preliminaries

The well-known Dushnik - Miller dimension of partly
ordered sets (see [DM] ) was shown by Ore([o])to coincide
with the necessary number of linearly ordered factors in
a product TT Li into which the given poset can be fully
embedded, It is a particular case of a characteristic of
objects based on representations of products of subdirect-
1y irreducibiés.

Recall a definition of a subdirectly irreducible (SI)
object for a productive hereditary class C of digraphs
(i.e. a class closed to categorical products and full sub-
graphs ) : A C-graph (i.e. a digraph Ae C) is SI iff for
every full subgraph m : A—> jQTlAi such that all pym |

i=
are onto (pi are projections) at least one Py is an iso-
norphism.( This is a special case of the general categori-
cal definition of a SI object - sec e.g. [PV].)

One can see easily that under the assuiption of pro-
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ductivity and hereditarity of a class C, avery
- w2 .
8X = ({ReX*; KLR)eC),n)

is a complete meet semilattice.pAdigrsph A= (X,R) is

called meet irreducible (III) iff for R= _f—i Ry at
: is=
least one R;= R. One cen see easily (cf.(PV])that every
SI is MI.

Now, three types of dimensions based on I and SI
can be defined : Let A= (X,R) be an object of C. Then
n?

a meet dimension m—dimC(K,R): ‘min in ; :]Rl,...,R

n
(4,Ry) are IT for i=1,...,n and R= _r\l Ri%, a pro-
i=

duct dimension p—dimC A = min {p ; A is a full subgraph

-—

n
of TT A; with A; SI§,end & subdirect dimension

i=1
) n
S-dlmg A =min {n ; A is a full subgraph of jtjl Ay

with>Ai 51 and pym onto (pi are projections, m is an
embedding ) },i.e. s-dim jis the smallest nuber of
factors in a subdirect representation of A.

Remark. “he original Dushnik - Miller dimensbn was mecin
of posets.The product dimension of graphs was stui” L
I.Lovdsz, J.leSet¥il, A.Pultr etc. (see e.g. [IVE} , L
[rr,], [Trzj').

A= we mentioned, for € a class of i eflexive
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posets, there is p-dimg = m-dlmg (and a2lso = s—dinnc) -
Another example is the Qléss of 211 the antireflexive
antisymnetric digraphs ( where m—dlmg = p-dinmE = s_djnc(_;
é.g). But in the general case, these three dimensions
can be different. One can see easily that p—dimh

= s-di@ﬂ iff the subdirect irreducibility is hereditary
in_g.ou:example of non-validity of this equality are
bipartite graphs wheres, ., is SI but < < is not.)
Notation. Denote P a éla;s‘of all the antireflexive po-
sets, Q a class of all the digraphs (X,R) such that
card(Rn R < 1 ang if (x,y) and (y,x)cR then { (x,2) ,
(z,x)$n R ¥ @ implies z=x. (Actually, Q contains
antireflexive antisymmetric digraphs with possible

one isolated loop added.)

2. Digraphs

Definition. A class C of digraphs is called trivial

if every C-graph has at most one vertex.

The aim of this chapter is to prove the following

—

Theorem 1. Iet C be a productive hereditary class of

digraphs. If p-ding = m-dimCE s-dimn, then either C is

-— - —

trivial or P CcQ.

.
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Lemna 1. If s-dim, A< n-dim, A for any Ac C then C contains

no digraph with two loops. B
gzgo_of._ Let G be a maximal _(_J_-graph with two vertices and two
loops.

Consider three cases :

2
1. ¢ = N Then C/‘/'(_(_;ﬁg\ is in ¢, it is

MI but it is not SI.

2. G = oG ¢ Then & > is in G, it is
MI but it is not ST,
3. 6= 4 2 +Then 5 % is in g, it is

MI but it is not SI.

In all these cases an existence of apnobject which is
MI but not SI contradicts the assump'i:ion s-dimcém-dimc.
Lemna 2. If s-dim_c_ A= m‘dim_(_l_ A for any Ae C thené\@, ¢ _(_}_.
_Pir_ogi. Suppose G = D«-) € C. Then

B N e g

1)
By Lemma 1, H is maximal hence MI. But on the other hand,
. s 2

H is a full subgraph of G" gnq therefore it is not SI which

is a contradiction.

Lemma 3, If‘s-—dim.gs p-dirr}g-s m—dim_g then > £ G,
—2 ¢ &

Proof. a/ Suppose 6= — , H= 5D € C. Then
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K = v is a full subgraph of GXH

) .
hence Ke C and it is not SI. But according to Lemma 1

and Lemma 2, K is I which is a contradiction.
b/ Suppose Gz C, H¢ . Let K be d maximal C-graph con-
taining G as a full suﬁgraph. (Such a graph .exists because ’

€.8. is a C-graph containing G as a full

A

subgraph.) . .

/i/ Suppose K = - . Then L =,/ is a full
cﬂ ‘ w -

subgraph of KX G hence L is a subdirectly reducible

C-graph, But one can see easily (accordihg to previous

lemas) that L is MI which is a contradiction.

/ii/ Suppose K= M + Then M:/\ is a

full subgraph of KX G hence M is a subdirectly reducible ‘
g-grapﬁ; According to the maximality of K and the as-
sumption H¢ C, M is MI;

/iiiy/ Suppose 1:-@4 . Then K is II but it is not ST
which is a contradiction,

¢/ Using the same technique as in b/ one can prove that
also under the assumption G;F q,’ Heg one obtains a-contra-
diction,

Proposition 1. Tet G be a productive hereditary class of

digrephs. If s-dimys p-dimg m-dimg, G= (L,R)€ C

,



then for every Yo X such that card Y= 3 there is

card (Rn YxY) = 3.

Eroot.

1. If Y contains a loop vertex of G then the assertion
follows from Lemmas 2 and 3,

2. Suppose there exists an antireflexive C-graph with
3 vertices and more than 3 edges. Let G be a maximal
__(::_—graph with these properties.

a/ G = Q. Tﬁenﬁ: <isa

subgraph of G X «—>» hence it is meet reducible and

K= /)Y is a C-graph. Therefore, L = <_‘ =
© TN TN\ N

is a C-graph, m-dim; L= 4 but 'L is a full subgraph of

G » —> and hence s-—dimc L=

185

b/ G = Q. Then again L= < is a C-graph.

and m—dimc L= 4, s-dimc L=2,
¢/ G = » Then M = : is a full sub-

graph of G2 hence it is a subdirectly reducible C-graph.

But accordirig to the maximality of G, I is also maximal

{and hence IMI) which is a contradiction.

&/ ¢ = K ﬁ -Then & ' is a full subgraph of
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G X «—3 hence it is a subdiregtly reducible g—graph;

it must be also meet reducible and therefore also

/\ is a C-graph., By 'a. similar technique, one
can prove -that': 4 ! R " ig & G-graph -, ‘Hence, all

the tournaments with 3 vertices are meet réducible in C.

Denote~ ... .. 3 ¢l L A 3

FUNSUILRR 15> S 5 S Rt T

A= m 5 . .
1I—>3 4~ T

Since A is a full subgraph of G2 it is a’ C-graph and

g
According to a/,b/, ¢/ neither B nor C have edges (3,1),

' s-dimy A = 2. Therefore, m-dim, A=2 and A= BAC .

2

b

6 wa). N

o~

/i/ Suppose B has both’edges(3,4) and (4,3). Then C
contains none of edges (3,4) , " (4,3) and’ a subdirectly

reducible "bwo-p_oi,n{ discrete graph is a full subgraph

-~ N

of C which is & contradictioh.
/iiy S(lf)igz)s(e B has o"niy one of edges (3,4) end (4,3).
Then }‘B‘é:t)nté.'iﬁé' a tournament vith three vte‘:ctiées: as a
:full éubgrapﬁ wfxﬁ:;cl; ié a c});lfrzi.dic;tio}i with the mect
reducibility of all the tawrnaments with 3 vertices.

e/ For the case Gf—/\' or ¢ = _ﬂ_; one
- g

’

can use a similar technique es in d/. Q.E.D
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Proposition 2. Let C be a productive hereditery class of

digraphs. If s-dimy = p-dimy = m-dim, then every C-graph

-is antisymmefric.

Proof. Suppose the contrary. Then C contains a symmetric
graph G with two vertiaes_. By Lemna 1 and Lemaa 2,

G = «— . Take a maximal C-greph H with three ver-
tices containing G as a full subgraph.

Consider two cases : !

a/ H has a loop., According to Propoéition 1, H= ¢ T .
Take a maximal Q—gyraph I. with 4 vertices containing H as
a full subgraph. According \to Proposition 1, the four"bh
vertex of K cannot be connected with both vertices of
the symmetric edge by an edge. llence, H contains a dis-

crete graph D2 with two vertices as a full subgraph which

is a controdiction with the assumption p-—dimc = s-dim

c

(because o . = > X ') .

b/ H has no loop. Then H contains D2 as a full subgraph
and it is a coﬁtrédiction with the asswaption p-—dimc =
£ s-dimg. » Q.E.D.
Proposition 3. Let C be a productive hereditery class
of digraphs. If'-s-dinlc_:é p-dix?g'f m—dinfg then eitler C

is trivial, or €= P.

Proof. Supsose that ¢ is not trivial, Since C is rrodurtis .
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and hereditary, it suffices to prove that C contains all

the antireflexive linear orderings Ll, 1'2""

Suppose that there exists an n such that Lne S,
L, , 1¢ C. Consider three cases :
/1/ n= 0., Then according to Proposition 2, C contains no
digraphs with proper edges,Sincefis not trivial , there
are the following possibilities :
8/ C= SET (the system of all the discrete graphs) .But
for D3 {a discrete graph with three vertices ) there is
s-dimg D3 =2, m—dimg IJ3 .—_EL which is a contradiction,
v/ C =SET, ( the system of all the digraphs wih at most

one loop and with no proper edge) . But then s-dimC 2 , =
= 2, m-dimy, 2 7 = 1 which is a contradiction,

/2/ n=1, Take

Then s-dimy G=2 = n-dim, G=2 . Trerefore, there exist

171 C-graphs Hl,n2 such that G = Hp ’\HZ' We cean suprose

that Hl has no loop. Then

- 0/7
&

Hy =

Ne—H
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[

3

Then s-dimg I =2 @m—dimcli.zz and there exist WI C-graphs
Kl s K, such that K = EjAK, . Ve can assume that E; has

no locp. Since s-dimC 3 p—dimc is suprosed and D2 is not

51, E; hes to be a tournament. But there is no tournament
with 4 vertices which does not contain L2 as a full sub-

graph; it is a contradiction.
|
/3/ nZ2. Then take ¢ = Iy, 9 ~ {(0-1, & ), (yneD3 .

G is o full sbgraph of Li ; hence, G is a C-graph and

s—dimg G=2. Suppose m--dimg G=2, G = Gl N Gz were Gl and

G, are ML G-graphs, Since p-dim, =z s-dim_ , neither Gl

2 c = c

nor G2 contans D2 as o full subgraph., Every vertex of G
is on initial or an end vertex of some edge ; thus,
neither Gl noxr G2 contains & loop. Hence, Gy and G2 are
tournaments. Since Gy Ly (e r=9) andp+gq,ny’ . -

ere edges of G; and (n-1, n- ), (nyn+1) are edges of

G-z. Thus, (3—2.-.—. I’n+ 1 which is a contradiction. Q.E.D.
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This finishes also the proof of Theorem 1.

3. Undirected graphs

;n this part, we are going to'stu_dy dimensions
in subclas;es of a class G of 211 the undistected graphs
without loops. |

Denote —Ql the system of a.ll\ the graphs of a degree
less or equal to 1.
Proposition 4. Let C be a productive hereditary subclass
of G. Then s-dim, A = m-dim; A for every Ae C iff

either ¢ is trivial, or C = SET, or _(_,'_—_-_(_%l .

I

Proof. 1. Suppose that Ae c or / G

Since _~ is a fvll subgreph of

AN ,

in both these cases e c Coand m--dimC D

3 —
=3 while s—dimC D3'=2 which is a contradiction.

Tence, either C is trivial, or C = SET, or C = G -
2, a/ 1If C = SET then m-dimC = 1.
b/ G has only two SI graphs : c and I .

17T Gl—graphs are just graphs with 2n vertices and n-1

or n edges and grephs with 2n+l vertices and n edges.,
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One can seteasily that m-dimc A= s--dimC A for every
A =4 Q. .
Theorem 2, Let C be a productive hereditary subclass of

G. Then s-dim, = m-dim, iff C is trivial,

-_— 2

Proof follows directly from Proposition 4 because SET

)
and _(_?—l does not satisfy the condition s-dimc = m-dimc.

Theorem 3., Let C be a productive hereditary subclass of
G. Then p-dimc = m-d.imC iff ¢ is triviel.

Zgr_ggil. Supprose p—dlm.g_f—' m-dlmg_. Then m—dlmc A= s-dimc A

for every A= C. According to Proposition 4, there are
three possibilities :
/i/ C is trivial - the assertion holds trivially.

/ii/ ¢ = SET. Then m-dim, D3 =1 while p-—dimc D5 =2

— —_—

which is a contrediction.

/iii/ ¢ = G . Then m-dimg I ¢ =1 while

p-dimy I ¢ = 2 which i= a contradiction. Q.E.D.

For a graph G denote (similerly as in [NP_.L])SP(G)
the system of all the full subgrsphs of G- where k is a
non-negative integer. Denote by Kn the complete (anti-
reflexive ) graph with n vertices.

Theorem 4, Let C be a productive hereditary subclass of G.
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Then s-ding p-dimg_iff either C=SET , or g_.—;SP(Kn)
for some n,

Proof., If C= SET or C = SP(K )then the assertion
holds. If (G4 SP(Kn_) then there exists a SI C-graph
which conteins D2 as a full subgraph. Since s-dimc-z

-_—

‘ip-dimc » Dp is SI, Hence, C does not contain o—

—

and C = SET, Q.E.D.
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