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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

On the Charge Diatribution of Static Axial and 

Mirror Symmetric Monopole Syeteme 

P. Houaton and L. O'Raifeartaigh 

It haa been ahown that the impoaition of axial and mirror 

aymmetry on the static magnetic SU(2) Yang-Mills-Higgs eyatem 

reduces the usual first order ("eelf-dual") Bogomolny equati­

ons to five equations tor five unknown (gauge-invariant) func­

tions* In this note we show that, for a differentiable Hlggs 

field, the five field equations and the topology rule out all 

charge-distributions along the axis of symmetry except a sing­

le-point diatribution, and the boundary conditions at the sing­

le point distribution are discussed. 

Ever since the discovery [lj that the static Yang-Mills-

-Higgs equations of unified gauge-theory admit finite-energy 

magnetic monopole solutions, there has been interest in the 

question of solutions which go beyond the original ones, which 

are all spherically symmetric. The next simplest configuration 

seeme to be that in which the fields are axially symmetric and 

symmetric under reflexions in all planes containing the z-axis, 

and in this note we wish to consider the field equations for 

such systems. 

To obtain the simplest possible system of this kind we 

do not consider the full second-order YMH equations but rather 

the first-order equations 
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which are obtained by minimizing the Bogomolny-Prasad-Sommer-

field [2] Hamiltonian 

<2) " - 4 / da2tf5? .* CSJ5)2j . 

in which the gauge-group is SU(2), the Higge field $ ie as­

sumed to belong to the adjoint representation, and the scalar 

potential is set equal to zero and replaced by the boundary 

condition ( $ , $ ) — » c as r—->oo . 

It-has been shown [.3,4j that f°r axial and mirror symmetry -

the field equationa (1) reduce to the five equations 

(3) kUe( - b,* + f G ^ h ^ , 

< 4) -k/rf B b u « + fhG«p 7 -
(5) hk - jf?G^ u ^ 

for the five (gauge-invariant) unknown functions h,k,b,u^ 

defined as 

h2 - ( $ , $ ) . h2k2 « (D>6,$ ,D,*$ ) , 

(6) h2k2(b2
+k2) - (D2 §.D*»$) , h M h,* + h2u„ Up » 

It was also shown that the first four equations are equivalent, 

to the existence of a master-potential W such that 

(7) | | - hb , h2 - c2 + A W , 

9* QW _ * i 2 # h 2 ~2\ * n 2 If2 h 2 

Z f W f ^ - c ) + n - k -<b . 

In particular 

Furthermore, the ordinary Maxwell magnetic f ie ld £ , defined 

as usual [5J, to be 

(9) B± - (F±§0) - 5G i Jk(0.Dj0ADkJJ) , where 0 - $ / h . 

turns out to be just .. 
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(10) B, - ^ ^ b;/9 . (Bj, - 0 ) . 

Thue the magnetic charge contained in any volume of revolution 

V around the z-axie and intersecting the axie at two polnte 

z 1 and z 2 la Just 

(U) An - frj djxV.B̂ . | (bCz,) - b(-2)) . 

Of course, eince (8) ie a curl the charge can be located only 

at pointe where ie not well defined i.e. where the Hlgge field 

$ ie zero. The boundary condltione for the functions h,btk, 

u^ ae r—>0 are 

(12) k#u^—*0 , h—»c - -p , b—>-n COB 6 ff 

where n ie the total topological charge (in agreement with 

(9)). The boundary conditione on the z-axis are determined by 

the finiteneee of the energy [2J 9 which in terme of the vari­

ables hjkjbiU,, tekee the form 

(13) H - i/d3x[(Vh)
2 • h2u2 • ( S ^ u ^ ) 2 • 

+ p { h 2 k 2 * (b>« " ku* >2 * <",* * bu* )2}] • 
From thie equation we see that (subject to uniform behaviour 

with reepect to z ) we have 

<14> / 3 / 2 Y h ^ ° * u«-+b~\«-* -k"lb,« • hk"*° • 
ae f —*Q : 

From the central equation in (14).and from (10) we have in par­

ticular — 

(15) b 2 + k2 - n2 for jp - 0 . 

Thie equation eleo follows from (3,4,5) and the firet eqn. in 

(14). 

In a previoue note [6J it wee ehown that topological con­

siderations alone implied that for an axlally symmetric system 
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with charges located on the 2-axis, the Higgs field h had 

to vanish everywhere along the axis joining these points, 

and it is interesting to note that this result can be verified 

directly from (14) and (15) in a gauge-invariant manner. For 

if h/O on the axis, then from (14) we have k=0 and hence 

from (15) b=in . It then follows from (11) that between any 

two points where h/O the charge must be either 0 , or n . 

Since n is the total charge this establishes the result. 

The fact that the Higgs field must vanish between charges 

suggests that actually there can be no such distribution, ex­

cept at a single point, and we now wish to show that, provided 

that the Higgs field h has a continuous derivative such is 

indeed the case. Although this condition is quite mild, it is 

a little more than is required by finite energy. 

The basis for our result will be the two equations 

(16) A(hb) •- (h 2) ; z , 

2(f f *« - 9 £,* A f, A ) 
(17) A(hk) - '« 2 % "<* '* (hk),,, • 

h D 

r D2 2€*/3 9><* f'/il ,UI» 

*lp * r^-2 J <hk) . 

(18J f = ph 2 , g s hb , D
2 - b2 + k2 + p 2h 2 , 

which follow directly from (3) - (7). If we now assume that at 

any 2ero, 2rt , of the Higgs field on the z-axis, h is C 
AA.0 

then (17) has the small distance approximation 

2 
(19) A(hk) - flj (hk) . 

Since finite energy requires that hk —*0 , as ^ - ^ z ^ * t n e 

solution of (19) is an associated Legendre function of the 

first kind. Thus wherever p"(cos 6) ^ O we have 
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(20) hk->krmP^(cos 8) , ra>n , 

where r, 8 are polar coordinates about zrt . Since k is 

bounded, equation (20) already shows that h does not vanish 

infinitely fast at z , but between the powers r and rra , 

Let us now consider those points z^ , where h —**0 , but 

b^O for small r and either 8=0 or J (or both). It fol­

lows from (14) and (15) that such points exist. Also from (15) 

we see that, as r—>0 , 

(21) (hb)2 + (hk)2~->n2k , 

and that, since b —/.*0 , hk can not dominate hb , for all 

9 . From (21) we can write (16) in the form 

(22) A(hb) =- \ t>2b2) + (h
2k2) ] + ... . 

Since hk does not dominate hb and hb—»-0 as r—>0 , it 

follows from (22) that the leading behaviour of hk is a so­

lution of the homogeneous equation A(hb) « 0 . In other words 

(23) hb->K rsP (cos 9) for some s-^m , 

where K is a non-zero constant. It then follows from (21) 
2 

that h is of the form 

( 2 4 ) h 2 - * \ I > s r S P s ( cos e> )2+0<rmp£(cos 6 ) ) 2 ] , s<m , 
n 

2 

as r —>0 . Equation (24) shows that h is a regular function 

at z^ and that 

(25) h2(r,0) = h2(r, jf) . r^O . 
2 

Thus the field equations require that h be symmetric about 

any point on the z-axis where it vanishes. It is indeed pos­

sible for a single point charge distribution to satisfy this. 

However, now consider a charge which is not distributed at a 

single point on the z-axis. According to the previous discus-
2 

sion of the topology, h , in this case, must vanish along a 
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finite section of the z-axis. On the z-axis in a neighbour-

hood of an end point z^ of such a section, h =0 inside 
AA.O 

2 2 2 2 

z , and h / 0, b =-n / 0 outside. Thus h can not be 

symmetric about z , Therefore equation (25) rules out all \ 

but the single point charge distribution. 

Let us now assume that the charge distribution is con­

centrated at a single point (superimposed raonopoles), which \ 

we take to be the origin. The equations derived above for z_ 

are still valid, so that near the origin we have thVjL^ading 

behaviour v ^ 

(26) hk—>KrmPJJJ(cos 9) , m>n , 
hb-^K r3P fcos 8) , m ^ s ^ l , s s 
h — J - r s | K a P s ( c o s 9 ) | , for s<m , 

h —-F^ { < W C 0 8 9))2 + (KOc o s ©))2}1/2 

for s--m , 

where the condition s-^m comes from the fact that i f s>ra, 

we have b—*-0 and hence no topological charge. The roost na­

t u r a l case (and possibly only stable case) is m=n , and then 

we have 

(27) Һk-Жp 1 

h b - * K r s P (cos 6) , s s x 

h —»-ir
s
|K

Q
P

s
(cos 6) | , for s<m , 

h
- ^

n
{ (

K
n

P
n (

c o s e
) )

2 + K 2
f

2 n
}

1 / 2
- ' 

for s-=m „ 

It has been pointed out by P. Rossi that when s»l the beha­

viour at the origin can be determined more precisely, namely 

as 

(28) h2 * (fj Kx £- P^cos 6))
2 , 
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This result can be understood in our context, and be slightly 

generalized, by noting that if s<m then k/vrTO""s and hen­

ce from the field equations (3) - (5) 

(29) bl0( • pe^p h,^ -OCr 2"- 2- 1) . 

which implies that, to the order shown, there exists a harmo­

nic function 

"H 1 
(30) U = TZ V1r

xP1(cos e) , 
l«i 

such that 
/, n .2 /^Uv2 Q . .2 .2, 0UX2 
(31) h -- («TJ-£) , and b » f> (-—) 

Alternatively, we raay note that to the order in which k (and 

therefore ru^ ) may be neglected the field equations (7) re­

duce to the two equations A h = 0 and (16) and that these 

two equations are identically satisfied by (31) if U is har­

monic . 

A further symmetry which is carried by the field equati­

ons (3) - (5) is invariance under reflexion in the (xy)-plane, 

where h, k are even and b is odd with respect to this re­

flexion (in agreement with the boundary conditions as r--*-co). 

If we impose this condition on the fields then all the inte­

gers, m, s, n above must be odd. In particular, only odd to­

pological charges n are permitted. Since this symmetry ag­

rees naturally with the equation and boundary conditions, it 

suggests that even topological charges might not be allowed 

L7J (under t n e assumptions of axial symmetry). 

Finally we should mention that the results mentioned here 

are only very slightly modified when the assumption of mirror 
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symmetry is removed. Indeed, apart from the complication due 

to the introduction of four new fields, the results go through 

for axial symmetry alone. This generalization and a more deta­

iled treatment of the above results, will be given in a forth­

coming paper. 
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