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FOUKTH WINTER SCHOOL (1976)

SOME THEOREMS ON MEASURABLE AND CONTINUOUS. SELECTIONS A!D
SOME APPLICATIONS

by
G. MAGERL

Let X, Y be sets (+9), oL <P(X), ¥ Y). Call
® : X—> Y a correspondence, iff & (x) is a nonempty sudb-
set of Y, V¥ x. Call a map £: X—>Y (correspondence b
: X —>Y) Ot - S -messuradble, iff £°1(B) e X (§~1(B) =
={x |® (x)nB+BY e W ) VEecH . £:X—> Y is a se-
lection of @ , iff f(x) € & (x) Vx. ‘

Definition. Y topological space, 6 : 'P(Y) —> 2 (Y)
a map such that 6(Y) = Y. Then E(X,Y,6 )é=> 3 Z<cY dense,
Y coverings {4, |z¢Z% of X(4, € &) J£:x—>7¥
UL -¥U-measurable (¥ = open sets) such that f(x)e6fz|x €
€h,1 VxexX. '

Examples are:
(X, (L ) measurable space, Y Polish, 6 = id, them E(X,Y,6 ).
X paracompact, (L = ¥ , Y locally comvex space, &'(T) =
= conv (T) (TcY) then E(X,Y,6),

From this one gets a simultaneous proof of Theorems of
KURATOWSKI/RYLL-RARDZEWSKI on measurable selections and MI-
CHAEL on continuous selections, namely. o

Suppese L nfa'aite‘. U“““t‘bl‘ -stable, Y complste
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letrica,(vn) a fundamental sequence of entourages for Y
such that 6(V,GNsV,(y) Vm Yy, V oV,sV ., V,
 symmetric, vn(y) open. Suppose E(X,Y, &) is true, let @ :
: X—>Y be an (I~ U -measurable correspondence such that
Vx VYo & (xMNsV (P(x)). Then I£: X—>Y
Ol - U -measurable, such that £(x) & & (x) v x.

As a consequence we get:

Theorem (KURATOWSKI/RYLL-NARDZEWSKI) .

(X,0¢ ) measurable space, Y Polish, & : X—>Y U~ -nea-
surable (or (L~F -measurable, F = closed sets) with clos-
ed values, then Q) has an Ul - & (Y)-measurable selection
($r(Y) = Borel subsets of Y).

Corollary. X, Y topological spaces, & : X—> Y, such
that 6($) = f(x,y) |y € $(x)¢ is the Hausdorff continu-
ous image of a Polish space, 4L & Borel measure on X, then
® has a L(x)*- 4y (Y)-measurable selection (L (X)* =
= Caratheodory ‘comple tion of &~(X) ); iff X is locally com-
pact and & & Radon measure, them one can replace - (X)*
by 971 , the @ -measurable sets.

Applications: Implicit function theorems (FILIPPOV's
Lemma) and BANG-BANG-principles in control theory, integra-
tion of correspondences, Extensions of measures and preima-
ges of measures,

Theorem (YERSHOV, 1970, LUBIN, 1974, IANDERS/ROGGE,
1974).

(1) Suppose X Souslin space, 4 & % (X) countably genera-
ted. Then every measure on $§ has an extension to £-(X).
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(2) X, Y Souslin spaces, £: X—> Y onto, Borel map, (W
Borel measure on Y, then 3 Borel measure - on X, such
that £(») = © .,

Proposition (proved for compact metric spaces and con-
tinuous f£ by EISELE, 1975).

X lazin, Y Souslin, @ Borel measure on I, f: x—-i- Y on-
to, Borel, if the preimage of © '\mder T is unigue, then
@ (43 |cara £73(z)z 23) = 0.

The converse holds for compact spaces and continuous
maps.,

Continuous selections ,

Theorem (MICHAEL, 1956) (follows from the abstract Le-
mma ) . -

X paracompact, Y Fréchet, & : X—>Y lower semicontinuous
(i.e. O =¥ -measurable) correspondence with closed convex
values, then $ has a continuous selection. ‘

Corollary. X paracompact, ¥ £ locally convex space E,
compact convex metrizable, & : X—> Y lower semicontinuous
correspondence with closed convex values, Then Q) has a
continuous selection.

Remark. Metrizability is essential (v. yEmSX'CKER,
1975). '

Applicatiois

Paracompact spaces are characterigzed by the above se-
lection propert}. If X, T are as above, every continuous
functionx £: A —>Y (ASX closed) has a continuous extension
to X,
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Averaging operator in the sense of KELLEY

X compact metric, A € C(X) a subalgebra, R the equi-
valence relation on X induced by A (x~y<=> VY a e A& ;
: a(x) = a(y) ). Suppose the projection T : X—p X/B is open

and x/R is Hausdorff, then 3 T: C(X) — A, Ir]= 1, 70,

72 = T such that
Veec(X) YaeR : T(f.a) = Tf.Ta (averaging
_ . equation).
Using selectioms BLUMENTHAL/LINDENSTRAUSS/PHEIPS (1965)
show:
Theoren.
X compact metric, Y compact, T: C(X)—> C(Y) linear, lTl<
£1, Then T is extreme iff 3@ : Y—> X continuous, A€ C(Y),
A% =1, such that YfeC(X) T£=2A. (fog ).
éh.arecterization of a class of compact convex sets.
KElocally convex space E commct, convex, call K regu-
lar, iff there exists ¢ : K—> u}(x) w¥ —continuous, such
that ¢ (x) is a maximal representing measure for x¢ K.
Theoren.
dim K£3, extr K closed=) K regular (K regular == extr K
closed, always).
dim K = 00 , extr K closed =} K regular.
3 K regular, dim K = @ , K not a Bauer simplex (these are
trivially regular). ' '
K is regular iff a generslized Dirichlet problem is solvable,

namely 3 BSC(K) closed subspace with Choquet boundary extr K
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such that VfeC(extr K) 3 Tf €B such that Tt‘ext.r k=0
- a affine —-)T(a)lexu_ k) =a(=>1T linear, positive, iso-
metric).
Metrizable CE-compact convex sets are regular (K is CE-com-
pact iff the barycenter map r: lll(K) ~—>K is open, LIMA,
0 “BRIEN)

E Banach space, GEE, Py(x) ={yeG| lix -yl =
= lx - G} (metric projection), If Pq is a correspondence
(i.e. Pg(x)% 8 V x) the existence of continuous selections
for this correspondence chnracterizee Pg for certain G (IA-
ZAR/IIORRIS/'ULMR!E, NURNBEK}ER) and in a certain sense the
so called Lindenstrauss spacea (products of Ll((u-)-epaceal.
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