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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980)

Instantons.

E.Corrigan, .
Department of Mathematics, Un;veraity'of Durﬁam, England.

and

P.Goddard,

r . [
P . . .

Whilst there 1; no doubt that ndn-abelian gauge theorieﬁ form the
basis, in one way or another, of our present ﬁpderatanding of gravitat-
ion, strong,weak and electromagnetic 1nter;ctiqns,not much is known
about the mathematical structure of the associated field theories. It
is possible that questions relat;ng to quark confinement or the ﬁiggs
mechanism would become accessible mathematically if we had a good under-
standing of gauge theories which went béyond perturbation theory. Trnat
.seems to us sufficient reason to embark upon the exploration of many
different aspects of the theory even though the outcome is not assured;
such as instantons, the 1/N expanaion or lattice gause theories.

This abstract is intsnded to indicate the content’ of five lectur-
es, one of which was introductory whilst the others described in some
detail most of the ingredients that enter into a calculation of the

(),(2)
contribution of instantons to the gauge theory functional integral. %

A typical gauge theory is defined by an action such as,

S= [ [t (E.r)+iFvD W] w
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where ¥ is a fermli field transforming according to some representation

of the gauge group G, and F}g is the field strength tensor regarded as
an (anti-hermitean) element of the Lie algebra of G in the adjoint rep-
resentation. Thus, 1if Ar.is the vector potential
F,ﬂ < QrAw-a\'ﬂ,\ + EA’, AJ] (2)
while for example, for Y in the fundamental representation of G, the
covariant derivative is
¥TDY = ¥~ (3« Ar) ¥ (3
Under gauge transformations
to 9Ty _
ot -t
Ars g A g +9799 . 9®eg )
FI"' - 5" ,«3 -
and the action is, of course, invariant.
The Green functions of the quantum field theory corresponding to

the action (1) are given by a set of functional integrals of the fo}m,
iS4a

2g - 2 unJdpa o 0 EAF,y) 0 P

where §represents pro_ducta of the fields at different space-time
points. Belavin, Polyakov, Schwarz and Tyupki;'lnitiated a program of
exploratioh for the functional integral (5) (ignoring the fermi field‘f )
by making the following observations: .} )

(1) to define the functional integral pr&periy it should be defined
instead for a euclidean space-time, in which case the action S i1s pos-
itive (or zefo).and the 1 1n_the'eiponent is replaced by =1,

(11) then, whenever S is finite the poéential Ar must approach at
large distances.a pure gauge éde_g. The gauge function g (which is to

be regarded as a function of the angles on the 'sphere at o 'in Rq’

can be thought 5f 55 a map irom the sphere s Into the gauge group G.

Such maps fall naturally into equivalence classes under homotopy and,
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if the group G is simple and compact the equivalence classes are labelled

y the integers. Moreover, ignoring qb » the action obeys the following

inequality (providad we choose ﬁf to belong to a specific homotpy class °

in the above sense)

R L XGeh) 3 tfm M E)

> -y fut (626 = Ba| ©

where the integer k is just the label for the class to which the poten-
tial belongs. '

(111) The equality in eq.(6) is attained i1f the field strength

T
is self-dual (or anti-gelf-@pal) i.e.,
e 2 le  F. =4F - ("
M= 2 Speps rs A .

The problem of finding.all the solutions'to eq.(7) for a given int-
eger k is of intefest in its own right and has exercised the ingenuilty
of a number of physicists and attracted the attention of mathematicians.
The latter were able to cast the problem in. terﬁs of algebraic geom tp
and hence find a remarkable way of solving it The solution to the pr b-
lem provided by Atiyah, Drinfeld, Hitchin and Manin (ADHM), whilst r 1 -
ing on deep mathematics for its derivation, can nevertheless b pre t-
_ed in a simple and appealing form and used to tackle the problem of how
to estimate the functional integral (5)

The ADHM comstruction woiks for any gauge group G and is describ-
ed in more detail elsewherg?ﬂhzwever, for SU(2) we can quickly summarise

the results. Writing
. . 4+,
Ar * \I'l'a, " > V_ " i (8)

where v 18 a g;trix with k¥l rows and 1 column (whose entries are 2x2
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matrices of the form o3 tle=td.§ where € are the Paull é-matr-

ices (i.e. quaternions)), the vector potential solves equation(?7) and
belongs to tﬁa class labelled by k provided the éomponents of v are cho-
sen in a cléver way. Moreover, all solufibns to eq(7) may be found in
this manner. -

The matrix v is ta be chosen as follpwé. v is coﬁstrained to be‘o;th
ogonal to a set of k other similar matrices whicy are themselves linear-

ly independent and linear functions of the euclidean coordinates x ,

(also best thought of for this purpose as the 2x2 matrix xg—tg. € ). Thus
. - R .

V¥(a+bx) = o :
] )

or, making explicit all the indices and summations,
. . ) AN Y
+ . ) L IRET
.Z(V )wp (“‘sr* + §bugs Xsp) 207" Tifiulim,
il J= e k

< .
The parameters describing the solutions.to eq(7) (instantdns) reside

in the'coﬁstant matrices a and b which have to be such that,

[ (Q-O-'b.x)"- ‘(a““)]-‘i"F - sd(, "‘S': Yy ad “f: 1,2

1
et OO

Unfqrtunateiy, the constraints (iO).have not so ;ai proved’ to be soluble
and the degrees of freedom of the iﬂetﬁnfons (S,kl-j of them) cannot be
made completely explicit. prevér, éven-yithout the explicit represent-
ation for the solutioné it 1s possihle'to'gg some way towards evaluat-
ing the functional 1ntegr;1 (5) as g~-»0. The'reason.for this is that
certain usefullqdantfties, such as Gregn functions and functional det-
erminants (for d}rterential operétora like the gauge covarianﬁ Laplac-
ian If'), are calulable albeit as implicit functions of the instanton

iarameters.
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Iriting the euclidear version of (5) and omitting the fermi field

e may write an asymptotlc expansion for the functional'integral valid
for @mall g,

~‘.) -’f_l.b-'-‘ ) ] _b‘ '
25 ¥ Z(é‘_, e ¥ ';rb"*z d_ﬂ(_ﬁ) W g (11)

' Ié‘eq(ll) H(k) is the number of degrees of freedom of a k-instanton,

w /~ is a parameter with the dimensions of an inverse length and, t‘, i=1l..N(k

. are the 1nstanton.pafameters. The instanton parameters occur in the in-
tegrands implicitly, since D* is the gauge covariant Laplacian (evalua-

tod in éhe adjoint rep;esentation of the gauge group) and
L

both evaluated for the instanton vector potential. The primes oa the
deterainants indicate the omission of zero modes and the factor Jﬂ~ is
» - : i .
~ &lven by
- ?A,
Ns et [ \(‘44,‘ A, (13)
. ¢, 3&

- , ¢

ﬁ'nice derivation of equation (11) has been given by SchwarzxLut it

édn also be thought of as the result of the familiar Fadeev-Popov
manipulation in the 'background' gauge.

i ngeral_problems with the quantities appeurihg in eq(1ll) are
innediately épparent. The determinants haveé to be defined ln a sensible
Vn/, there is no- point merely taking the product of ei"envalues,aa one
tould for a finite dimensional matrix. There are two reasons.for this.
E{rstly, the opsrators are not defined over a compact manifold and

hence there are 'infra-red' divergences--simply because the differential

opxrators have eigenvalucs arbitrarily close to zero. On the other hand
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there are also arbitrarily large éigenvalues leading fq ‘ultra-violet!
divergences., The forumer are not so serlous as the latter since they mnay
be rcmoved by performing all,calculations on the compact manifold S“
(regarded as the surface of a five-dimensional sphere of large radius R).
It then transpires that the divergent parts of the de£erminants as R-> ¢
are lndependent of the instanton‘purametcrs and contribute an overall (9)
factor to Zi ’ eq(il), rather than contributiné differently term by tern.
In partlcular, the variation of the logarithm of any determinant with
resp?ct to any instanton parameter will be finite as R qa;o.

The ultraviolet divorgences are more serious and require more sgkill
for their removal. There are many ways of discussing ultraviolet cdiverg-
ences developpad by ficld theorists but a particularly elegant, and for
this case very useful onc is the so-called zeta function regularisation.
It pas bzen studied by manylpeople in various contexts over the Joears,
and recently advocated by Hawking in the coﬁtext of general relativity.ﬂo
The method alab corresponds_c105ély to the way in which mathematiclans
have deceided to define the !'tusion' of an oﬁerator such as D* ( or,
such as the Laplacian on a ﬁicmannian manifold studied by Ray end 51nger??

Some details of the zeta function method of defininé deterninants
were explaihed and illustrated by cxamples from quantum mechanics and
field theory in addition to being applied to the gauge theory problem.
Briefly, the ideas are as follows. '

For a finlte dimensional hermitean matrix A whose eigenvalueg are

all positivo (ndt zero), we may cdefine a 'zeta function!

. dia A
;A(S) = 'Z )v\-s

(14)
with the following obvious properties
(a) dima=  3a(0) N o (15)
; dfs '
(b) dethi= exp(~ Is ‘Sia)' ‘ . (16)

For finite dimensional matrices the zeta function (14) is an anulytic

function of the complex variable s. For operators, such as (—D"-l- q/e;)-@



defined over S 4’, the corresponding zeta function has to be defined by
analytic continuation since the definition as an infinite sum, analogous
to eq(ly), is cc.nvergent, typically, only for sui’fir_:iently large Res,
(in our case Res )»2). So defined 30 (s) is an analytic function of s

with simple poles for certain real’ positive values of s (in our case s=1,2)

. In)
In particular, % (s) is regular at s=0.

To perform the analytic continuation it is convenient to use an

integral representation for ° ?b (s):
Lo- L (% '
— S~
L TP {“J‘ [+ (yemieyy ax (an
where é (x,¥y;t) 1s the solu.f.ion to the equation

D, Y vsd) = %&_Msé) ;T Y9,0) S(x-u). (18)

Thus, in our case (and in the limit R-—3ed )
. o0 _
sa (o) = 24.3 j ot £ \r.l"x b 4 (2x;¢)

(19)

| ~kC
= = ,,_ja‘*x {v(F F) "6‘{‘)

- N

where C(A) is the value of the qdadratic casimir operator for the gauge

group G in the adjoint representation, (i.e. for SU(N), C(A)=N). On the
other hand for the operator D,

2 kC(A) — N(®

L@ = F kA (20)

just as it should be bearing in mind what we already know about asymp-

totic freedom, the v'alue of N(k) and the fact that (as R-doe )

[ A’ (Z )] = AH'( °‘4-.)
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For the details of all the foregoing remarks ref( 2 ) might be found

helpful. Certainly, in the sense that the genera lisations of eqgs(15)
and (16) determine the dimensions of the differential operators in which
we are intereste;, and hence the scaliné properties of their determinants,
ve can verify the relationship between a redefinition of I and the runnin
coupling constant.

To evaluate the determinants is trickier. An examination of the
above manipulations leading to 3s$p),"KA.(O) reveal that they work
because these quantities are the residues of the pole at =0 in the an-
alytic continuatien of the integral in eq(l17). For'ehe determinants -that
is not'the case. Howefce, 1f instead of the determieant we consider its
variation with respect to the set of ;netanton parameters then a similar,
but rather more complicated, calculation can be performed. Thus, in
more detail: . : )

. B '
$ 3_:\-(0) . s‘z:‘o ‘£M £ j d¥edly fy('%("” 34 §5* 6 (o) ) (21)

where G(x,y) 1s the Groen function for the covariant Laplacian D‘ s

2’ .
D, G(9) v = §(x-y) (22)
03) : )
Brown and Creamer pointed out that whenever the gauge vector pot-

ential used to define the Green function, etc., above, satisfies the
‘sourceless Yang-Mille equations it will be possible to split the Green
function into two pieees, only one of which is singular, fii.,

|

4(*»9) R P-ﬂ-va Adx + R(wv) (23)
4w !—3‘

59)
In which case a careful calculation shows that

Rtz [ bfoh (B, R0+ en)B, )m] (2



the manifestly singular parts in eq(23) being automatically excluded.
In order to proceed further it is necessary to compute all the
constituents of eq(24) in some detail. It has already been pointed out
how the vector potential Ap is constructed from the (oblong) matrix
v, via eqs(8),(9) and (10). Varying the instanton parameters amounts to
va;ying the components of the matrices a and b whilst maintaining the

constraints expressed by eé(lo). Thus D, and SAr are known. The quant-

r
ity R(x,y) would be calcylablg glven G(x,y) and a way of calculating
the path-ordered exponenéial from the vector potential. The latter 1is
possible'(up to any_raquired order in (x-yb_ ) but somewhat tedious
since we are unaware of any simple expression for it. Fortunately, ihe
former is also po;aiblé, and perhaps amazingly, there i1s quite a simple
and elegant eibreésion for the Green function.(g‘).

fhe basic result abput instaﬁton Gre;n functions is that if we
consider the'éovariant Laplacian in the fundamental representation of.

the gauge group then its Green function GF (x,y) is given by

Ge (o) ¢ YOOV
4n|x-y|*

(25)

In other words,.the simplest generalisation away from the Green function
for the ordinari Laplacian, a‘ ’ hﬁving the correct gauge transformation
propérties and involving the matrix v, Howevér, to evaluate eq(24)

we need the .Green funcyion for.the Laplacian in the adjoint represent-
ation of the gauge gfoup,(!A(x,§).-?o understand»how the Green function
we require relates to thé one we know, eq(25), it.is necessary to under=-
stand the formation of tensor products within the context of the ADHM
construction, along the lines propased in refs( !4 or 1§ ). Needless
to say, whilst we may regard the adjoint representation of any group as
(part of) tﬂe tensor product repr;sentation FEFE and hence write the
vector potential simply in terms of.ﬁ, it 'is too much to expect to be

able to take the tensor product of quantities like those appearing in
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eq(25) to produce the adjoint Green function. Rather the correct proced-

O .
ure leads to 9

N

. . %,
Grepw = ——  VO@VE (1- M) vid® v'(e)
of =|'.._.|* . s (26)
where q’n :I.s an intereeting natrix quantity, depending upon the :ulstanton
parametcrs a,b in a completely contomally 1nvariant way. The Green
function for the adjoint represen_tation can be deduced from eq(26) by

- projection.

Arled with express:lons for Kr . SA’__ » eqs(25) and (26) end inform-
ation regarding tensor products it'is poaeible to deriye .expressions
for ﬂ' ,(0), and hence for ‘the determinant of -D /r , in any represent-
ation of the gauge_- group. Thie has t:eep; ,,done Quith a yarying' degree of
completeness) by a number of 'grqQups and for'the adjoint representation
by JackM?I'he final tasks of undo:lng the variation with respect to the.
instanton parametere and, writ:l.ng the result in a useful form has eleo

- . o)
been attempted, the most complete results so far being those of Jack.

However, unlike the situation with the 0(3) €=-model in two dimeneione,m
it has not yet proved possi“ble to’ recogniee ‘the tern'xs in the expansion
(11) as contributione to a’ knovn partition function(. "T[n view of ‘that, | .
a great deal of work rcmaine to bs ,done before~ any ueeful physical infor-
mation can be extracted from (11). Beeides it ie poee:l.ble that other -
natural and interest:l.ng ‘structures will eventually be revealed and have
to be tanten into account 1n estimating ‘the functiomnal :lntegral

To conclude \ie shall summarise somé of the noet recent results
concerning the determinant-ea.' ’Basically, they relate determinants constr-
ucted for tensor product instantone to determina.nts constructed from
the factors in the temsor product. For _example, 'for SU‘(Z) we have

(for the temsor product of wo 2 dimensional repreeentatione)

n..mr(-b )- -6 ’*('%s) — nbik (M voo)

' v

- (J*S Dix det (65 33 .lu A CSY -+ corsh
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Ln D& (D3 )* 10 JuDes (- Dy ) = 4n Dt (Ma v@)

+ 2= [1% e 2algy) 32 bn 26 (F9) 4+ cmitomt,

where the bracketed subscript refers to the dimension of the su(2)
representation, Ma MS are the antisymmetric and symmetric parts of
a matrix related to Y} (eq(26), ¥ =b¥b (b as in eqs(9)and(10)) and
f{ai-bx)" (a+hx)] -.. But, since the one dimensional re.presentation is
the trivial one we have: .

hbﬂ(fb?.)) = ‘t 2 Du (Mg v )

+ ﬁ!;.s Y 2 26F) 3T e 36 (6Y) +emik, (27

and

dn Dt (~ Dpyy) . -% on DU (Mg v@ V) —2n De-(Ma v@o).
"','2"‘-. fd’x A J6lfv) 33" L 34{D) + cok, (28)

the latter being the desired result for the adjoint representation ;)f
Su(2). The qua..ntities a.pi»éaring on t.he right hand sides of eqs(27) and
{28) have not yet bsen explicitly eva]:uated. However, since it 1s possible
to form any given representation by tensor products- in scveral different
Qays (e.g. (2®Z)S= (3), (3®3)A= .(3) ) there may be useful relation-
ships between different integrals involving the instanton parameters.
Exploiting these relations may lead to more u.serul formulae than (27)

and (28). '

o
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