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On an Extension of Pontryagin's Duality Theory

E.Binz
Mannheim

1. Introduction

Let G Dbe a commutative, topological group. A character of G 1is
a continuous homomorphism h : G — Si, where the group 81 is the
compact group of all complex numbers of modulus one. Now let G be
locally compact. The collection TI'G of all characters of G , en-
dowed with the topology of compact convergence, forms a commutative,
locally compact,‘topological group FCG under the pointwise defined

operations. In addition, the natural homomorphism

jG:G ———-——-—-—————FFG,

defined by jG(g)(Y) = y(g) for each g € G and each 'y € rG, is,
as the fundamental theorem of Pontryagin states, a bicontinuous iso-
morphism. Pontryagin's duality theory is the study of the rich re-

lations between G and PCG .

The aim of this note is to suggest an extension of Pontryagin's
duality theory by extending the fundamental theorem to a wider class
of groups. We proceed as follows: To the (commutative) groups under
consideration will be associated a concept of convergence compatible
with the algebraic structure. Groups of this sort are called conver-
gence groups. This concept of convergence, given by a convergence
structure, will allow the notion of confinuity. For any convergence
group G , the group TI'G of all characters of G equipped with the
continuous convergence structure A, will be denoted by PCG . In
case G 1is a locally compact topological group, Ac is identical to

the topology of compact convergence. We will call a convergence group



Pc-reflexive, if jG : G ——T .G is a bicontinuous isomorphism.
The class of Pc-reflexive convergence groups contains in addition to
all commutative, locally compact, topological groups all the complete,
locally convex R-vector spaces. We will verify the Pc—reflexivity of
the following type of topological groups:

For any k = 0,...,» the collection Ck(M,Sl) of all Sl-valued Ck—
functions of a connected compact C*-manifold M, equipped with the
Ck-topology is a topological group. It is in general not locally com-
pact. We demonstrate the Pc-reflexivity of Ck(M,Sl) as follows:

The idea is to use Ck(M), the complete, locally convex vector space
of real-valued Ck—functions of M equipped with the Ck-topology and
to introduce Ck(M)/Z, where Z denotes the subset of all the
functions assuming their values in Z. We will show, that Ck(M)/Z
can be identified with the connected component uMCk(M) of 1 in
Ck(M,Sl) . The quotient Ck(M,Sl)/nMck(M) is then a discrete group

called Hl(M). The exact sequence

1 — g —— Forsh) —— rt) ——s 1
has an exact "bidual":

k k 1 1
1 — FCFCMMC M) — FCFCC (M,87) —— FCFCH (M) —— 1.

Since uMCk(M) and Hl(M) will turn out to be Pc—reflexive, we will
conclude, via the five lemma, that Ck(M,Sl) is also Pc-reflexive.
Along the way, we will study some special character groups appearing
in our procedure.

For this type of extension of Pontryagin's duality theory a suitable
extension theorem of characters is still missing. This hinders
considerably the study of the relations between G and FCG for

Pc-reflexive convergence groups G



2. Review of some Definitions and Results

2.1. The character group of a convergence group, P -reflexivity

Let X be a non empty set. To any point in X will be associa-
ted a collection A(p) of filters on X. The set A(p) is an ele-
ment of P(F(X)), the power set of the set of all filters F(X) of
X.

The map A : X —» P(F(X)) is called a convergence structure on

X if the following conditions are satisfied for each p € X:

(i) p , the filter generated by {p} belongs to A(p).
(ii) Any filter finer than a member of A(p) Dbelongs to A(p).
(iii) The infimum ®Ay of any two filters of A(p) belongs to A(p).

Let us remark here, that any topology on X is a convergence
structure, but not vice versa.
The set X, together with a convergence structure A, 1is called

a convergence space. The filters in A(p) are said to converge to p

in X. A map f from a convergence space X into a convergence
space Y is continuous if, for any filter & convergent to p in

X, the image converges to f(p) in Y. The cartesian product X x X

of any two convergence spaces X and Y carries the product struc-

ture defined in the obvious way [Bil.
On C(X,Y), the collection of the continuous maps from the con-
vergence space X 1into the convergence space Y, there is a coar=~

sest among all the convergence structures for which the evaluation

map ©: C(X,¥) X X ——= Y,

(defined by m(f,p) = f(p) for any (f,p) € C(X,Y) x X) is conQ

A filter ® on C(X,Y) converges to a funetion f with respect to

A, 1ff for any p € X the filter (@ x @) converges to f(p)



in Y for any filter & convergent to p. The set C(X,Y) and
any subset A(X,Y) of C(X,Y) endowed with A, are denoted by
CC(X,Y) and AC(X,Y) respectively. The continuous convergence
structure is characterized by the following universal property
([Bi], [Bi,Kel) : A map f from a convergence space S into a sub-
space AC(X,Y) of CC(X,Y) is continuous iff o (fxid):S x X —= Y
is continuous.

We now pass on to convergence groups. Our groups are always
assumed to be abelian.

A group, together with a convergence structure, is called a con-

vergence group if the group operations are continuous.

The character group FCG of a convergence group G is the group
I'G of all continuous homomorphisms of G into the circle group 31
together with the continuous convergence structure. The operations on
I'G are defined pointwise. Obviously, FCG is a convergence group.
The canonical map

G ———= rroc ,

Jg
defined by Jju(g)(y) = v(g) for any g € G and any y € I' G is evi-
déntly continuous.

We call G Pc-reflexiVe if jG is a bicontinuous isomorphism

Remark: If G 1is a locally compact topological group, then the con-

tinuous convergence structure on I'G is identical to the topology of
compact convergence. Hence the Pcfreflexivity of such a group G is

identical to the classical reflexivity in the sense of Pontryagin [Po].

2.2 The character group of a convergence vector space

An R-vector space E (referred to as a vector space) equipped
with a convergence structure for which the operations are continuous

is called a convergence vector space [Bi]. The c-dual, L,E, of E




is the vector space of all continuous real-valued linear functionals
endowed with the continuous convergence structure.

The exponential map from R to 81 sending each real r to
eznir is denoted by w%. This map induces a continuous homomorphism
Ky ¢ LcE —_ FCE assigning to each (€ LcE the character wuo{ .
It is shown in [Bul, that wu, is a bicontinuous isomorphism. For
a slightly restricted version of this result, which is general enough
for our purposes, we refer the reader to the Appendix in [Bil]. The
proof of the result in [Bu] is an elaborated version of the proof I
gave in [Bi]l. For an earlier result in this direction see [F-S].

Let us point out here, that there is no vector space topology T
on LE, where E is locally convex, for which the evaluation map
w:lE x E —> R 1is continuous, unless E is normable [Kel.

We call a convergence vector space E c-reflexive if
iE t E —= LchE is a bicontinuous isomorphism.

One easily verifies [Bil:

Lemma 1: A convergence vector space E is Pc-reflexive iff E 1is
c-reflexive. A topological vector space E 1is Pc-reflexive iff

it is locally convex and complete.

2.3, Ec-reflexivity of some convergence groups of continuous

mappings

Assume that X 1is an arcwise connected topological space. The
map uy : CC(X) —_— CC(X,Sl), sending each f € CC(X) into
wef, 1is a quotient map onto its range, regarded as a subspace of
C,(x,s') [Bi,2]. The quotient C (X,51)/uyC (X), carrying the
quotient structure is denoted by ng(x) and is called [Hu] the

Bruschlinski group of X. If X 1is locally compact, CC(X,Sl) is

a topological group. As demonstrated in [Bi,2], we have:



Theorem 2 The group uxcc(x) is Pc—reflexive. If, in addition, X
is a normal space allowing a (simply connected) universal covering,
the group CC(X,Si) is Pc-reflexive if Hé(x) is complete. This is
the case e.g. if either the first singular homology group (with the
integers as coefficients) is finitely generated, or ni(x) is iso-
morphic to the first singular cohomology group (with the integers as

coefficients).

In the next few sections we will derive some functional analytic
results which will, in turn, be fundamental in showing the Pc-reflexi—

vity of Ck(M,Si), as announced in the introduction.

3. PFunctional analytic preliminaries

3.1.. Ck(M) for a connected compact CT-manifold M

Let M be a compact C -manifold. For a non-negative integer k,
we will denote by Ck(M) the Banach space of all real-valued Ck-
functions of M, endowed with the usual norm. This yields the topo-
logy of uniform convergence in all k derivatives. We refer to [Pal

and [Go,Guil for the above remarks and for the next few details.

Clearly the inclusion map j§+1 : Ck+1(M) _— Ck(M) is continuous

for any k. Moreover, its image is dense and the image of the unit
ball E ., of Ck+1(M) is relatively compact in Ck(M).

The projective limit of all Ck(M) is denoted by C®(M). This is
a complete,metrizable,locally convex space, a so-called Fréchet space

[Schae]. Since E is relatively compact in Ck(M) for any k,

k+1
the space c®(M) is called a Schwartz space.

3.2, The c-dual of CX(M)

First, let F be any convergence vector space. Any compact set
in LcF is topological [Bil. A convergence space is said to be com-

pact if every ultrafilter converges to exactly one point.



Next, we describe the c-dual of F where F 1is a topological
vector space. For any neighborhood U of zero in F, the polar
{{e LFI{(U) « [-1,11}, denoted by U°, is compact if regarded as
a subspace of LCF. Hence it is a compact topological space. The to-
pology on it is the topology of pointwise convergence. Moreover, LcF
is the inductive limit (in the category of convergence spaces) of all
these compact topological spaces U°, where U runs through the
neighborhood filter of zero in F. For these and the next few details
we refer the reader to [Bi] or to [Bi,Bu,Kul.

For a topological vector space F, the natural map
iF t F —m LchF is a bicontinuous isomorphism iff F is a
complete,locally convex vector space ( cf. Lemma 1),

Let us turn our attention to Lch(M) for a finite k. The con-
vergence vector space Lch(M) is the inductive limit of all mul-

tiples of the polar Eﬁ of the unit ball E, c Ck(M). Here as a

k
subspace of Lch(M), Eﬁ carries the topology of pointwise conver-
gence and is therefore compact.

When LCk(M) carries the usual norm topology, we write Lan(M).

For any k, the adjoint of J; , the map

s oo¥ k oo
iy LcC (M) —— LcC M) ,

defined by composing each L€ Lch(M) with jﬁ , 1s a continuous

injection. Since C%”(M) is a Schwartz space, we even have [Jal

Lemma 3 Lccw(M) is the inductive limit (in the category of conver-
gence spaces) of Lch(M) as well as of Lan(M), taken over all
finite k.

For any p € M, ‘the linear functional iM(p) : Ck(M) —— R
evaluating each f € Ck(M) at p is continuous for any k. If k < o
iﬁ M - Lch(M) sending each p €M into iﬁ(p) is a con-

tinuous injection whose image is contained in the polar Eﬁ of the



unit ball Ek c Ck(M). Hence we have:

Lemma 4: The canonical map iﬁ t M — Lch(M) is (for any k)
a homeomorphism onto a subspace of Lcck(M). If k < o , then

.k o
1M(M) < Ek .

3.3, vE(M)

For each k=0,1,...,» let Vk(M) be the span of iﬁ(M), re-
garded as a subspace of Lch(M).

Recall that in a convergence space X a point p is adherent
to a subset A if there is a filter @® convergent to p in X,
such that Fn A #4d for any F € ®. We call A c X dense if the
collection A (the adherence of A) of all points adherent to A is
all of X.

The following is an analogue to the situation in the case of

CC(X) (cf. appendix of [Bil]).

Theorem 5: The space V(M) is dense in LCC“(M). Moreover the
restriction map r° : Lchcm(M) —_—— LcV”(M) is a bicontinuous
isomorphism. Thus p° : LCV“(M) — = C®(M), defined by

o (l) = /oi; for each 7€ LcV"(M), is a bicontinuous isomorphism.

Proof: Since C¥(M) is c-reflexive, r  is a monomorphism. To
show its surjectivity, consider for each finite -k the following

diagram: K+l *

(
VM) 2 vl e LKl Jk

k
n n LCC (M) .

The index n indicates, that the respective spaces carry the usual

norm topology. The linear map a sending each iﬁ+1(p) into i;(p),

*
is evidently continuous. Finally (j§+1) restricts each 7€ Lch(M)
to _Ck+1(M). The next goal is,to show that (j§+1)* is continuous.

We recall that the unit ball Epyq of Ck+;(M) is relatively compact in

(o}

cK(M). Hence the polar EQ of E,_ formed in tck¥(M) is mapped



* *
by (j£+1) into a compact subspace (j§+1) (Eﬁ)n of the Banach space

Lan+1(M) (cf. [Schael p.111). From this, we conclude the continuity of

(j§+1)* . Next let £ € LCV"(M). The functional << a has a con-
tinuous extension ¢ to Lan+1(M), for which Zg(j§+1)*= {’ is con-
tinuous on Lch(M). Moreover floill:[ = {vi; . Since Ck(M) is c-re-
flexive, A{lcan be represented as iCk(M)(fk) for some function

f, € Ck(M). Hence lloillq = fk for each finite k. Since {"i;l = fk s

. + 0O . -] o . -
the function {o iy is of class C and r o lcw(M)(fk) = { . Thus

the injection is bijective. We proceed now to show that V™ (M) is

dense in Lccm(M). To do this, we introduce VE(M)/ and establish

three properties (a,b,c) which exhibit this space as an Lc—space

[Bi,Bu,Kul. Thus V”(M)/ is c-reflexive. Let us point out that Lccm(M)
is the inductive 1limit (in the category of convergence spaces) of
countably many absolutely ccnvex,compact topological spaces K1CK2C"' .
Hence we have g{ Ki=LCw(M). For each index i we form the adherence
Ki n V”"_(M):.L of K, n v°(M) in K; - This adherence is a convex,com-

pact topological subspace of Ki . Moreover

vay = Uk n vt
1

as one easily verifies. Hence Vm(M)/, regarded as the inductive

limit of the compact,convex subspaces K; N Vm(M)1 » taken over all i,

is a) locally convex, and locally compact and b) admits point-

separating continuous linear functionals. By locally convex we mean

that, for any filter convergent to q , there is a coarser one having
a basis of convex sets which also converges to q. Locally compact
means that any convergent filter contains a compact set.

The last one, c¢), of the above mentioned characteristic properties

is the following: Any/éompact subspace of V"(M)/ is a compact topo-
\

logical spacet/Bﬁk this is evidently true because any compact subset

of V”(M)///is contained in one of the compact topological spaces
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Ki n V”(M)l . Thus VN(M), is an Lc—space. Since V“(M)/ splits in-

to countably many compact subsets, LCVQ(M)/ is a Fréchet space.

Hence it is c-reflexive [Bi,Bu,Ku]. In addition, V(M) is a dense

/
subspace of V(M). One easily concludes that
-/
-] - -]
r® s L L CT(M) ————= L VT(M)
is a continuous bijection between Fréchetspaces. Using the closed graph

theorem, we deduce that r® is a homeomorphism. The c-reflexivity of

Vw(M)‘/and c®(M) now immediately yields V(M) = LCCQ(M). The commu-

tativity of

o r p -3
L,L,C7(M) LcV°°(M) c®(m)

i
c®(M) id
c®(m)

allows us to conclude that r~ and p  are bicontinuous isomorphisms,

as asserted in theorem 5.

4, uMCk(M), in particular uMCQ(M)

4.1 The group uMCk(M) and its P -reflexivity

For any k = 0,...,9, we consider the collection uMCk(M) of all

functions o f, where f € Ck(M). (Recall, that u : R —= st

sends
each r into eznir). This collection is a group under the pointwise
defined operations. Since M is connected, the kernel of

wy ¢ CEOD ——— w0 c8 )
is &, the subgroup of all constant functions assuming their values
in Z. For any z € Z denote by 2z the function whose only value
is 2z . By virtue of the addition in Ck(M), Z operates on Ck(M)
properly discontinuously [Spal. Hence the quotient Ck(M)/Z s taken
in the category of topological‘spaces, has Ck(M) as its (simply con-

nected) universal covering. From this, we conclude that Ck(M)/Z is

also the quotient in the category of convergence spaces. Moreover Z




1

is isomorphic to the fundamental group of Ck(M)/g . Let us identify
Ck(M)/g with uMCk(M) and the projection map onto Ck(M)/g with %y .
The topological group uMCk(M) can be represented as a direct
product (I thank H.P.Butzmann for reminding me of this fact): To a
given point p € M consider the subspace mk c Ck(M) consisting of

p
all Ck-functions vanishing on p. For any two functions fl,f2 € mg
we have f,-f, ¢ Z unless they are identical. Hence "M'm% is an
injection and we conclude from the topological direct sum decomposition

Ck(M) = mls ®R + 1 that
k _ k 1,
uyC (M) = uM(mp)- S*-1 .

This direct decomposition is evidently topological. Since mp c Ck(M)
is a complete,locally convex topological vector space, it is Pc-re-
flexive (Lemma 1). Since s is also P, -reflexive, uMCk(M) is P, -

reflexive. Thus we have:

Théorem 6 For any k = 0,...,, the topological group uMCk(M) has
Ck(M) as its universal covering with a fundamental group isomorphic
to &, splits topologically into

O (M) = uM(mg)vsi-g .

and is thus Pc-reflexive.

4.2, The character group of uMcm(M); the group PT(M)

A linear combination Zri-i;(pi) € V°(M) composed with u fac-
tors through wy iff EIr, € Z. Denote by B(M' T c™(M) the
collection of all combinations of the form wne Zri-i;(pi) for which
Ir; € Z, equipped with the continuous convergence structure. Since

Uy is a quotient map, the continuous homomorphism
Ao PRt = Ton T,
assigning to each character in P:(M)1 its factorization through x

M’
is a bicontinuous isomorphism onto a convergence subgroup of vrcuMCQ(M).
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Denoting this convergence subgroup by P:(M), then we have a bicon-
tinuous isomorphism

O 1 -]
. PR——
: PL(M) P, (M) .
Lemma 7 P:(M) is dense in l‘cuMC”(M).

The proof is analogous to that of Lemma 8 (p.67) given in [Bi,2] .
We may reformulate Lemma 7 by saying that the character group
k .
ruyC (M) of wuyC*(M) is generated by PT(M).

Next consider the injective mapping

+C0 . 0O 00

gy ¢ M — Pc(M) c r‘cuMC (M)

.defined by Jy(P)(t) = t(p) for all p € M and all t € uy (M) .
Since My is a quotient map, we conclude by Lemma 4, that j; maps
M homeomorphically onto a subspace of P:(M). Any character

Y € TP7(M) induces an sl-valued function ye iy -

Lemma 8 For each vy € I‘P‘:(M) the function Yo j;; belongs to uMc""(M)_

The map
-] - -
P TR ——— ™)

. . + S0 . . .
sending each Yy into Yojy 1is a continuous monomorphism.

Proof: For Y € PP:(M) consider Yo u € FP:(M)l; and denote‘
u;i(P:(M)i) by V°1°(M) c LCC”(M)., Pulling the character Yyox back onto
V‘;’(M), we obtain the character yo io(u*IVT(M)) : V';(M) — st

Our aim is to extend this character onto the whole space V(M) and
then (using theorem 5) to show that vy oj; is of class C®. For this

purpose we decompose V°(M) as follows: One factor is Mo s the kernel

of the linear functional i -

)(1)=V°°(M) — R, sending each linear
M):

combination Zri-i;(pi) into Ir;. Hence Mo consists of all linear

combinations Ziri-i;z(pi) with iri = 0, For a fixed point p € M ,
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we form R-i;(p), which is homeomorphic to R. One easily shows now

ehat (i) VEM) = M@ Reip(p)

holds as an identity between convergence vector spaces. Hence
VT(M) c V¥(M) decomposes as
(i1) Vi) = M@ Ziy(p)
(An analoguous decomposition holds for any k.) We therefore split
Y 052064*|Vi”(M)) into the product Yq'Yy, of its restrictions
Y47 o % o@*lMo) and  Y,=Y < ic(u*lz-i;(p». Using the classical exten-

1 to

sion theorem of characters, we extend Y2:Z-i§(p) — S
?2:R-iﬁ(p) — = 5. Then Y1'§2 is a continuous character on VT(M)
which corresponds via x, to a continuous linear functional 7 € Lch(M).
By theorem 5, the functional £ is of the form (pw)—l(f) where

f € ¢®(M). From this we conclude f(y)=uM(f). Since £ is uniquely
determined by its values on i;(M) c V°(M), the continuous map ¢ is a

monomorphism. This completes the proof. (The methods used above yield

simplifications in the proof of Satz 7, p.62 in [Bi,2].)

Finally, let us collect some of our results on uMCm(M) and its

character group in the following theorem.

Theorem 9 The topological group uMCk(M) splits topologically into
uM(mg)-Slel where mg c c®(M) consists of all CX-functions vanishing
on a fixed point p € M. The character group of uMCm(M) is genera-
ted by P:(M). Moreover f’:FcP:(M) —_— uMCw(M), sending each
character vy into ch; s 1s a bicontinuous isomorphism. In addition,
P:(M) splits topologically into i(No)-Z-jM(p) s Where N, carries
the continuous convergence structure and consists of all combinations

% oZri'i;(pi)G rc®(M) with Ir; = o. The character group of E(NO)

is bicontinuously isomorphic to uM(m;) .

Proof: The first two assertions are valid by theorem 1 and Lemma 7.

To verify the others, consider the commutative diagram of continuous
maps:
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00 00 y o
FchuMC (M) — TP (M) L uMC (M)

5=

uMCQ(M)

where the first horizontal arrow indicates the restriction map. Using
this diagram in combination with Lemmas 7 and 8, we easily obtain the
bijectivity of ¥ » the continuity of yfl and thus the Pc—reflexivity
of uMcw(M) again. That P:(M) splits into i(No)éz-jﬁ(p) is evi-
dent by using (ii) in the proof above and % introduced at the be-

ginning of section U4.2. The rest of the theorem is straightforward.

5. Ck(M,Sl) and its P -reflexivity

5.1. The Bruschlinski group

The collection of all S-valued C¥-functions endowed with the
Ck- topology [Go,Guil forms a topological group under the point-
wise defined operations. For k = o, the topological group C°(M,Si)
carries the topology of compact convergence. In addition, Ck(M,Si) is
a Banach manifold for each finite' k. and is a Fréchet manifold for
k= o . (cf. [Go,Guil p.T6) . However, let us describe a canonical
chart of the unit element 1 . Consider in s x m (the tangent bundle
of Si), the neighborhood st x (-1,1) of slx{o}. The set o(U)
of all functions f € CX(M) for which (1,£)(M) 81X(-1,1) forms
an open convex subset of Ck(M). On the other hand, the set U de-
fined by {uecflIf € ®(U)} 1is open in Ck(M,Sl) and o'l:o(U) —= U
assigning to each f € ®(U) the map wuef € U is a homeomorphism.
Observe, how, that ©®(U) is a subspace of uMCk(M), In fact
o(U) < uﬁck(M) is evenly cove}ed in Ck(M), the universal covering

of uMCk(M) as remarked in § 4.1, Since ®(U) is a subspace of
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both Ck(M,Si) and uMCk(M), the topological group uMCk(M) is an
open topological subgroup of Ck(M,Si). It is even the connected
component W of 1 € Ck(M,Si). This can be seen as follows. As a
manifold, modeled on convex charts, W 1is pathwise connected. Any
path o:[-1,1] — W in W starting at 1 and ending at t defines
a homotopy o:[-1,1] X M — Si, connecting 1 and t. Without loss
of generality we may assume that t(po)=1. Thus both 1 and t de-
fine the trivial homomorphism from the fundamental group ni(M’po) of
M into ni(s,i) the fundamental group of S1. But this means that
t € uMCk(M). (In case of C°(M,Si), we used the compactness of M
only but not the differentiable structure; no arcwise connectedness
is needed either, compare § 2.3)

Let us form the quotient Ck(M,Si)/uMCk(M), whose quotient

structure is the discrete topology.
We have the following

Lemma 10 For any k = o,1...,o, the group Ck(M,Si) is dense in
CO(M,Si). Hence the inclusion Ck(M,Sl) c C°(M,Si) ‘induces an iso-
morphism B:Ck(M,Sl)/uMCk(M) — C°(M,si)/uMC°(M) .

Proof: Consider t € CO(M,Sl) and a map (t,f) : M — SlxR in the
canonical chart of t, where f € ¢ (m) composed with u:R — 81
yields t. The set C™(M) 4is dense in C°(M). Hence we find a map
f, € c®(M) close to f . But then x «f, is close to t, which

proves the first assertion of the lemma. The second is a simple con-

sequence.

As mentioned in § 2.3, we denote the quotient CO(M,Sl)/uMCO(M)
by ui(M). For any k, consider the homomorphism- b:Ck(M,Si) — ni(M).
which is the canonical projection onto Ck(M,Si)/uMCk(M) followed by

B. We now collect some of the material developed in this section:
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Proposition 11 For any k=0,...,», the sequence

3

i b
1 —— O = c*n,sh) -l —— 1
in which i denotes the inclusion map and in which Hl(M) carries the

discrete topology, 1s a topological exact sequence.

5.2. The character group of cX(M,sh)

Proposition 11 yields immediately that
1 — Fcﬂl(M) _iﬁ_q— Fch(M,Si) ~_jia. FcuMCk(M) is exact.
The maps *b and *1 are defined by composing characters with b
-and 1 respectively. Moreover, *i 1is surjective as we will later
show. The techniques involved are based on the universal covering i
of M and the subsequent lemmas. For their formulation, let us intro-

duce u:M —s M, the covering map of M and, for any k, its in-

duced maps K K~
u* : C°(M) ——— = C (M),

which is a homeomorphism onto a subspace of Ck(ﬁ),

wrr oL oK) —s L,c®(M)  and finally ,
*ux Fch(M) e Fch(M) .

These maps are defined by composing functions in Ck(M) with u ,
linear maps in Lch(ﬁ) with u* and characters in rcck(ﬁ) with
u* respectively. By the Hahn-Banach theorem, u** and hence *u*

are surjective.

A convergence vector space E and a convergence group G will

be called Lc-embeddable and Pc—embeddable if i and are homeo-

E JE
morphisms onto subspaces of LCLCE and FCFCG respectively.

ko u** k
Lemma 12  For any k=o,..,» both L.C (M) ——— L.C (M) and

~ * ok
rcck(M) —a FCCk(M) are quotient maps in the categories of L -
embeddable convergence vector spaces and Pc—embeddable convergence

groups respectively.
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Proof: First let us prove the second assertion. Let G be a r,-em-
beddable group and h : Fcck(ﬁ) —= (G a continuous homomorphism
which factors over *u* to h : Fcck(M)-——a— G. The canonical maps
u*aiﬁ and u*Oiﬁ from M into Fch(M) and from M into
Fch(ﬁ) are again denoted by the symbols jﬁ and j% respectively.
For any Y € I'G the map Yoh’jﬁ is of class Ck and factors over u
to the CK-function Yoﬁojﬁ. Hence *h(y) = yeh € rcPch(M). Since
*h=kkyk *h , the map *h 1is continuous, and since G is Pc—embeddable

h is continuous. The first assertion is verified analogously.

The next lemma employs *u : Ck(M,Si) — Ck(ﬁ,sl), defined by teu
for each t € Ck(M,Sl). Since W is simply connected, we have

Ck(ﬁ,si) = uﬁck(ﬁ) for any k. Restricting *u to uMCk(M), we ob-
tain the continuous homomorphism **u : FcuMCk(M) — Fcuﬁck(ﬁ), de-

fined by composing the characters with *uluMCk(M).

- ~ % %k
Lemma 13 The homomorphism Fcuﬁck(M) — FcuMCk(M) is a

quotient map in the category of Pc-embeddable convergence groups.

Proof: 1In order to prove surjectivity, let us consider
*ye
roC () —— r cK)
**u *u*
*x
rogefoy  —— r ko,
for each k=0,...,0 , where *uM and *uﬁ are defined in the usual
way, namely by composing the character with Uy and i respectively.
We first show that **u is surjective. Consider Y € FcuMCk(M) and
form *wuy(y). By lemma 12 we can find a Y € rcck(ﬁ) with
Youx = *uy(y). Since *uy(y)(Z) =1, and since u*|Z=id, , we

1 k . 1 _ - .
€ T uyC (M) with vy oty = Y. Since

have Y(Z)=1 . Hence we find Y
*uM and *uﬁ are injective, we have **u(yl) = Y. To verify the

rest of the lemma, one proceeds analogously as in the proof of lemma 12,
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or one uses lemma 12 in connection with the direct decomposition of

theorem 6.

We collect some of our results on the character group of

Ck(M,Sl) in the following theorem.

Lemma 14 For any k=o0,...,» the topological exact sequences

i "
0 g —Io ok T k) —— 1

and
i b
1—e w0 —— K8t ——» o) —— 1

‘have exact duals, namely

K Uy " *1y 1
1 — FcuMC M) — I"CC (M) ——— I‘c&":' 8" ———» 1,
‘and
* %* 4
1 —— roton 2o orockasty Lo rogckan oy

Here *uM and *b are homeomorphisms onto their ranges, *i1 is a
quotient map and *i is a qQuotient map in the category of Pc-em4

beddable groups.

Proof: Since Uy is a quotient map

1 — = 0K T roc¥on i, rog
is right exact and *uM is a bicontinuous isomorphism onto a sub-
space. To show that the last map *i1 » Wwhich is a restriction map,
is surjective, we extend a given character vy € FCZ onto R , turn
it via wu, into a real-valued functional £ and extend this func-
tional 4 to '€ L C¥(M) . Obviously, we¢'=y . To show that *i, ,
is a quotient map, one proceeds as in [Bi,2], p.71. To demonstrate

that the second dual sequence is exact, we point out that the se-

quence
1 —= ratay P rockm,s) Lo rogckan

is right exact, where *b maps its domaine homeomorphically onto

its range, regarded as a subspace of Fch(M,S1) .



To verify the surjectivity of *i , we form the commutative diagram:

ok *xy k 1
r ugc (M) — 32— r c(M,s7)

* %y /
*i
k
FcuMC (M)
From this, we conclude via' lemma 13, the last part of the above theorem.

5.3. The P _-reflexivity of Cc¥(M,s51)

For any k=0,...,o consider the commuting diagram
k *k k 1 **p 1
i—rro¢ M —=rr.c(Ms) —=r oM —-1
}uckan TJckm,si) bt

i b
1 —= ok —— Fusl) —— ity —— 1

3

where **i and **b are defined by composing the respective characters
with *i and *b.

Both the discrete topological group ni(M) and uMCk(M) are
P -reflexive (theorem 8). Using lemma 14, one easily verifies the
exactness of the upper sequence. By the five lemma, jck(M,Si) has
to be an isomorphism. Evidently jCk(M,Si) is continuous. To see that
its inverse is continuous we form jﬁ 't M —s Pcck(M,Si) , de-
fined by jX(p)(t)=t(p) for all p € M and all t € c¥(m,s%) ,
The dual map

i ¢+ o rckanst) —— st

sends each Y € PcFéCk(M,Sl) into *jM(y) = yojﬁ . Since

k. . . . s ~1
* =
dn ”Jck(M,Sl) lde(M,Si) » Wwe obtain the continuity of JCk(M,Si)'

Therefore we may conclude with:

Theorem 15 For any k=0,...,» the topological group Ck(M,Si) is

Pc-reflexive.
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