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SEVENTH WINTER SCHOOL (1979) 

INDEPENDENT FAMILIES ON COMPLETE BOOLEAN ALGEBRAS 

B. Balcar and F. Franek 

We present definitions and lemmas concerning a proof of 

the following fact, without any set-theoretical assumptions* 

Theorem* Every infinite complete Boolean algebra contains a 

free subalgebra of the same cardinality* 

This solves the Question 44 of [ V D , M , R ] . The history of 

this problem and a survey of partial solutions ([KO],[Ky],LMJ) 

is given in [Bla ] • 

The theorem extends the classical result of Hsusdorff and 

Pospisil concerning complete atomic BA's (=^(t<)) to arbit­

rary cBA's • 

Let us summarize some well-known consequences of the 

Theorem* In what follows. B denotes an infinite cBA and X 

denotes an infinite extremally disconnected compact (e«d*c«) 

space. 

CI Let U(B) be the set of all ultrafilters on B , then 

card (U(B)) « 2 c a r d <B> ; equivalently, card (X) * 2w(X> , 

where w(X) is the weight of X * 

C2 There are many ('« | IL(B) |) ultrafilters on B which 

have the character (=* the least cardinality of a set of genera­

tors) equal to | B | • 

The consequences CI and C2 solve problems raised by Efi-

mov [Ef] • 

C3 If C is a cBA with | C | 1 | D | then there is a homo-

morfism f : B ont<-»C ; equivalently. for on e.d.c. space Y 

with w(Y)<w(X) there is an embedding of Y into X « 
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C4 There is a continuous mapping f : x onto>-{o,l}w(X^ . 

C5 The space X contains a copy of itself as a nowhere den­

se subset and therefore X is not homogeneous* [pj*, 

Notations, definitions 

For a BA B let B+ « B - {o } . For uEB+ let Bu de­

note a "partial subalgebra" of B with the universe {v-^u ; 

VGB} . 
(i) Part (B) «{pSB + ; Vp « 1 and the elements of p are 

pairwise disjoint } • 

(ii) fi S Part (B) is called an independent family of parti­

tions if for any finite set of partitions { P0##««-Pn.i } 

c (P and every mapping f : n—*u{pi « i<n} with 

f(i)Gp± we have A{f(i) , i<n}i- 0 • 

(iii) B is semifree if there is an independent family of parti­

tions fi on B with | f \ a | B | „ 

Hence the theorem is equivalent to the statement "every infini­

te cBA is semifree" . 

(iv) D^B + is dense in B if (̂  v£B+)(3uED) u<v ,• 

d(B) a min {card (D) ; D is dense in B } . 

(v) sat (B) « rain {y; (trpGPart (B)) (|p|<v>)} (! less than) 

Trivially, sat (B) > sat (Bu) , d(B) ̂  d(Bu) for uEB+ . Hen-, 

ce for a cBA B there is a partition p such that 

B a y ' . Bfi (a product in the category of BAfs ) and all B 's 
uGp u u 

are homogeneous in sat and d . 

(vi) (Erdos, Tarski), If B is infinite then 

^ ^ - K+ (K infinite) 
sat (B) a -CIT 

^^"•^ weakly inaccessible (> tx) ) # 
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Combinatorial facts 

A Lot fx. , l € I } bo a family of sets. A set )J'^ T X. 

is called a finitely distingueshed family (FDF) if for 

any finite i7
Q ^ J/ there is an i<EI such that 

.{'(-> ; f € y 0 } | - | i / 0 | . 
L 1 If Xi's are infinite, then there is a FDF i/

7 -̂  T X± 

with | 1/ | « | FX ± | . 

Consider B « <P(K) for infinite K . We can obtain ve­

ry easily an independent family flQ & Part (B) such that 

| fQ | « u! and | p | » K for pG#0 . Using L 1 and fiQ we 

obtain the well-known fact ([EK].[KO].[KU]). namely, there is 

an independent family of partitions f - Part (^(K)) such 

that | $ | » 2 K « | B | and (fp€.<P) | p | « K . 

Corollary. If B is a cBA and B e - ^ { D
u - U ^ P } ancl Bu' s 

are semifree then B is seraifree, too. 

Q The following lemma is a straightforward reformulation 

of a result of Vladimirov and Monk ([V],[MJ). 

L 2 Let B be a cBA and IP S Part (B) .For pG// lot 

p ^ B {\/p1 ; p1 S p} . Let (/f̂  )" a ( A a ; a is a selector 

of { p 2 ; ?€*}}_. 

If for every u G u f p ; p£-^} the set (x-<u ; x € (Z^)'1 -

- (ojj is not dense in B , then there is a partition 

q a { X
0#

X
:L} such that xA u £ 0 for every x(Eq and u E U ^ 

C In the sequel we assume that all DA's are homogeneous 

in sat. 

We use the following "disjoint refinement lemma" from 

[BV] in the proof of L 3, Let v/ be a cardinal, V + < 

< sat (B) . Then for any family fu^ ; <* < V } — B+ 

there is a disjoint refinement, i.e. a family 
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(v^ ; * < v} £ B+ such that ^ < u^ and v^ A v • 

« 0 if (A / A . 

L 3 Let sat (B) a K be a weakly inaccessible cardinal. Then 

there is an independent family (P of partitions on B such 

that 

(i) \f | « K 

(ii) sup (|p | ; p G S } B K . 

For a proof of the theorem it is sufficient to deal only with 

atomless cBA's . If B is not atomless then B n B ^ B 2 , 

whore B1 is atomic and B 2 a 0 or B2 is atomless* If 

IB | a | B 1 I , B is then seraifree because B^ is by the classi­

cal result. Otherwise | B | a | B2 | and B is semifree iff B2 

is. 

Let B a 2 { B U ; u E p j be a decomposition of an atomless 

cBA B into factors homogeneous in the both cardinal characte­

ristics sat and d • Then it is sufficient to prove that B
u'© 

are semifree. 

Thus, let B be an atomless cBA homogeneous in sat and 

d . 

Case 1. (Well-known before [_KyJ) 

sat (B) a K+ and d(B) a X. 

Then ]B| a X and we can use L I , L 2 • 

Case 2. sat (B) a K , K is weakly inaccess. 

d(B) a X . 

Then |B| a Xi> and we can use L 1, L 2, L 3. 
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