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SIXTH WINTER SCHOOL (1978)

ON ULAM’S PROBLEM ON FAMILIES OF MZASURZS
by
E. GRZEGOREK

Throughout, !SI denotes the cardinality of the set S,

(S) the power set of S, [S]y {XCS |x)= vx , and V=L
denotes Godel’s axiom of construotability. Small gresk let-
ters denote ordinals, with %® Vot always dencteing inZinite
cardinals and A 5V any (finite or infinite) cardinals.
.The following corollary follows from our Theorem 3.

CCROLLARY. Let F be a family of 6 =fields of subsets
of the real line S, such that [STC_'A and A #79(s) for
every A€ T. Then.

a) |Fl<w 1mplies UF # R (s) ;

v) 1z 29= w, then |Flew implies UF # D(s);

©) I£V =1L then |F|g w, implies UF # T(s).

The Corollary can be strenghtened even under weaker set
theoretical assumption (see Theorem 3). In the case of an
additional assumption that om each A€ F 1t is possible to
define a non-trivial measure (or even that A satisfies only
certain chain oondition), the Corollary has been known. 1In
that case, a) is due to Ulam (ses [1] ), b) is a theorem of
Alaoglu - Erdds (see [1] and also [4] and [3]), and c¢) is
a theorem of Prikry (see [4], for generalizatious see [3],
for strenghtenings and further gemeralizations see [6]. In
case on each A€ F it is possible to define a non-trivial
two-valued mensure, 6) is a theorem of Jensen (see [0]).

The strongest and the most general results connected with
a problém of Ulam on families of measures (see problem 84
of [2] and also [8]) have been recently obtained by Tayler
in [6]. The main subjeot of this note 1s a generalization of
two theorems of Taylor in [6].

1z Q< 9(S) then we define I(Q) ={X € Q: YX)C o}. -
Q will be called /u.-oomplete iff for every X CQ suoh
that |X|<m we have UX ¢ Q. Remark that 1f Q 1s u-
- gomplete thenm I(Q) 1s a  e-complete ideal on S. Q will
be called non-trivial iff [511 cQ and Q # F(s).

A family F C QP(s)) will be called v - saturated:
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werstJ, vhere I is on 1deal on S such %hat I:(\Z{I\Af:A e F},
1ff for every collection {X“ C ALY } < (8) =UF there
extsts {,6} € [v]? such that £, N g ¢ I.

A family F C ?(?\S)) will be called - saturated iff
F is VY -saturated w.r.t. I = ﬂ{rm): i e T}

The following two definitions are central for the conside-
rations of this note.

1t o< P(B(%)) then the symbol
n (%.)\,/U-> _g._>vn
denotes the following assertion. v
If FCQ, |Fl€< N and I(a) is o —complete for every
A €T them F 1s mot vy - saturated,

If Q c?(?(n)) ‘and I 1s ap ideal on 2 {we do not
exclude the case I = {2)}) then the symbol

" <%:A,/M»> L><V’I> u
denotes the followlng assertion.
12 FCQ, [FISN , 1< N{1ia): aer} and 1,B) 1s
S~ — oomplete for every B ¢ F- them F 1s mot v -satura-
ted w.r.t. I.

In case Q 4s a set of all non-trivial ideals on 7 the
notation <% :)\,/l-o> L)v was introduced by Taylor an
[6]. 1£ Q 41s a set of 2ll non-trivial ideals on X then
instead of 7t : A ,/u-) L v and {7: )\,/u)&;(v,1>
we will write {7¢ IN Y =>V and {%: )\,/u.)—-><v,15 ,
respectively (i1.e. we suppress the superscript Q in this
case).

For a fixed cardinmal 7 we define
R={AC?(7¢):A is non~trivial andV(aéA)V('béA)(anbeA and a-be A)}

e have the following theoxrem.

THEOREM 1. Assume ALY ) W . Then we have
a) If I isa (A+w) - ocomplete ideal on % then

<o ik pud By lv, 1) 1 Y <v,Id .
a’)If N then :
(rinuy Boy st (an, > — v
From Theorem 4 we have in particular the following result:
Lws Wy, W, > = w0 1z g Wy, WY B> @
This (und also our Thoorem 3) should be compared with the
comments of the authors of [2] on the problem 81 of Ulam
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\see also [87] ).

With the help of Theorem 41 we will generalize the follo-
"wing results of Taylor (Theorem 2.2 and Theorem 4.4. of _6]).
We fomulate them 1n a 1little more genmeral form, which easily
follows from the original one.

THECREM 2 (TAYLOR) .

a) Assume vV RN+ 5 M2 Ny , A<® end I is a(fewt
complete ideal on %¢. Then

<¢¢:,\,/,,>-—> <V Id 1ff il uwd—> (v, 15

B) W iW,0d-> w, 1f KWy, w> -0y, [0

Reoall that the above theorem of Taylor is a strenghtering
and a generalizatlon of results of Ulam, Alaoglu - Erdos {see
[1]), Jensen (see [0]), Prikry (see [4]) and of the presert
author (see [3]). By Theorem 4 and Theorem 2 we have the fol-
lowing generalization of Theorem 2.

THEOREM 3. a) Assume I 1s a(N+w)- oomplete ideal on %
and Y (N+w) » 0 Mrow sy A<M . Then
<9¢:A,/u>n? v aI> 122 (e 4> —> v, I .
DIBW,=> Wy 11240 1 0oy =KWy, [w]¢ )
Remark that if we replace R by ROC R, whera R, 1is

a collection of families of subset of ¢, satisfying certain
natural chain conditions, then Theorem 3 becomes a known re-
sult which easily follows directly from Theorem 2 (see Coro-
llary 4.13 of [6], compare also [3] and [4] ). )

To see for w‘niohu,/\)/«, Y Theorem 3 works, recall the )
following well known facts.(u":l,n")-—)n* and £ 2%: 1;}{“.}—9 w
holds for every ¥ (see [7]).(’%.‘1,/4)-7/uholds for every ¥
which is less than the first weakly innaccessible cardinal
and every <2t (easily follows from the first previous
relationé).(n-'i) w.,)‘960 holds for every X which is less
than the first strongly imnaccessible cardinal (see [77). By
results of Tarski and Solovay the relations holds if ¢z 1is
even larger. It is also well known that the axiom of constru—
otability (Vv =1) implies <9:1,¢0> -—7(@1,[@]‘“’0
(see [5]). ~

The elemantary proof of Theorem 41 will be submitted else-
whera. . ’ N
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