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A short proof of Parovidenko’s theorem

by .
. AeBlaszczyk and A.Szymafiski

We shall show a short propf of a theorem of Paroviéenko that
each compact sp.ace of weight at most K1 is a continuous image of

* (= Bw =w) of all non-trivial ultrafilters on the

the space w
set w . Under CH we shall give a new characterization of ™.,

We shall use the following properties .of «w® :

(1) w™ is a zero-dimensional compact space without isolated

points, _

(2) every two open disjoint Fg's in " have disjoint closures,

\3) every non-empty Gs 1in J* has nor-empty interior;
for therproof see e.g. Comfort and Negrepontis [1].

Lemma. If f is a continuous map of «J* onto a compact metric space
X and E and F are closed sets covering X, then there exists a closed-
-open set Uc ™ such that £(U) = E and f(w* -U) =F.

Proof. If E~nF #  , choose a countable dense subset D of EnF.
Since the sets £ '(d) are non-empty Gs's , for each deD there exist
non-empty closed=-open sets Ud and Vd contained in f"\d). The sets
£ = F)o Uy ¢ de v} and £(X - E)oUIV, : de D] are disjoint
open Fs's.:Ln w¥ . Hence, there exists a closed~open set Uch“ which
contains the first. of this sets and is disjoint with the second one.
It is easy to chack that the set U is the desired one.

Theorem 1 (Parovifenko [3]). Compact spaces of weight at most K,
are continuous images of <u¥.

Proof. Let X be a compact space ot weight at most Kl‘ Since tihe

Tychonoff cube I 1 is a continuous image of the Cantor cube D 1 ’
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K1

we ccn ascune X to be a closed subspace of D . He chall consider

Al
D! as the 1limit of the Inverse system

D D2 o pi 1 il SO -/ £

?
[ 54

where D ={0,1} , **'=Dd*x D, bP = lim { D% , pa = ,%<B} for Limit 8

and pu ' are projections, l.e. Pa 1X) = X\d fora<N . sirce xc D;“l ,

X = %.1;.” {x'sl ’ (l‘q” 1““5‘}‘ y where Xa = patX), U*:‘= p‘:"xd-ﬂ ’ *‘j"“ .

For exch e\<$q we shall det'ine a cortinuous map iy from ¥ onto o
in guch a way that £ .= g © fufor each a<f, It suffices to do this
for non-limit o ‘s. Assume, we have detined fy for some «<f . Since
X< D* and al<i~a sy Xo 1s a compact metric space. By the Lerma , ve get
a closed-open set Ucc)” suck that £x (U) = ¢y (Xae1n(X<x10})) and
fa (= U) = (X n(Xa*{11)). We define fu4, by setting fienX) =
= (£5(x),0) for x €U and L%, = (£ (x),1) for xe_ca*- U. Clezrly,
fa+1 1s a continuous map from <’ onto Xge4 such that £, = d:"’ e e
The limit map induced by ail fy's is the u.esired one. ' .
It appears that the property formulated in the Lemma characterize.
the space W, Namely, we get .

Theorem 2 (CH). If P is a compact space of weight X4 » then P

is homeon'lorphic to " :l.fiIH. satisfies the toliowing condition:

(4) for each g:ont:uiuous map t 1'rom P onto a compact mesric spacs
X and each closed sets E,FC X covering X there exists a
closed-open set UCP such that £(U) = E and £(P - U) = F.

Corollary (CH). A compzct spacePor weight Nl is homeomoxrphic

to J iff it satisties the following condition:

(5) if X and Y are compact metric spaces and t3P—C80 7 ona
g:Y—oL'to—-X are continuous mops, then there exists a con-
tinuous map hiP——Y such that £ = goh.

Negrepontis [2] has obtained a similar characterization. lle has

shown that a compact space P of welght i\’-‘ is nomeomorphic to

1ff it satisfies the condition (5) and every compact metric space 1o



a continuous image oi the space P.
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