WSAA 6

Uwe Feiste

Some remarks on Caratheodory construction of measures in metric
spaces

In: Zdenék Frolik (ed.): Abstracta. 6th Winter School on Abstract Analysis.
Czechoslovak Academy of Sciences, Praha, 1978. pp. 29--34.

Persistent URL: http://dml.cz/dmlcz/701116

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic,
1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic
provides access to digitized documents strictly for personal use. Each copy of any
part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://project.dml.cz



http://dml.cz/dmlcz/701116
http://project.dml.cz

Some remarks on Caratheodory construction of measures
in metric spaces

U. "eiste, Greifswald

If we have a metric space X = (X,¢) and AeX, then by
Halmos {3)p.53
HP(4):= sup 1nt{Fd’fA )/ A €R(X)A Haiu A J(Ai)!Z}
is called the p-dimensional Hausdorff measure of A, where
peR MO} “R(X) is the set of all.subsets of X and ¢(B)
denotes the diameter of BéX. General considerations on
such a definition are given in the book of Federer [17169-171.
I will start with these c¢onsiderations.
Let ¥ be a family of subsets of X and §:F—» Ry(=Ryvf@]) a
function on¥. A sequence (Fi)i“N is called an sllowed
€-covering of A with respect to¥,iff
1, F.6F for all ieN
2, 4 Fio A
3. J'(Fi)‘g' .
If we define o~
1,(A) = inf {E;(Fi)/ (Fy) ey 18 8llowed £-covering of
A with respect toF§
so we obtain .
a) 1,(A)3 14(A) for £s¢’
b) 1,(AvB) = i(A) + :l'(B) whenever g(A,B)) 26 > 0
The validity of al is obviously.
To bY: Let (Fi)icN and (Fi)itn be allowed £~coverings of
A,B respectively, then F‘ FP, F2, F2, .ee 18 an allowed
g-covering of AvuB. Hence it holds
’ () i,(AvB) £1,(A) # 1,(B)
On the other hand let be ¢ (4,B)> 2€ , then every allowed
€-covering (F; )1‘15l ot AuB consiﬁts of tow disjoint
allowed &-coverings (Fi)icN and (Fi)ian of A,B respectively,
that means
(x) i"(AvB)b it(A) + ic(B) whehever ¢(A,B)>2¢ .
(») and (»# is the proof for bY.
a) implies
% (A) = lim 1£(A) = sup i‘(A) for all AcX
LY £»0
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% :R(X) —rR is an outer measure (i. 6. O¢ ‘{L(A)f!"
%(@) = 0, 4(a) € $(B) for AB , ¥ (!JA )6Z:¢(Ai) )

c) 4 :f(X) —> R,is a metric outer measure,

i.e. 4 (AvB) =% (A) +%(B) whenever ¢(4,B)>0

The proof of c¢) is a conclusion of b), namely g(A,B)> 0
implies the existence of >0 such that $(A,B)>4& . Then
we get 1i,(AvR) - itf AY + i,(B) for all z&i-,and that
means ¢ (AuB) = %(A) + §(B) by definition of¢.
Let us denote by Ay the #-field of g-measurable sets (AeX
is called ¢-measurable, iff %(E) = %(EnA) + g(EnA")
for all EeX), For every metric outer measure $:R(X) —> R,
holds the following
Lemma:(Federer [1] p.75, Helmos (21 p.48)
ﬁet ¢ @(X) ——)R‘ be an outer measure on X, thenvl¢73(x) Iff
@ is a metric outer measure, where B (X7 denotes the 6&=-field
of Borelsets of X.
By this lemma it holds wp>3(X). ¢ :d,—> R, 1is called the
Caratheodory measure on X with respect to ¥ and §:F — 'ﬁ..,.

Examples for Caratheodory measures:
1) G(PF):= (F) for all Fed
a) F-{x31
If [X{= 1,then ¢ ¥ 0. In the case |X[>1 it holds % (A)=c0
for all AcX
b) ¥ = (F/ PcXalFl= 1], then
Y(a)= {O for |Al€2,
® for [A(>x,
eT X ={x/ x=0vx=%’ , neN {, g(a,b) =la-bl, F= { ¥/ FeXa|F|227
then ()= 0 for A ={0{
¢ otherwise
a) (X,¢) = (R,¢), F={F/ P=(a,blAd,beRf , then Yis the
Lebesgue measure on R.
2) §(P) =N P) For all Fe¥ and peRe{07
a) F =/R(X), then ¥ corresponds to the p-dim. Haus-
dorff measure HP.
b) J ={F/ P is a closed ball in xf, in this case ¥
is called the p-dim. spherical measure over X.

The 1-dim. Hausdorff measure, the 1-dim. spherical measure
and the set of between points

Let us start with the definition of betneen poinis
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x€X is called between a,b ¢ X, a$x, bix, iff
9(a,b) = ¢(a,x) + ¢(x,b) .
Let B(a,b) be the set if all between points of a,be X and
B*(a,b) = B(a,b) v {a,b} , then it holds for the reals
¢(a,b) = & (B(a,b)) = R (B%(a,b)) = H'(B (a,b)) = S'(B {a,b)),
where a,b€R, ¢ denotes the euclidian metric on the reals,
A the 1-dim. Lebesgue measure and S' the 1-dim. spherical
measure, In my lecture in Warnemiinde (in autumn 1977)
"A special property of 1-dimensional Hausdorff measure",
1 asked for the validity of the equation
$(a,b) = & (B (a,b)) = H'(B (a,b)) in an arbitrary
metric space X. The main result was the following
1 Theorem.
Let (X,f ) be a complete and convex metric space (convex in
he sense of Menger) and a,b X, hen the following conditionsa e
quivalent:
I g(a,b) - €(B*(a,b)) = H'(B ( ,b))
is pos i 1le to connec a d wi ui hort t

rc.
3B (ab)is n arc, i.e ho eo orphic to 0 1]
. nere is a unique metric segm nt (a b) ¢ nne ting a and b,
5 If p,qeB*( ,b) with p¢q, then peB'(a qQ) o e B"(q.b)

Remarks:

1) An arc connecing a,beX is a homeomorphism f3 l.'O,‘llﬁ?g X

such that £(0)=a and £(1)=b,

A shortest arc connecting a,b€X is an arc f:[O,ﬂm X

connecting a,b such that 1(f) £1(g) for all arcs

g:[o, 117 into X comnnecting a,b, where 1(f) demotes the length

of the arc f.

2) (a,b)—'sis called a metric segm nt connecting a,b iff

1. (a,b) € X and a,b e(a,b)

2. (a.,b)'5 is congruent to an interval [x,yIl<R, i.e.
there is an intervall [x,y] and a metrical
isomorphism f:[x,y]—>(a,b),, such that
f(x)=a and f(y)=b.

Now let (X,1 #) be & n-dimensional normed vector space and

K. (x) := {v/7exA 1z-yl s}
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the r-ball with the centre xeX, then K.(x) is a convex
and symmetrical set., A point ye€K_(x) is called an extreme
point of Kr(x), iff ihere is not ; finite line chr(x),
containing y in the relative interior of g. For example
let us consider R2 having the following two norms
1) I <= (x1 + xz) , wnere x = (x1,22)
In this case every point yeFrK (x)-is an extreme point.
2) Ixil:= sup{/xﬂ lle’
Then FrKr(x) contains exactly four extreme points.
We obtain the following theorem as a conclusion of the theorem
atove, '
2. Theorem:
Let (X, ) be a n-dimensional normed vector space, then
the following two conditions are equivalent:
1. ¢ (x,y)=d (B"(x,¥))= H1(B'(x,y)) for each x,ye X
2. Every point y belonging to FrKr(.xi ‘is an extreme point
of K (x) for each xe¢X and r>0.
Proof: 1=»2
We suppose y € Frk,(D) and y_ is not extreme point of K,4(0),
hence there is a finite line (a, chK (0), such that Yo is
the centre of [a,b] ,i.e. y, = 4 {a + b). The definition
c =8 -7y, implies the following equations
lal =By, + cfl =1 .
ub|=uy° -cl=1
N2y, - al=H2y, - y, - cl=ly, - ¢cf=1 .
On the other hand it holds: lZyol = 2ly°|-- 2 . Hence the
arcs f0,2y°7 and CO,a]u I:a,zyo] are two shortest arcs
connecting O and 2y°. That is a contradiction to theorem 1
condition 2. (If Yo € !rKr(x) and y, is not extreme point,
80 we get a contradiction in the same way)
2*>1
. On the supposition that 1. does not hold there are two points
x,y€ X and tow shortest arcs f:(0,1]—> X, g:[0,1]—>X
connecting x and y, such that £ 4 g and 1(£f)=1(g)= ¢ (xX,¥).
It is possible to find a,b eX ,such that
a€g(l0,11)a ad£(£0,1]) ] y
b4 g(£0,17) A b e£([0,11) Av
0< F:i=1([x, a‘] )=1((x,b])< 9(x,¥), x (3
where 1¢(x, a] ) denotes the length of g from x to a and

¢‘~.
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1( [z, bl ) denotes the length of -f from x to b. We ask
for- the distance ¢ (x,yo) and g(y,yo), where Vo= 2 (a+b).
¢ (x,y )= =lx-y 14 2(¥x-at+ Ix-v¥)= %< ¢ (x,a)+ ¢ (x, b))= £(F+8)=F
9(y,yo) ty-yelf-f( g (¥,8)+ £(y,b))= #( f(x,y)-r+ 9(x,y)-r)=
=¢ (X,y)-i‘ :
In the case f’(x.y )41' we obtain for the length of the
arc [x,yJu[y »¥] connecting x and y
1=,y July 37 )=1( Ux,yo) )41y g,y1) = £(x3)4+ P(3,,¥)
< B f(x,y)-r— y(x,y), i.e.
1Ix,ydely,,31)<¢ g (x,y). »
That is impossible, hence f(x,yo) = r. ’l‘hat means y, belongs
to FrKs(x) and so we get a contradiction to 2. (because Yo ’
is not extreme point). :
Now we consider some relations between the Hausdorff measure
and the spherical measure on a metric space ¥ ., The following
properties are well known (see Federer [1])
1. HP(4) = SP(A) for ell AcX and p e RMOf
2. If there is a real ¢ 21 for every subset AcX, such
that A is contained in a closed ball having the
diameter smaller or equal o-d(A), then SP(A)<&cP HP(4).
(c must be independent of A)
= 2 fulfils the condition above., We obtain such
a real number ¢ in the n-dim. Buclidian space R® by
Jung$ theorem:( Federer 2.10.41)
If A<R™ and 0<¢Jd(A)c o0 , then A is contained in a unique
closed ball with minimal diameter, which does not exceed
( 2n/n+1 Hida) .
For example if we consider a equilateral triangle A in 12,
then the smallest closed ball containing 4 has the dia-
meter 2r, where r = ;T'J[A)
3, If AcX is congruent to a closed interval (x,y] ,
then s'(4) = [x - ¥).
Now it is easy to prove the following theorem.
3. Theorems
For every complete and convex metric space X holds:
(s (a,b) )-g(a,b)(-—-) s! (B (a,b))= ¢{a,b)
for arbitrary a,be&X.
Proof: , wh*
By theorem 1 H'(B%(a, b))=¢(a,b) implies: B*(a,d) is
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ccngruent to a closed interval lx,yj such that ¢(a,b)=[x-y.
Now we use property 3. and obtain S (B*(a,b))= |x-y )= ¢(a,b)
@==‘

By property 1. we have H (B*(a b)) £ S (B *(a,b))= ¢(a,b).

On the othe~ hand it holds f(a,b)éE{(B (a,b)) in every
complete and convex metric space.

Remarks:

17 This theorem implies the va’idity of theoram 1 for the
1-dim. spherical measure.

2) By theorem 3 it holds H'(B" (a,b))= p(a,b) impliee

il (B (a b))= =s’ (B"(e,b)) for every complete and convex metric
space, But in general it does not hold H (A)—S (A) for AcX
and (X,¢) complete and convex metric space. Por example:
Let (X,§) be the Buclidian plain R, Ve define

A := A; , wnere
¢ a1
set of all points beloncing
A1 = 4 to the equilateral
triangle
a 1¢ b

set of all points belonging
Ay, = to the smaller three -
eqilateral triangle

3% 1€

XXX T3
— esecee
)

Then it iolds: H (A)=1 and S1(A)=.%§
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