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SEVENTH WINTER SCHOQL OF ABSTRACT ANALYSIS (1979)

INVALID VITALI THEOR:EMS
D, Preiss

Vitali type covering theorems in finite dinensional Benach
spaces hold (under some regularity assumptions on the considered
covers) for arbitrery measures (see [M]). If we drop the assum-
ption of finite dimensionality the situation becomes different.

By a result of Davies [[D] there exist distinct probebility measures
on a metric space which agree on all balls. Although this perti-
cular behaviour is not possible in the case of Hilbert spaces,

it was shown in [P] that Vitali Theorem does not hold for centered :
bells end Geussien memsures. The following résult shows that even
the Density Theoren does not hold in’infinitely dimensional

Hxlbert. spaces. -

‘Jheonem let Hbe a separable :.nfmltely dimensional real”’
Hilbert space. Then there is a finite messure u on the Borel O«

algebra of H and a compact. set CeH such that u(C)>0 and .

r;a‘u Can:: r)) - 0 for eech x¢C.

Proof. By induction one eesily defines a sequence {ak} of
positive numbers and a sequence {Nk} of natural numbers such that
o

E_{ al.ey <oo - end Un eyeedy = =0

Let S be the set of all finite sequences (zl,...,zk) of natu:‘al
numbers such that z,=N; ond iet. Z be the set of &ll infinite
sequences (zl,...l of natural numbers such that z;=N; .

For each z = (zl,...,zk)e S choose hfz)e H such that .
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uﬂ(z)nd = "k and h(y) hqz) are orthogonal whenever Y,Z¢ S, YV#z.

Put

(z) = Z h(zl,...,z :) for Z=(Zl,..oyzk)es.,
J=1

f(z) = = B(zZ)seeesz;) 0T 25(2)5000)€6 2«
J=1

Note that I[jf(y) - £(z)i% = 2™ if y,z€2,y #2z end
k is the least natural number such that z #y, end
jif¢z) - g(il,...,zk)lla = 2K for each 26¢Z eand natural k.

The set Z considered as a product of finite topological spa-
ces is a compuct metrizeble space., Iet v be the product of mea-
sures vy on the sets [l,...,NJ-} , where vj(n) = (Nj)_l .

Put u = f{v) + ywhere

a &
(Zl,...,zk)es k g(Zl,-..,zk)
f(v) is the image measure end €,  is the Dirac measure at x.

If C=#(2), z€2, x = £(z) &nd 2 ¥<crlco®*

WBG,™a C) = v{yes; y; = z; for isl,...kn} = @.., )7

then

and u(B(x,r))?ak , since g(zl,...,zk)GB(x,r) . ‘lhus

u(Bi{x,r)nC
—J‘}(Sf;(x—;;% (BICIJ X} QI k+l)

Kemark. If we construct the sequences {a,{, fu X so that

Sl g N ..o, <1, then the measure w = u - 2f(v) has the

following properties
(1) wH)< O
(i1) for each xeH there is r(x)>0 such that w(B(x,r))= 0
for each positive r<r(x).
This example should be compared with a recent result of

Christensen [G]: If u is a measure on H such that for each x€il
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there exists r(x)» 0 such that u vanishes on all balls contained

in the ball with center x and radius r(x), then u vanishes identica-

11y.
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