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SEQUENTIAL COMPLETENESS VEHSUS 5ECH-COMPLETENESS 

by 

rt.FriS, 2ilina 

Detail information about sequentially complete spaces can be found 

in j_2J. Concerning Sech-complete spaces we refer to [ll . In this 

short note we present two examples showing that these two topological 

properties are independent. All spaces are assumed to be completely 

regular. 

Let X be a space and 6X its fiech-Stone compactification. He-

call that X is sequentially complete iff it is sequentially closed 

in /}X (i.e. no sequence in X converges to a point in /JX-X) and 

X is fiech-complete iff X is a Q -set in &X (i.e. X is an in­

tersection of countably many open sets in /3X). 

Example 1. Let Q be the space of all rational numbers. Then: 

(1) Q is sequentially complete, 

(ii) ̂ Q fails to be Cech-complete. 

Proof, (i) follows from the realcompactness of Q. The direct 

proof is, however, straightforward. 

(ii) is well-known. 

Example 2. Consider the set X = (( U^+l)x( 6^+1))- { ( ^ f ^ ) } 

equipped with the following topology: all points (̂  t J ), ^ € - ^ f 

V^Uy^.j are isolated; for each (^ity>» s«-ts { ( ^ K
0
, ^ ) } U 

u ('^»%"* s % ^ ^ o f o r a 1 1 b u t : f i n i t e l y many % } form a local 

basest ( ^ , ^ ) ; for each ( J , ^ ) , sets {(J , W^)} U {(^ , ̂  ) : 

\€-by\ for all but finitely many v } form a local base at 

(| t #!>• Then: 

(i) X is fiech-complete. 

(ii) X fails to be sequentially complete. 

Proof, (i) follows from the local compactness of X. 

(ii) let f€C*(X). Then for each J ^ ^ there is ^{J ) 
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such that for each ^ > ̂  (̂  ) we have f ((| , l) )) = *^%*\{%))) 

= f(fc ). Put l£(f) = sup ( T T ^ ) : g e ^ } . Since the sequence 

<(|,7^(f))> converges in X to (̂ r̂ , 17(f)), the sequence 

<(^>kr^)> is fundamental, i.e. for each f€C"*(X) there exists 

lim f ((> %uy^)) = lim f (J ) = A(f). From this it follows easily that 

J-^o 
the sequence < (| , < * K ) > converges to a point in y&X-X. Really, 

put Y = XU{(^ 0, or^)} , for each f€C*(X) define f (( Or̂ , u^)) = 

A(f), and equip Y with the weak topology with respect to all such 

extensions. Then X is a dense C*-embedded subspace of Y. Hence X 

is homeomorphic to a subspace of fix and the homeomorphism is point 

wise fixed on X. 
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