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SEVENTH WINTER SCHOOL (1979)

wlarkoff property of generalized rendom fields

D. Preiss, R. Kotecky

This note wrose from the discussions about the problem
of charecterization of Liarkoff generalized Gaussian rendon
fields posed by Re Schrader last year at this School. 411
the participants of these discussions contributed to the re-
sults of this note, especially the contribution of R. Hijek
cannot be neglected. We learned that in the literature there
is & lot of confusion and mistekes concerning Liarkoff rendom
fields. In this note we give two possible definitions of
the liarkoff property, -study their relationship and on one /
example we show whicﬁ statements claimed in literature are
not true.

4 generalized random field means here a linear and con-
tinuous mapping ct)from the real Schwartz space W(R"™) into
the space I"l(n’z't") of the (classes of) integrabie real-valued
functions on some probability space &\,Z,Qa). For each open set
G<R"® we define 3IG) as the 6-algebra generated by the set
-[(bflfe‘-b(ﬂn), supprG} and containing sets of measure zero.
For arbitrary SCR™ we then define >(S)={ \ 2.(G). (1)

GGOCpEn _
Remark: Other versions of the above definitions might be
used- the intcrsection in (1) might be taken only over
€ -neighbourghoods Ug(3) of S ("sequential definition") and
also,if CfJ is canonically represcnted, the condition thet
>(G) contains zero sets might be omitted. Resulting G-elge-

bres mey diifer depending on definitions adopted.
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As en example we have:

If GCR® is open, let ok(G) be the ©-alfebra on © (&)
generated by all functions <f, "> with feRR2), supp £ G.
Then ngL(G);moL(UF_(L)) for each line LcR2,

GDL €>0

G open

This can be proved by taking a sequence ifj} of functions

from D(R®) with disjoint supports such that:

Sf§=l for each i,

(Usupp f; 1is o closed set disjoint with L,

every compact conteins only finite number of supp 5y
diem(supp f;)—>0 end dist(supp f£;,L)—>0.

Cleerly A=fellin <p,,«p =1y g()\ouL(Ue(L)) end

A L = {BlweB D W+ e B'}'D‘)c, (@e-(Jsupp £0D( )\ k(G).
. GDOL
G open
Ve do not know eny similar example in the case of

G =-algebras containing zero sets.

Ve shall discuss the following two definitions of liarkoff
property: '

M 1: A generalized random field is said to be lil-iiarkoff
if B(v{3Z(G)) = u(vIS(G-F')) for every puir of sets
}:‘CGCRn, F closed, G open and for euach S(ltn-l?)-measurable
bounded function v.

Mo2: A gencralized rendom field is said to be lid=iarkofT
if  E(|S(3)) = B(v|S(2G)) for ezch open GCK"

end for each S (R"-G)-meusuruble bounded function ve.

Note that the definition Ml uses only &-slgebres S(G)

Tor open sets.
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The relation between Ml and M2 is given by
Theorem: A generalized random field is Ml-Llarkoff .
if end only if it is M2-Merkoff and the following condi-
tion holds:
(C) whenever FCGCR™Y,F closed, G open, then the smallest
& -algebra containing Z(f‘) and >(G-F) equals 3>1G).
Proof':

1 M2 by a simple use of martingale convergence
theorems. -

il => (C) will be shown by proving that tor éach fe®,
supp £ CG, the function ¢I.-E(d>f\ S(G-¥)) is S(F) measur-
able: For each open HDF, HCG, there are i‘l,fze‘ib such thet
f=f,+f,, supp fICG-F, supp f,CHe Thus CS?_E.-E(~¢f‘Z(G-F))=
¢f2—E(¢fz\ >(G-F)), is SX(Il)-meusurable since
E(¢f2l > (G-F)) = E(cbfz\ S (H-F)) by Il.

12 & (C) = Ml : if FCGCR®, T closed, G open end
veLl(z(Rn-F)), then E(vli=(G)) can be by martingcle conver-
gence theorems spproximated in L, by B(vI=X(H)) with Il open,
FCHCHCG. Hence it suffices to prove 2(G-F)-measursbility
of E(v(S=(H)). By (C) it reduces to proving this for V=W W,
with wy,w, bounded and >(G-H), >(H-F)-mecasurable, respecti-
vely. But then E(wywy{=(H)) = w,E(wy|Z2(H)) = wyE(wy|Z(310)).

Example: The Gaussian generalized rendaom field 43 on izl
with mean zero and coveriance D(f,g) =(E€‘(x)g(x)+f'(x)d(x§ix
is liz=lurkoff end is not lil-lorkoff.

Lroof:

48 D is exactly the scalar product of the sobolev space \;l’d



(of real lo ally abs lutely co tinuous funct or £ such that
g[fz (x)+f‘z(x)] dx { o0 ), q> can be continuously ext nded to

2
into L, (n,z,tx).
1,2

an isometry (denoted also by ¢>) from ubs
Hence 4> is the standard Gaussiun process on \
For VCW 2 genote (V) the S-algebra (containing zero
sets) generated by {be\fev} + A simple consequence of formu-
las for moments of Gaussien processes is that whenever
V,\VCW]‘,’z are mutue’ly orthogonal subspaces, then (V) end
‘,L(w)' are independent.
For SCR denote Hs=ffeh'l’2|f=0 on R-S} = {fewl’zisupp f£C S}.
Obviously Hg= () Hy. As \_J I 1s & lineur space, m=\ ) 1y
G>S G3s G5S

G open G open G open
and thus Hs+ U }l'é is dense in \‘1’1'2. \le shall use a con-

G>sS

G open

sequence of this: If SC..R and v is a bounded 3{R)-measureble .
function with E(vwlwz) = O whenever GDS is open and w1V,
are bounded J;(HS), \,L_(HG)—measurable functions, respectively,
then v=0. It holds since according to a martingale convergence
theorem v = E(v|=(R)) = éi;lsli(vls'( GHIUAH))) .
G open

low we shall prove =(S) =\;E(HS).
2X(8) Dk(Hg) is obvious. ‘
S(S)Cllly) 2 if v is a bounded S(5)-measursble function
with E(v[ok(ily)) = O end G, G open, w),w, bounded ‘)g(llb),
&(HG)-meaauruble functions, respectively,then E(vwlwz) =
E(vwy)E(w,) as vw,is u&(HG)-meusurable (for G open, Jk(il;)=
=(G) ). Further E(vw,) = E(E(v Uc(ns))wl) = 0, hence v = O.

If GCR is open, then I = oY , hence >0G) is tri-



v 1 1" llarkoff prop rty of Cb follows by indep n enc
of 3(G) = A(iz) and SE™-G) = K(HTE ).

. L 7

A8 OL((H(_CQ,O> @i <O,°°)) ) is a nontrivial ®-al
gebra independent of o((H(_ 0oy 0> ®H <O,°<>))’ the latter
cannot be equal to >(K). This implies that the condition

(C) does not hold.

Let us note some remerkuble facts:

4n often mistake in articles about generalized liarkoff
random ficlds is the statenent that the condif&.on (C) holds
Tor all generalized rundom fields (see Leuma .l in EN]) or
at least for all Geussian fields (see Lemma 2 1n [KLI]).

As shown by the Example even the latter statement is false.

The Exemple shows also that the Theorem 1 from [K.I/I]
is false. The Gaussian field from the Example is clearly
nonlocal, i.e. it does not fulfil the condition (Al) from
[k1]. Using the implication Il =» (C), instead of the Lemama 2
from [KM] the implication W1 =>locality may be proved.

The problem whether locality of a Gaussien tield (such
that a dual field exists) implies some kind of liarkoff pro-
perty,is still open. The proof or the implication locality =
L2 in [Kui] is not correct (the proof of Lemma 8 contsins
the same mistake as that of Lewma 2). This difficulty may
be overcome by taking the conclusion of the Lemma 8 of [1&.1]
us sn odditional cssumption. One thus recovers the resultis
ennounced in Lll} stating that locelity implies ill under such

en asaumption.
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