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ON RINGS OF CONTINUOUS FUNCTIONS 

Dedicated to Professor K. Morita, on his sixtieth birthday 

Jun-iti NaflPta 
Amsterdam 

In the following discussions all topological spaces are at least 
Tychonoff, and all mappings are continuous. C(X) (C*(X)) denotes the 
ring of all real-valued continuous functions (real-valued bounded 
continuous functions) on a Tychonoff space X. 

As pointed out by late .Professor Tamano, a remarkable property 
of rings of continuous functions is that they have infinite operati­
ons like infinite sum, infinite join etc., and thus it is desirable 
to study them together with infinite operations. .For example, one 
cannot characterize very important topological properties like metri-
zability or paracompactness of X in terms of C(X) or C*(X) as long 
as they are regarded as ordinary rings with finite operations, but 
one can give nice characterizations of those properties once infinite 
operations are taken into consideration. From this point of view the 
author [7] characterized metrizability and paracompactness in terms 
of C(X) with operations u and n for infinitely many elements. H. 
Tamano [12], Z. Frolfk C3J and J. Guthrie £43 also got interesting 
characterizations of paracompact spaces, fcech complete spaces and ot­
her spaces in terms of C(X) and C*(X) though they did not necessari­
ly aim characterizations by purely internal properties of CCX) or 
C*(X). The purpose of this paper is to extend characterization to 
some generalizations of metric spaces and also to discuss relations 
between C*(X) and uniformities of X. 

Remark. Only C*(X) will be used in the following though many re­
sults can be extended to C(X) with no or slight modification of their 
forms. For a (not necessarily finite) subset \f^ ) oc e A? of C^(X) f 

Q f^ and LJ f^ are defined as usual; namely 

'*&fo6 )(x) * inf "Sf<* (x) i<* e A ? (^ foo )(x) * sup4foC(x) |oc € k} . 
In those theorems where U t~ (or C\ f ) is involved, it is imp­
lied that U f. (or O f , ) is bounded and continuous; also note 
that N, Q and R denote the natural numbers, the rational numbers and 
the real numbers, respectively. 
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As for standard symbols and terminologies of general topology, see 

[10]. 

Definition 1: A subset Lo of C*(X) is called normal if 0 f- and 

l£ f^ belong to LQ for every subset -{ f^ Joe £ A } of LQ. A sequen­

ce LlfL2«,... of normal subsets of C*(X) is called a normal sequence. 

A subset L of C'MX) is rT-normally generated by the normal sequence 

\L±\ i == 1,2,... J if L s {feC*(X) | for every e > 0 there are 
subsets {fp ||Je Bj and i t T \ve C ? of *C/^ Li such that 

II [1L - f II < e and II U f - f I| < g } . (We may simply say that 
L is generated by iL^J when the latter is known to be a normal se­

quence. 

In the following is a slight modification of an old theorem pro­

ved in [71. 

Theorem 0. A T.vchonoff space X is metrizable iff C^tX) XSL er-nor­
mally generated by a normal sequence. 

Proof. The "if" part of this theorem is implied by Corollary 8 of 

[7]. The proof of "only if" part is also not so difficult if we put 

Ln =- -if e C*(X)| II f II 6 n, | f(x) - f(y) U n jD (x,y) for all x, y e 
€ X? . Some works are necessary to choose, for given f€ C^tX) and 

e > 0, a subset 4 f Q J /S e B } of C/Lnauchthat /I f^ 6 C *(X) 

and such that [[ H-f« - f II < e , but the detail is left to the 

reader. (In view of Corollary 8 of C73 we know that a weaker condit­

ion is sufficient for the metrizability of X. 

The author, however, needs the stronger condition for L as given in 

Definition 1 to characterize other spaces in the following, and he 

does not know if the condition can be weakened there or not.) 

Among the various generalizations of metric spaces which are 

actively being studied M-space due to K. Morita [5-1 and p-space due 

to A.V. Archangeldkii C13 are some of the most important ones. M and 

p coincide and are especially good if combined together with para-

compactness. In fact, 

theorem (K. Morita - A.V. Archangelskii). The following conditions 

for X are equivalent: 

(1) X is paracomoact and M, 

(2) X is paracompact and p, 

(3) X is the pre-image of a metric space by a perfect mapping. 
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Thua our f i r s t aim i s to characterize paracompact M-spaces i n 
terms of C :*(X). 

D e f i n i t i o n . A maximal ideal J i n C*(X) i s ca l led f ixed i f f for eve ­
ry subset ifoC\ocek} of J such that l^ f ^ e C * ( X ) , U f ^ e J 
h o l d s . A subset K of C*(X) i s f i xed i f f there i s a f ixed maximal i -
deal which contains K; otherwise K i s ca l l ed f r e e . A subset H of 
C*(X) i s ca l l ed s trongly free i f f there i s a sub9et itn | / 3 e BJ of 
H such that U £~ e C*(X) and ^ j ^ & & for aome p o s i t i v e num­
ber € • 

Remark. It i s easy to see that K € C * ( X ) i s f ixed i f f there i s x e X 
for which f (x ) =- 0 for a l l f € K. 

The fo l lowing theorem sugge3ts U3 what form of theorem we can 
expect to characterize paracompact M-spacea. 

Theorem jL. Let £ be 3 map fl?pm X onto Y. Then f induces an imbedding 
.&£ C*(Y) in to C*(X) i £ g c C * ( Y ) i s assoc iated with g o f e C * ( X ) . 
Then f ia a perfect map I f f the induced imbedding i s such that for e -
very fyee maximal j d ^ l J i n C * ( X ) , J n C * ( Y ) ±9 f re$ ^n C * ( X ) . 

To prove t h i s theorem we need the fo l lowing lemma whose proof 
i s l e f t to the reader. 

Lqmpra 1 . Let f be a map from X ontp Y. Then f J8_fl P^r^ct map iffff 
for every free ( - has no c l u s t e r point) maximal z-ffil1;er ( -= f i l t e r 
c o n s i s t i n g of zero s e t s where we mean by a zero se t the s e t of a l l 
zeros of a rea l -va lued continuoua function) tf i n X, f ( J O =-{f(.F) \ 
\V € F} i s jfteg i n Y. 

Proof of Theorem 1. The f i r s t ha l f of the claim i s obvious , so only 
the l a s t hal f w i l l be proved. 

As3ume that f i s a perfect map and J i s a g iven free maximal i -
deal in C * ( X ) . For each <J> e C*(X) and e > 0 , we put Z e (<j> ) = 
» Jfcx I |.cf>(x) 1 ^ s i . 
(This symbol w i l l be used throughout the rest of the paper) . 
Further, l e t 

3*(J) = -IzlZ i s a zero se t i n X which contains Z e ((J> ) for some 
4> 6 J and for some 6 -=» 0} • 
Then 3s* (J) i s obvious ly a f ree z - f i l t e r . 
.Expand J"(j) to a maximal z - f i l t e r fQm Then s i n c e f i s p e r f e c t , 



by Lemma 1 f ( ^ 0 ) i s f ree in Y. Let x be an arbitrary point of X, and 
l e t f ( x ) - y . Then there i s Z 6 У 0 such that y ф f ( Z ) . 
Since f(Z) i s a c losed s e t , there i s ф б C*(Y) such that 

ф ( y ) > 0 , ф ( u ) = 0 for a l l u є f ( Z ) . 
Then ф o f ( x ) : > 0 , and ф o f є C * ( Y ) , where C*(Y) i s considered t o 
be imbedded in C * ( X ) . 
To prove ф o f s J , l e t ф o f =: ү . Then J ' = C * ( X ) y • J i s an 
idea l of C*ЧX) containing J. For each f є J , and e > 0 , Z e ( f )r\ 

o ZфØ, because these s e t s both belong to J ^ . 
Since яjr(Z) = 0 , t h i s imp l ies [ æ ү + f | & e for every oc e C*(X) 
and at some point of X. Thus J ' Ф C*(X), which imp l ieз j ' = J because 
J i з maximal. Thuэ -ү є J. Namely тfr в J л C ^ Í Y ) . Hence J л C * ( Y ) 
i s free i n C * ( X ) . 

Conversely, to prove the f ,ifłł part of the theorem, l e t У Ьe a 
free maximal z - f i l t e r in X. Put 

J * -íҷr c C*(X) | Z g (г|r) є ^ for a l l є. ^ 0 J . 
Then J i s a free maximal idea l i n C*(X) . To see thяt J i s maximal, 
l e t J be an i d e a l such that JЏ j ' . Se lec t ф є J - J; then 
Z e (ф ) ф З^ for some e > 0 . Since 3* i s maximal, t h i s imp l i es 
Z e ( ф ) o Z 5 | í for some Z € Ӯ • Put ү -= min ( 0 , ( ф l - £ ) ; then 
я|r e J, because Z^íтfrJэZ for a l l c Ґ ^ 0 . Thus ф ^ • -ү2 б j ' and 

ф + xf ^ - * — , which imply J = C*(X). Therefore J i s maximal# 

Now, we claim that f(&) has no c l u s t e r point in Y. To se i t , l e t 
y є Y be arbitrary and s e l e c t x e f " ( y ) . Since by the condit ion of 
the theoгem J л C * ( Y ) i s free in C*(X), there i э ф e C*(Y) such 

that ф в f б J and ф o f ( x ) > 0 . Let ф o f ( x ) = e . Then 
Z g ( ф o f l n Л y ) = £5, which imp l ies y ф f ( Z f c ( ф o f ) ) . On the other 

*2 "Зľ 
hand Z e ( ф o f) e y fo l lows from the d e f i n i t i o n of J . Since 
f ( Z ^ ( ф o f ) ) =- Ze (ф ) , | ф ( u ) I Á - | holds foг a l l 

U б f ( Z e , ( ф o f ) ) . Let V * Ь є Y | ф ( u ) > -|" £ î t h e n v i s a n ° P e n 

nbd of y which i s d i s j o i n t from f ( Z e (ф o f ) ) . Thus y i s no c l u s t e г 
Ҡ 

point of f ( ? ' ) ; namely f ( У ) i s f r e e . Hence by Lemma 1, f i s a per-
f e c t map. 
Now, we can characteгize paracompact M-spaces in termз of C*(X) as 

follows. 

Theorem 2. Л Tvchonoff space X is paracompact.and M iff there is a 

бV-normall.ү generated subring L £Í C*(X) эuch that for eveгv free 

шaximal ideal J in C*(X), JnL iэ fґee. 
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Proof of the "only if" part.. Let X be paracompact and M; then by 
the previous ly mentioned Morita-Archangelski i 's theorem there i s a 
perfect map from X onto a metric space Y. By Theorem 1 t h i s map indu ­
ces an imbedding C * ( Y ) 2 £ L C C * * ( X ) s a t i s f y i n g the condit ion of t h i s 
theorem. I t e a s i l y fo l lows from Theorem 0 that L i s <5*-normally gene­
rated i n C * ( X ) . 

To prove the "if" part we need some lemmas. 

Lemma 2 . Let V - -tV^ [oc^z^l be a wel l -ordered open cover of X 
such that V^ =-tx I f ^ ( x ) . > 0 Jn-Cx | g^M^O} , oc <z <v , where f^ , 
g ^ e C*(X) for a l l oc^ t : , (oc and ^ denote ordinal numbers). I f 
p V B % and ^ ^ g ^ belong to C*(X) for every subset B £f ioC | 0 £ 
£ oc «-- a: $ , then If has a S*-discrete open refinement cons i s t ing of 
cozero open s e t s ( a complements of zero s e t s ) . 

Proof. Note that V^ = -£x | h o C ( x ) > 0 \ for h^ = f^ n g ^ and that 

^J^-4 hg £ C*(X) for every /3 --* K e a s i l y fo l lows from the assump­

t i o n of lemma. Let 

V lob - -ř x | h ^ l x ) ^ ! ì , 
Vnoc * * x l h o c ( x ) > J - - J - - . . . - j j - | n = 2 , 3 , . . . . 

T h e n T r « c V l c c c V o c - further , l e t 

=-- 1 , 2 , . . . ; o c < « i covers X. Since Wnocc V f t h i s cover r e f i n e s I T . 
Thus i t s u f f i c e s to show that {W | oc <: t: 5 i s d i s c r e t e for each 
f ixed n . 
Let x € X s a t i s f y x e V n + l f l C and x £ V n + 1 ( 3 for a l l (i < oc , where cc -£ 

£ <t? • Then hftU)*? - -J5- " ••• " ~£n pfST" ' ^ 

Thus U h . ( x ) - o 5 • • • r,-i.vi""t an d hence x has a nbd W on 
/3<oc /3 * 2 2 

which p ^ h ^ ( x ' > * J " ^ ^ • • • - Jn" h o l d s -

Hence WnWn . = 0 for a l l /3 < oc . 
On the other hand i f <$ > «, , then Vn-riLotf i s a nbd of x which i s 
d i s j o i n t from W n y • Therefore 4 WndC \ oc ^ <c } i s d i s c r e t e . 
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Lemma 3# Every open cover IT satisfying the condition of,Lemma 2 ig 

normal: namely there is a sequence W^, ^ , . « . of open cpvers such 

that r>vf > v± >v2*>... . 

Proof. The proof d i r e c t l y fol lows from Lemma 2 and a known theorem 
( P r o p o s i t i o n D) on page 254 of [ 1 0 ] ) . 

Proof of the "if" pa r t of Theorem 2 . F i r s t of a l l we def ine some n o ­
t a t i o n s . Assume t h a t L i s ( cy-normally) generated by the normal s e ­
quence L ^ L ^ , . . . . Then 

L* = -I f+ \ t e Lm I , where f * - f u 0 , 

Lm = * f ~ I f e Lm ^ > where f" = f n 0 , 

For x € X and n, meN, 

A*(x) * < f | f 6 K m , f ( x ) ; > | ? , 

< ( x ) = i y | f U f ( y ) | f € A j ( x ) 3 > ^ . 

Vj(x) -* { y | f H f ( y ) | f € A ; ( x ) 5 > | 5 . 

wJJ(x) - «Cy | H { f ( y ) | f £ A j ( x ) | > 1 . 

Then uJJ(x), Vm(x) and ^ ( x ) are open s e t s s a t i s f y i n g 

W ^ ( X ) C V ^ ( X ) G U ^ ( X ) , 

because 0-C f | te An(x) ? i s con t inuous . 

The proof w i l l be c a r r i e d out i n s e v e r a l s t e p s . 

Claim 1 . Let J* De a f r ee maximal z - f i l £ e r i n X. 
Then fo r each X6X, t h e r e are n ,meN and Z e ? such t h a t U n ( x ) n Z =-
= 0 . To prove i t , l e t 

j = ±Y € c * ( X ) \ Z g (y) e ^ for a l l e > 0 } . 
Then as proved before fo r Theorem 1, J i s a f r ee maximal i d e a l i n 
C*"(X). Hence J n L i s f ree by the cond i t i on of the presen t theorem. 
Namely t h e r e i s f e J o L such t h a t f ^ ( x ) ^ 0 or - f „ ( x ) > - 0 . o o o co 
Assume t h a t the former i s t r u e ; then t h e r e i s f <s ̂ W^f Lm such t h a t 
f ( x ) . > 0 , t£tQ because L i s genera ted by i Lffl } . (Reca l l D e f i n i t i o n 
1 ) . Thus t h e r e are n ,meN for which te Lm, f*e L* and f * ( x ) ^ | . 
Then z ^ ( f Q > c z ^ ( f p c z ^ ( f * ) , for every oT ->* 0 . Since f Q € J , 
Z ^ ( f Q ) e y and accord ing ly z ^ ( f + ) e <f fo r every <f > 0 , which 
impl ies f*e J . On t he o ther hand f*<* A^(x) fol lows from the above ob­
s e r v a t i o n on f+. Hence UJJ(x) c i y | f * ( y ) > ^ - $ . This impl ies UJJ(X)A 

a Z j ( f + ) = 0 . Since Z j j _ (f*) e J* , our claim i s proved. Even i f 
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- f Q ( x ) > 0 is assumed, we can prove our claim in a similar way. 
Claim 2. Let YcX to define 

M£(Y) = Int Cn-CU^(x) | xeTil f) Int L fHX - W*(x) \ xeX - Y}] , 

^n ~ ^Mn^x^ I Y c X 5 > where m,neN. Then each wiiJJ i s a normal open 
cover of X. 
To prove i t , define for m, neN and x 'e X, 

P^(x') M y |U-tf(y) |f6K^ f £<x ' )<3~}< J ? n { y ] n { f ( y ) [ f€Km , 

f (x ')> %~~ ? > jg - J . 

Furthermore, define CPn = -£Pn(x') | x 'e X? . 

Then by Lemma 3, (P n i s a normal open cover, because each I^(x') sa­
t i s f i e s the condition of V^ in Lemma 2, since Lm i s a normal se t . 
For each x'e X, let Y * i x | fH f (x') | f 6 AJJ(x) $ > | ^ J . 

.Then i t i s not d i f f i cu l t to prove that P n (x ' )c MJJ(Y). Thus # J < 
«< tAL n , and hence J t n i s also a normal open cover. 
Claim 3 . S(x, JL n) c UĴ (x) at each point x of X. 

To prove i t , let Mn(Y) be an arbitrary element of JL n which contains 
x. Then i t follows from the def init ion of M?(Y) that x<s Y. 

Thus the same definit ion implies MĴ (Y) c uJJ(x). Therefore S(x, JL £) c 
c u £ ( x ) . 

Now, we are in a position to complete our proof. Combine claim 1 
and claim 3; then we see that for every free maximal z - f i l t er J* and 
for each xeX there are m, neN and Z e $* such that S(x, J\L^)n Z =* 
= 0. Since each JL n i s normal by claim 2, there i s a sequence '%^9 

11*2>••• of open covers of X such that for each (m,n) and for some i , 
U . i< JL n and such that U x > ^ J >U2> 1 t j > . . . . Then for every 

free maximal z - f i l t e r ^ and for each X6X, there are some i and so­
me Z € y such that S i x j ^ J o Z =-• tf. Assume that F-^F^--*... i s a 

decreasing sequence of nonempty closed sets in X such that for a f i x ­
ed point x, S(x, ^ i ) 3 ^ holds for each i and for some k. Let *& be 
a maximal z - f i l t er which i s obtained by expanding the col lect ion 
4Z I Z i s a zero set containing Fk for some K } . Then S(x,<2di)n Z+-0 
for every i and every Z e $* • Hence by the above observation we 
know that ^ converges. Since 0-C F I F e ^ J c ^ Q ^ Fk follows 
f*om compliete regu larity of X, we have ^j^ ^k**^* which proves that 
X i s an M-space. 

oO 

Let C =- .C\A S(xf flt|); then as shown in L 53, there is a closed 
X 4* *- 1 * A ' * — 1 / \ 

map g ftrom X onto a metric space Y such that for each y e Y , g (y) a 
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= Cx for some x e X . To prove compactnes9 of the closed set C ,̂ l e t 
<y 0 be a c o l l e c t i o n of c losed subsets of Cx with f i n i t e i n t e r s e c t i o n 

property. Let J " be a maximal z - f i l t e r which i s obtained by expand­
ing the c o l l e c t i o n -i Z I Z i s a zero s e t containing some element of 

yo} . Then obviously S(x$<lL±)r\ Z=f=0 for every i and every Z e $" . 
Thus 3 " converges, and hence fl-CFj F e ^ J 4 s 0 . Therefore Cx i s 
compact, i . e . g i s a perfect map* This proves that X i s paracompact, 
and now the proof of Theorem 2 i s complete. 

Now, l e t us turn t o another g e n e r a l i z a t i o n of (complete) metric 
spaces . Paracompact, 5ech complete spaces are characterized as f o l l ­
ows. 

Theorem (Z. Frol ik C23). X i s a paracompactf 5ech complete space i f f 
i t i s the pre-image of a complete metric space by a perfect map. 

This theorem i s i n i t s appearance s imi lar to the previously men­
t ioned Morita-Archangelskii 's theorem and i n d i c a t e s that a l l paracom­
pact Gech complete spaces are paracompact M. In fac t the l a t t e r t h e o ­
rem i s a sort of genera l i za t ion of the former. Thus i t i s natural t o 
try to characterize paracompact 6ech complete spaces i n a s imi lar way 
as we did for paracompact M-spaces. As a r e s u l t we obtain the f o l l o w ­
ing theorem. 

Theorem 3 . A Tychonoff space X i s paracompact and 5ech complete i f f 
there i s a normal sequence L-^L^, . . . of subsets of C*(X) such that 
for every free maximal id ea l J Afi C * ( X ) , J n L n i s s trongly free for 
some n. 

Proof* To prove the "only if" part , l e t X be paracompact and Cech 
complete. Then by Fro l fk ' s theorem there i s a perfect map f from X 
onto a complete metric space Y# Let 

Ln = - ($ * f I4> t C * ( Y ) , Il<t> It £ n. (4>(y) - <t)(z) I -̂  n J>(y,z) 
for every y , z e Y *h , 
where we assume <p i s a metric of Y such that g* £* 1 . 
Then each Ln i s a normal subset of C^(X) . 
Let 3* be a maximal z - f i l t e r in X which contains Zg. (y) for a l l 
Y a J and for a l l e ** 0 . Since J i s f r e e , so i s *g • Since f i s 
per fec t , by Lemma 1 f ( ^ ) i s f r e e . Since Y i s a complete metric spa­
ce, there i s e > 0 such that S e ( y ) £ f ( Z ) for a l l y « Y and for a l l 
Z 6 T . For each yCY def ine $ y e C * ( Y ) by 

^ y ( z ) = fl*t* - S t ( y ) ) . 
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Let 7fry - $yo£> then T y € Ll* S i n c e z t y y ) n Z e ( f )^t) for a l l 
£ > 0 and a l l ^ £ J, *fr e J follows from maximality of J, where 

Z(i|ry) = - ixeX ( y y ( x ) = OS . 

(See the proof of Theorem 1.) Thus y € J n l ^ for every ye Y. On the 
other hand L-A, ijr ^ e i s obvious, and hence J n L i s strongly 
free# 

To prove the "if" part, f irs t note that by Theorem 2, X i s at 
least paracompact and M. Thus i t suffices to prove that X i s 5ech co­
mplete. For each xeX and nfmeN we define A^(x) and U^(x) exactly in 
the same way as in the proof of Theorem 2•Now,let $* be an arbitrary 
free maximal z - f i l t er in X; then we shall prove that there are n,meN 
such that X - U^(x) e y for a l l x e X . This would prove fcech comple­
teness of X by N.A. Shanin's theorem [11] : X ia fiech complete i f f 
there is a sequence $ ( ^ 1 i ~ 1 , 2 , . . . } of collections of zero-sets 
with f in i te intersection property such that i ) f| -C G | G 6 fy-^i - 0 , 
i i ) for every free maximal z - f i l t er ? » there is i for which Q-.̂  c 
c & • For this end, let 

J = i y e C*(x) | Z e ( t |r ) e T for a l l e > 0 ?. 
Then as proved before for Theorem 1, J i s a free maximal ideal. Hence 
Jc\ Lm i s 9trongly free for eome m. Namely there i s a subset -i (Ĵ  \<x e 
e A 5 of JnLm such that ^\^ ^ ^ & e for some positive number s . 

Choose neN for which f > n * T h e n f o r e a c h x e X there i s oc e. A such 

that ^ ( x t e f | . Thus <j£eAj[(x). 

Since 0 & cj> *£ h? on Z < (cj)^) f 
ъ<n> 

ł - ) c ł j I Ф-?<yЬ-fe -<=x - *á-<Ф*>. 
3 i v 

Thus X - U ? ( X ) D Z I ( 6 ^ ) 6 J7 . (Note that d> - e J ) . 
n 3*1 °° 

This proves that X - UĴ (x) e ? for every x, and accordingly X i s 
Sech complete* 

Next, let us turn to a clas3 of generalized metric apaces which 
contains a l l paracompact M-spaces as a proper subclaaa. 

Defin it ion 3* A Tychonoff space X i s called a G^-space i f f i t i s 
homeomorphic to a G^-set in the product of a metric space and a com­
pact T2-space« 

G^-space was defined i n [93 aa a natural generalization of pa-
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racompact M-spaces, because i n [ 8 ] a paracompact (T^) M-space was 
c h a r a c t e r i z e d as a closed G ^ - s e t i n the product of a met r ic space 
and a compact T 2 - s p a c e . 
In C9] the au thor gave the fo l lowing c h a r a c t e r i z a t i o n s to G^ - spaces* 

D e f i n i t i o n 4 . Let f be a continuous map from X onto Y. 
Then f i s c a l l e d a complete map i f t h e r e i s a sequence I t- , , %2>**« 
of covers of X by cozero s e t s such tha t for every f r ee maximal z - f i l -
t e r y i n X s a t i s f y i n g (J,n » i X - U | U 6 « l n H ? , n =* 1 , 2 , . . . , 
f ( y ) i s f ree i n Y. 

Theorem A. X i s a Gj- -space i f f i t i s the pre-image of a met r ic spa­
ce b.v a complete mapping* 

Theorem B. X i s a G^ -space i f f t h e r e are sequences 4 W j \ i = 1 , 
2 , . . « J and %.%% j i = 1 , 2 , . . . I of open covers of X such tha t 

(i) ux •> %* > %z *>%*>.., . 

(2) ±£. ^ is a maximal closed filter such that 

F±c W ioS(x,^ i), i =- 1,2,... for some F± e 7 , W± £ Vr± 

and a fixed point x of X, then y converges» 

Remarks As for Theorem A a somewhat different (and more complicated) 

form of condition was considered for the map f in C93, but it is easy 

to prove that the original condition is equivalent with completeness 

of f as long as X and Y are Tychonoff• 

This theorem should be compared with the previously mentioned 

theorem of Morita-Archangelskii on paracompact M-spaces. Definition 4 

should be compared with Lemma 1 to recognize that complete map is a 

natural generalization of a perfect map. Thus a complete map may be 

defined more generally for topological spaces X and Y while replacing 

cozero sets and zero sets in the present definition with open sets 

and closed sets, respectively* 

The following diagram is to clarify relations between generali­
zed metric spaces being discussed in the present paper. 



para compact =.= 
and Gech complete 

perfect pre-image 
of a complete metric 
space 

closed G ^ - s e t 
i n the product of 
a complete metric 
space and a compact 
T^-space 
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paracompact = 
and M (or p) 

II 
perfect pre-image 
of a metric space 

II 
closed G ^ - s e t i n 
the product of a 
metric space and 
a compact Tg-space 

complete pre-image 
of a metric space 

II 
G ^ - s e t i n the pro­
duct of a metric 
space and a compact 
T 2 -space. 

I t was proved i n [9J that an M-space X i s a G^-space i f f i t i s 
a p-space but i t i s not known i f the same i s true without the assump­
t i o n that X i s an M-space though a negative answer i s supposed. Name­
l y 

Problem. Give an example of a p-space which i s no G^-space . 
As suggested by Theorems A and B we can e a s i l y characterize the G ^ -
spaces i n terms of C*(X) i n a s imi lar way as we did for two other 
spaces i n Theorems 2 and 3 . 

Theorem 4 . A Tychonoff space X i s a G^--space i f f there i s a &-nor-
mally generated subring L $£ C*(X) and a sequence G-pG^,.. . of f r e e 
gyftsetfr off C * (X) such that for every free maximal i d e a l J ifi C* (X) 
gqtJtpfyinfl G n $ J , n =- 1 , 2 , . . . , J o L jLs .fl^g i n C * ( X ) . 

Proof. The proof i s s imi lar to that of Theorem 2 , so only a sketch 
w i l l be given i n the fo l lowing . Let X be a G^-space; then by Theorem 
A there i s a metric space T and a map f from X onto Y, which i s comp­
l e t e with respect to open covers Qi^ i =* 1 , 2 , . . . of X. Put Gn =* 
» 4<J> \ <J> e C*"(X), X - Z(4> ) 6 U n $ . Then each Gn i s a f ree subset 
of C * ( X ) . Now, suppose that J i s a g iven free maximal idea l i n C*(X) 
such that Gncj:J, n = 1 , 2 , . . . • Then l e t ? be a maximal z - f i l t e r 
containing Z^(0> ) for a l l $ e J and e *> 0 . Then we claim that 

9-n a ^ - U | U e t t n H ^ , n - 1 , 2 , . . . . Since Gnc{: J , there i s 
$ £ Gn - J . Then Z(<$>) e C^n. Z(<fc> £ $* fol lows from maximality 
of J , becatuse otherwise; J ^ C * ( X ) $ + J * C * ( X ) would hold. Thus ^ 
i s a f r e e maximal z - f i l t e r s a t i s f y i n g (^n $ - ' ! ' 9 n = l 9 2 y , , # . S i n ­
ce f i s a complete map, t h i s impl ies that f ( ^ ) i s f ree i n Y. 
Thus we can use an argument l i k e the one i n the proof of Theorem 1 
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to conclude that Jn L i s free in C^iX), where L i s the isomorphic 
image of C*(Y) in Q*(X) induced by the map f. Since L i s ^-norm­
al ly generated, necessity of the condition i s proved. 

Conversely assume that C*(X) sat i s f ies the condition of the 
theorem. To prove that X i s a G^-space, define a normal sequence 

*^1 ^ ^% > ^2 > ^ 3 >0** o f o p e n C 0 V e r s o f x i n t h e s a m e wa^ a s i n 

the last part of the proof of Theorem 2. Further we define Wn -=-
s 4 X - Z e ( y ) | y € Gn, £ > 0 J; then Wn i s an open cover of X. 
Assume that y i s a given free maximal closed f i l t e r in X such that 
for every n there i s W £ Wn and F e. f satisfying FcW. Put J » 
= 4 f | f 6 C*(X), Zg ( y ) e y for a l l e :*• 0 } . Then as in the 
proof of Theorem 1, we can prove that J i s a free maximal ideal . Mo­
reover we can show that Gn4- J, n = 1 , 2 , . . . .Because W - X - Z s (y ) 
D F € y for some y c Gn and e => 0. Hence Z e ( y ) <£ ^ proving 
that y ^ J. Therefore Jr\ L i s free in C*(X). Thus in a similar way 
as in the proof of Theorem 2 we can prove that for each xe X there 
are Z' £ y and i such that S t x j ^ J n Z -=- 0. This means that 
Fc|:S(x, W±) holds for a l l F e y . Hence by Theorem B X i s a G^ -
space. 

It would be easy to characterize (general) fiech complete spaces 
and perhaps general M-spaces, too, in terms of C*(X) by use of a s i ­
milar method. How about p-spaces? There i s another group of generali­
zed metric spaces which can be characterized as images of metric spa­
ce® by certain types of maps, e .g . LaSnev space ( = closed continuous 
image of metric space), stratif iable space, 6 -space, etc . Is i t pos­
s ible t o characterize them by simple properties of C*"(X) as we have 
done for pre-images of metric spaces? In any case one may need a new 
technique which i s different from the one we have used. 

Now, let us turn to an extension of Theorem 0 to another direc­
t ion. If X i s metrizable, then by that theorem C*(X) i s generated 
by a normal sequence. Then what i s the relation between Various norm­
al sequences generating C^tX) and metric uniformities of X ? We 
shall see in the following that they correspond to each other in cer­
tain manner. 

Theorem, g. L t̂ X be a metric space; then there i s a normal sequence 
U n | n = - 1 , 2 , . . . ? generating C* (X) such that A U L n * ) =-Mf 6 C*HX)| 
1 for every e > 0 there i s g e (^Ji Ln for which U f - g l l - * e $ i & 

equal to the set V* (X) of a l l bounded uniformly continuous (real-va-
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l^d) funqtipyig on X. Moreover we can select 4 Ln* satisfying the 
tQllQyfjnR cgndiUpT** 
(A) L 1 c L 2 c # # # , 

feLn iffiEliaS. £<->0, fnOeL n > 

f 6 Ln and <x e R imply f • cO, ocf € Lm 

.for gome m » m(n,oc). 

Proof. Let Ln » -( f €C*(X) ) II f llj£ n, | f (x) - f(y) I -̂  n p (x,y) for 
a l l x , y 6 X } • Then i Ln | n - 1,2,. .; . ? i s a normal sequence sa t i s fy ­
ing the required conditions. 
A( 4. L-. } ) c V^(X) i s obvious because each element of VJ^ L„ i s boun-

* * or*, as " * * 

ded and uniformly continuous. To prove Vj!*<(X)c A(«? 1^5 ) assume that 
the metric <p of X i s bounded and also let f e ^^(X) and e >• 0 . 
Further suppose II f II -£ A. Select k*N such that £>(x,y)< J implies 

g> ( f (x ) . f (y ) ) -c e . Then put Fn = -£x | n e < f(x) ^(n + 1) t> | , n = 
= 0 , ± 1, ± 2 , . . . . (We define Fn only for such n that sat i s f ies 
[ n e , (n + 1) e 3 n E -A,A 3 * 0 . 

For each nc N, l e t p n eN be such that 

pn - l-£ k(A - n e ) -£ pn . 

Put fn(x) s P^^(7nfX) + n e ; then f n € L for some qn6H, -Cn̂ x) -
= n£ for x e F n and f n (x)>A for x^^n- i^ *nwF ^j^. Thus (n - l ) e ^ 
£ l l L t x l i n e , holds for each X6F„. 

fb ** u 

Therefore II f - fl fn II £ 2? e . Note that f l L f i L for some m ( = the 
largest n for which Fn ia defined) . This proves V* (X)c A( •£ L̂ tt ) and 
eventual coincidence of these two se t s . 

Theorem 6. Let 4LQ | n = 1 , 2 , . . . ? be 9 normal sequence generaUafi 
C*(X> and aatiafving the condition (A) of the previoua theorem. Then 
there ia a metric uniformity (agreeing with the topology) of X for 
which V*(X) = A( 4 LQ5 ) , where the symbols V* and. A are defined in 
the aame way aa in the previous theorem. 

Proof. 1. First note that X is metrizable. 

For each x e X , neN and v,v'e <$ (the rationals) such that v-cv' , we 
define 

B n w , ( x ) = i t l f 6 L n , f (x) >- -§- - - '$ , 

B n w , ( x ) = i t l f e L n , f ( x ) A - - - p ' « t 

u nvv ' ( x ) a * y « * l H { f ( y ) | f 6 B n v v / ( x ) i > v and 
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^ í ( y > , f e S , ( x H < v'? . 
nvv Vnvv-(*) = í y 6 X J ll^f(y)| f6Bn V V . , (x) J>--v-g+-1 and 

Snvv<x> = -fyeX | f H f(y) | f s B n v , , ( x ) j > 2S5*---' and 

l l ^ f ( y ) | f f i B n v v / ( x ) j < - - - f - 2 l 5 . 

T h e n Snvv*(3c)cVn v v /(x)cUn Vv-(x )» and they are a l l open nbds of x. 
For any (n,v ,v'> « NxQxQ vdth v< v ' and for any Yc X we define 

Unvv/'<*) = Int Z n i UnVv.,/(x) | x s Y$ n (fKx - SoVV/(x) f x<s X -
• Y D 1 , 

^nvw = 4 u n v v / ( Y ) [ YcX-f . 

Then '-tn v v / i 3 obviously an open cover of X. Furthermore we claim: 
(a) For every (n,v ,v') 6. N*Qx Q, there are ( s , s ' ) and ( t . t ' ) s Q x Q 

such that 
• i U nss / ( y ) n U n t t / ( y ) | y e * * . * fc^, . 

To see i t , let y be a fixed point of X. 
Then for each xfi X, either 7 6 ^ , ( 1 ) or y iV n V V / (x ) holds. 

I f ye Vn v v < f(x^then i t i s easy to see that u'(y) = U ^ ^ t y J o U n t t , (y) 

c I W ( x ) , where s = -*-£--*- - ±fr, s ' = "-f-^- • i g J - , t -

- 5ft + v ' v ' - y . ' _ £v +• y . v ' - v 

If y* Vn v v , ( x ) , then either f) -i f (y) 1 f e Bnvv,,(x) } & ? v g v or 

U 4 f ( y ) | f 6 B n v v / ( x ) } > - ^ - - - - ' . 

I f the former i s the case, then for every e > 0 there i s fe e 
ft B nvv' ( x ) 8 U c h t h a t f € ( y ) - £ * * e • L e t f * e C o f

e 5 t h e n 

f 6 ^nvv / ' ( x ) » f(y)-^ ^ s * a • Hence f s ^ n t t , (y) , and hence for each 
u c U (y) f(u)&t'. On the other hand, since f f iB n v v , , ( x ) , f(w) >-

>2-v~+-v-->t' for each wfiSnvV,(x). 

Thus u'(y)o Snvvv(x) = t . 
Even if the latter is the case, we can prove the same in a similar 

way. Thus we obtain 

u'<y)cUnvv(Y)» wnere 

Y * 4 x 6 X l y « V n v v / ( x ) J . 

This proves that 4U n s s / (y ) r. U n t t / (y ) | y e x J-* Unvv, f a s claimed in 
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(a)# On the other hand the following relation ia almost obvious: 

(b) for every (n,v,v') e Nx QxQ and xeX, 

S(x,^ n v v /)cU n v v /(x). 

A3 eaaily seen, -iUnvv,,(x) | (n ,v ,v ' )6 Nx Q ĉQ, v-cv'? forms a nbd ba­
se at each x e X , and therefore (b) implies that 
- lS(x, /2tn v v / ) J (n ,v ,v') e NxQ*Q, v < v ' ? i s also a nbd base at x. 

Now we can conclude this section of the proof with the following 
observation: 

^ = -i^A^U ^ \ (n-pv-pv-j)* NxQxQ, v ^ V.T, i =* i...Z\ Z = 
1 1 1 - 1 , 2 . . . . J 

i s a countable ( = metric) uniformity base agreeing with the topology 
of X. 

Let ^ n v V / 6 <*-> be given; then there are ( s , s ' ) and ( t , t ' ) sa­
t isfying (a) . Put tt= l i ^ g , A ^ n t t , ; then by (b) <v£ < U-nVv, 
while U & (i> . This proves that (tt i s a uniformity base while we 
have seen before that this uniformity agrees with the topology of X. 

2T. From now on we regard X as a (metrizable) uniform space with the 
uniformity defined by (U* . 
The objective of the present section i s to prove that AC •£ L J- ) c 
c V * (X). It suffices to show that every t e^J^ Ln i s uniformly con­
tinuous with respect to (ti> • Assume f eL n , a f f - r b and a,beQ. Given 

e > 0; then choose keN for which b j^ fl -<. e • Put a± « a • fr ^ 3 i, 

i =-= - l , 0 , l , . . . , k , k • 1. As9ume that x and y are points of X sat is fy­
ing 

y 6 U n a a ( x ) n U n a a < x ) n U n a a ( x ) r i • • • o U n a a <x ) r>Una a ( x ) * M - l a l n a
0

a 2 n a l a 3 n a k-2 a k n a k - l a k * l 
Then as9ume that a ^ f ( x ) < a . t + i j then 

f f i B n a a ' x ) n l f l (x) , and hence 
^ i - r i + l n a i a i+2 

una4 na4 , ( x ) c ^y I f ( y ) > a i - l J » i - e - f ^ } > a i - l # 
i"*l i* l̂ 

Similarly we can show f ( y ) < a i + 2
# 

Thua I f (x) - f(y) 1^ 2 t proving that f i s uniformly continuous. 

3* Finally we are going to prove 7 ^ ( x ) c A ( - t L n J ) . 
Note that condition (A) wi l l be fu l ly used for the f i r s t time in th is 
sect ion . Let us begin with simple remarks, of which only the last one 
i s given a proof. 

( i ) Let ^ ^ v ^ v 3 < v . be rationals satisfying 
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~*"2— * ~ 2 — *» t h e n unv v ( x ) c unv v ( x ) f o r evei*y n 6 N a n d x e * 
2 3 1 4 

( i i ) Let m< n be natural numbers; then 
U m v v ^ c U n v v ' ( x ^ f o r e very v ,veG and xeX, 

( i i i ) Let v,v^ cc e Q and ne N; then there i s me N (independent from 
x) such that 
U m , v - * , v ' - < * ( x ) c T W ' ( x ) f o r a l l x « X , 

To see i t , let m = m(n,-ocv) in the condition (A), i . e . fe. Ln implies 
* - * « V Let y ^ v - ^ v , _«,<*>; then 

fUf(y> I *-Bm»v-.cc, v'-*^^- v - o c + e > v - cc and 
U-lf(y) l -*e-5m T._Qt' V ' -oG ( x )* ^ v ' - cc - £ < v ' - oc for some 

e > 0. 
Let f€BnVTJ[).(x); then 

f - oc 6 Bffl v _ c t v / - a C ( x ) , and hence 

f(y) - o t a v - « + e , i . e . f ( y ) a v * £ . 

Thus rUf (y ) I f * Bnvv'^-:> * a v + e * v # 

Similarly lKf(y> I f t l ^ , / ( x ) | ^ v ' - e < v ' . 

Hence y«U n v v , (x> , proving Um j V - a t ^ . . . ^ ( x J c U n v v , (x ) , 

Combining ( i ) , ( i i ) and ( i i i ) we can conclude that for every tie. 
e (u, , there i s (n ,v ,v ' )e NxQxQ such that U n V T ; / (x)cS(x ,^) for a l l 
x e X . 

Now we are in a position to prove that for every f e V*(x) and 
for every e > 0 , there i s iy & ̂ -J^ Ln such that II f - y JI <• e . 
Assume IIf II -- K. Since f i s uniformly continuous, there i s (m,v,v')fi 
6 Bx.Q*.Q for which 
AUmvv/(x) \ xeX 5*: -C f - 1 ( ( n & , ( n +- 2 )e . ) ) \ n = 0 , * 1 , . . . } . 
Let x be a given point of X, and suppose that n e ^ f ( x ) < ( n + 1) e . 
Then 

UmVTp/(x) c f _ 1 ( ((n - 1) €. , (n + 2) «>>> • 

Thus for each y$f _ 1 C((n - l ) e , (n + 2 ) 6 ) ) , y$UmVV:,(x). 

Namely either there i s f e l ^ satisfying f x y ( x ) ^ Y g v , f x y ( y ) 2 v ' 

or else there i s f ft Lm satisfying f x y < x > 2 2 ^ » - ^ y ^ * * -

Hence there are «e., ft ft R such that g ^ ~°KJ<-ce'£x^ * •** s a t i s f i e s 

gxy^O, g ( x ) = 0, g _ ( y ) a l - n e , a»d «xy*Lp f o r s o l n e * indepen­

dent from y. Let 1^ = ^ + n& «L q , where q i s independent from y. 

Thus <t>x= U ^ l y ^ U ^ / x ) } sa t i s f i e s 

<t>x6 Lq» <t>x^a& , <t>x(x) = ne , 4 > x
( y ) 2 K *°* a 1 1 y^umvv' ( x > -
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Observe that q may be assumed to be common to a l l x e f ( t ne , (n • 
+ l ) e ) ) . Thus 

Y n - A i $ x I x e f" 1 ! C ne 9(n + l ) e ) ) f sa t i s f i es 

y n € L q , y n ( x ) = n e for a l l x g f ^ t n s ,(n + l ) e ) ) , 

y n > n e , and y n ( y ) > K for a l l y ^ f ' ^ U n - l ) s ,(n * 2)e ) ) . 

Finally put y = CL ^n 5 t h e n Ye L £ f o r 3 o m e ^ 6 N# 

Moreover i t i s easy to see that | | f - y \\ & 2 e • 
Therefore V * ( x ) c A(4 1^? ) , which completes the proof of the theorem. 

As proved in [ 6 ] (Lemma 2) , V*(X) determines a metric uniformi­
ty of a. metrizable space X, and hence Theorems 5 and 6 indicate that 
normal sequences generating C*(XT) and satisfying (A) and metric uni­
formities of X are corresponding to each other though the correspon­
dence i s not one-to-one, because different normal sequences can indu­
ce the same V* (X). 
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9. J. Nagata, On Ĝ . - sets in the product of a metric space and a 
compact space I , I I , Proc. Japan Acad. 42(1973), 179-186* 

10. J. Nagata, Modern General Topology, Amsterdam-London-Groningen, 
1974. 



153 

1 1 . N.A. Shanin, On the theory of bicompact extensions of topologi ­
cal spaces , Dokl. Akad. Nauk SSSR 38(1943) . 154-156. 

12 . H. Tama no, On r ings of rea l valued continuous funct ions , fi£tt£. 
Japan Acad. 24.(1958), 361-366. 


		webmaster@dml.cz
	2012-09-21T06:11:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




