
Toposym 4-A

E. Binz
On an extension of Pontryagin's duality theory

In: (ed.): General topology and its relations to modern analysis and algebra IV, Proceedings of the
fourth Prague topological symposium, 1976, Part A: Invited papers. Springer, Berlin, 1977. Lecture
Notes in Mathematics, 609. pp. 1--20.

Persistent URL: http://dml.cz/dmlcz/700991

Terms of use:
© Springer, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700991
http://project.dml.cz


On an Extension of Pontryagin's Duality Theory 

E.Binz 

Mannheim 

1. Introduction 

Let G be a commutative, topological group. A character of G is 

1 1 

a continuous homomorphism h : G ** S , where the group S is the 

compact group of all complex numbers of modulus one. Now let G be 

locally compact. The collection TG of all characters of G , en­

dowed with the topology of compact convergence, forms a commutative, 

locally compact, topological group TQG under the pointwise defined 

operations. In addition, the natural homomorphism 

J Q : G - rcrcG , 

defined by jQ(g)(Y) = Y(g) for each g € G and each Y £ T G 9 is, 

as the fundamental theorem of Pontryagin states, a bicontinuous iso­

morphism. Pontryagin's duality theory is the study of the rich re­

lations between G and r G . 

The aim of this note is to suggest an extension of Pontryagin's 

duality theory by extending the fundamental theorem to a wider class 

of groups. We proceed as follows: To the (commutative) groups under 

consideration will be associated a concept of convergence compatible 

with the algebraic structure. Groups of this sort are called conver­

gence groups. This concept of convergence, given by a convergence 

structure, will allow the notion of continuity. For any convergence 

group G , the group TG of all characters of G equipped with the 

continuous convergence structure A will be denoted by TQG . In 

case G is a locally compact topological group, A is identical to 

the topology of compact convergence. We will call a convergence group 



P -reflexive, if j« : G — ». rc ro^ l s a ^--continuous isomorphism. 

The class of P -reflexive convergence groups contains in addition to 

all commutative, locally compact, topological groups all the complete, 

locally convex E-vector spaces. We will verify the P -reflexivity of 

the following type of topological groups: 

For any k = o,...,°o the collection Ck(M,S1) of all S1-valued Ck-

functions of a connected compact C°°-manifold M, equipped with the 

C -topology is a topological group. It is in general not locally com­

pact. We demonstrate the PQ-reflexivity of Ck(M,S1) as follows: 

The idea is to use C (M), the complete, locally convex vector space 

of real-valued C -functions of M equipped with the C -topology and 

to introduce C (M j / f , where £ denotes the subset of all the 

functions assuming their values in I. We will show, that C (M)/£ 

can be identified with the connected component xMC (M) of 1 in 

Ck(M,S1) . The quotient Ck(M,S1)/n ck(M) is then a discrete group 

1 
called n (M). The exact sequence 

1 • »- *Mc
k(M) — *- Ck(M,S1) —-*- n1(M) »» 1 

has an exact "bidual" : 

l — — ^ rcrcuMc
k(M) ^ rcrcc

k(M,s1) — — ^ rcrcn
1(M) ^ i. 

k 1 

Since xMC (M) and n (M) will turn out to be Pc-reflexive, we will 

conclude, via the five lemma, that C (M,S ) is also P -reflexive. 

Along the way, we will study some special character groups appearing 

in our procedure. 

For this type of extension of Pontryagin*s duality theory a suitable 

extension theorem of characters is still missing. This hinders 

considerably the study of the relations between G and V G for 

P -reflexive convergence groups G . 



2. Review of some Definitions and Results 

2.1. The character group of a convergence group, P -reflexivity 

Let X be a non empty set. To any point in X will be associa­

ted a collection A(p) of filters on X. The set A(p) is an ele­

ment of P(F(X)), the power set of the set of all filters F(X) of 

X. 

The map A : X —*-P(F(X)) is called a convergence structure on 

X if the following conditions are satisfied for each p € X: 

(i) p , the filter generated by {p} belongs to A(p). 

(ii) Any filter finer than a member of A(p) belongs to A(p). 

(iii) The infimum GAI|J of any two filters of A(p) belongs to A(p) . 

Let us remark here, that any topology on X is a convergence 

structure, but not vice versa. 

The set X, together with a convergence structure A, is called 

a convergence space. The filters in A(p) are said to converge to p 

in X. A map f from a convergence space X into a convergence 

space Y is continuous if, for any filter <D convergent to p in 

X, the image converges to f(p) in Y. The cartesian product X x x 

of any two convergence spaces X and Y carries the product struc­

ture defined in the obvious way [Bi]. 

On C(X,Y), the collection of the continuous maps from the con­

vergence space X into the convergence space Y, there is a coar­

sest among all the convergence structures for which the evaluation 

m a p a) : C(X,Y) x X ^ Y , 

(defined by co(f,p) = f(p) for any (f,p) 6 C(X,Y) x x) is con­

tinuous. This is called the continuous convergerice structure A , 

A filter 8 on C(X,Y) converges to a function f with respect to 

AQ iff for any p e X the filter co(e x <&) converges to f(p) 



in Y for any filter 0 convergent to p. The set C(X,Y) and 

any subset A(X,Y) of C(X,Y) endowed with AQ are denoted by 

C (X,Y) and A (X,Y) respectively. The continuous convergence c c 

structure is characterized by the following universal property 

([Bi], [Bi,Ke]) : A map f from a convergence space S into a sub-

space A (X,Y) of C„(X,Y) is continuous iff co o (fxid) :S x x — ^ Y 

c c 

is continuous. 

We now pass on to convergence groups. Our groups are always 

assumed to be abelian. 

A group, together with a convergence structure, is called a con­

vergence group if the group operations are continuous. 

The character group r G of a convergence group G is the group 
1 

TG of all continuous homomorphisms of G into the circle group S 

together with the continuous convergence structure. The operations on 

rG are defined pc 

The canonical map 

TG are defined pointwise. Obviously, r G is a convergence group. 
c 

i« : G «*- r r G 
JG c c ' 

defined by JG(g)(Y) = Y(g) for any g € G and any Y € rcG is evi­

dently continuous. 

We call G P -reflexive if J G is a bicontinuous isomorphism 

Remark: If G is a locally compact topological group, then the con­

tinuous convergence structure on TG is identical to the topology of 

compact convergence. Hence the P -.reflexivity of such a group G is 

identical to the classical reflexivity in the sense of Pontryagin [Po] 

2.2 The character group of a convergence vector space 

An R-vector space E (referred to as a vector space) equipped 

with a convergence structure for which the operations are continuous 

is called a convergence vector space [Bi].. The c-dual, LQE, of E 



is the vector space of all continuous real-valued linear functionals 

endowed with the continuous convergence structure. 
i 

The exponential map from [R to S sending each real r to 

e l r is denoted by H. This map induces a continuous homomorphism 

K* : L E • r E assigning to each /£ L E the character Xo/ . 

It is shown in [Bu], that K* is a bicontinuous isomorphism. For 

a slightly restricted version of this result, which is general enough 

for our purposes, we refer the reader to the Appendix in [Bi]. The 

proof of the result in [Bu] is an elaborated version of the proof I 

gave in [Bi]. For an earlier result in this direction see [F-S]. 

Let us point out here, that there is no vector space topology T 

on LE, where E is locally convex, for which the evaluation map 

co:LE x E *• R. is continuous, unless E is normable [Ke]. 

We call a convergence vector space E c-reflexive if 

iE : E — + - ^c^cE "*"s a b : L C O n t i n u o u s isomorphism. 

One easily verifies [Bi]: 

Lemma 1; A convergence vector space E is PQ-reflexive iff E is 

c-reflexive. A topological vector space E is P -reflexive iff 

it is locally convex and complete. 

2.3. P -reflexivity of some convergence groups of continuous 

mappings 

Assume that X is an arcwise connected topological space. The 

map K Y : C (X) -̂ C (XjS1), sending each f € C(X) into 
A C C C 

K e f , is a quotient map onto its range, regarded as a subspace of 

CfXjS 1) [Bi,2]. The quotient CAX9S
1)/K„Cn (X), carrying the 

C C JL C 

quotient structure is denoted by n (X) and is called [Hu] the 
c 

Bruschlinski group of X. If X is locally compact, CC(X,S ) is 

a topological group. As demonstrated in [Bif2], we have: 



Theorem 2 The group H x C c ^ "*"s pc~
reflexive« If> ^n addition, X 

is a normal space allowing a (simply connected) universal covering, 
l 1 the group C (X,S ) is P -reflexive if n^(X) is complete. This is c c c 

the case e.g. if either the first singular homology group (with the 

integers as coefficients) is finitely generated, or n (X) is iso­

morphic to the first singular cohomology group (with the integers as 

coefficients). 

In the next few sections we will derive some functional analytic 

results which will, in turn, be fundamental in showing the Pc-reflexi-

k 1 vity of C (M,S ), as announced in the introduction. 

3- Functional analytic preliminaries 

k oo 

3.1. C (M) for a connected compact C -manifold M 

Let M be a compact C°°-manifold. For a non-negative integer k, 

k k 
we will denote by C (M) the Banach space of all real-valued C -

functions of M, endowed with the usual norm. This yields the topo­

logy of uniform convergence in all k derivatives. We refer to [Pa] 

and [Go,Gui] for the above remarks and for the next few details. 

Clearly the inclusion map ik+:L - C (M) ^ C (M) is continuous 

for any k. Moreover, its image is dense and the image of the unit 

ball E k + 1 of Ck+1(M) is relatively compact in Ck(M). 

The projective limit of all C (M) is denoted by C°°(M). This is 

a complete^metrizable,locally convex space, a so-called Frechet space 

[Schae]. Since E k + 1 is relatively compact in C (M) for any k, 

the space C°°(M) is called a Schwartz space. 

3.2. The c-dual of Ck(M) 

First, let F be any convergence vector space. Any compact set 

in LP is topological [Bi]. A convergence space is said to be com-

pact if every ultrafilter converges to exactly one point. 



Next, we describe the c-dual of F where F is a topological 

vector space. For any neighborhood U of zero in F, the polar 

{ ie LF|/(U) c [-1,1]}, denoted by U°, is compact if regarded as 

a subspace of LQF. Hence it is a compact topological space. The to­

pology on it is the topology of pointwise convergence. Moreover, LQF 

is the inductive limit (in the category of convergence spaces) of all 

these compact topological spaces U°, where U runs through the 

neighborhood filter of zero in F. For these and the next few details 

we refer the reader to [Bi] or to [Bi,Bu,Ku]. 

For a topological vector space F, the natural map 

ip : F :—»- *-c*"c
F ^s a ^continuous isomorphism iff F is a 

complete,locally convex vector space ( cf. Lemma 1) . 

Let us turn our attention to L C (M) for a finite k. The con­

vergence vector space L C (M) is the inductive limit of all mul­

tiples of the polar E £ of the unit ball E, c C (M). Here as a 

subspace of 1 C (M), E° carries the topology of pointwise conver­

gence and is therefore compact. 

k k 
When LC (M) carries the usual norm topology, we write LnC (M). 

For any k, the adjoint of j ~ , the map 

j£*: LcC
k(M) ^ LcC~(M) , 

defined by composing each / € LQC (M) with j£ » is a continuous 

injection. Since C°°(M) is a Schwartz space, we even have [Ja] : 

Lemma 3 L C°°(M) is the inductive limit (in the category of conver-

gence spaces) of I C (M) as well as of LnC (M), taken over all 

finite k. 

For any p € M, the linear functional iM(p) - C (M) *- IR 

evaluating each f € C (M) at p is continuous for any k. If k < » 

ik : M •» LcC
k(M) sending each p € M into ijjj(p) is a con­

tinuous injection whose image is contained in the polar E k of the 



unit ball E, c C (M). Hence we have: 

Lemma 4: The canonical map i^ : M »-- LQC (M) is (for any k) 

a homeomorphism onto a subspace of L C (M) . If k < » 9 then 

iJj(M) c E£ . 

3.3. Vk(M) 

For each k=o,l,...,«> let Vk(M) be the span of iM(M), re-

k garded as a subspace of L C (M). c 

Recall that in a convergence space X a point p is adherent 

to a subset A if there is a filter <& convergent to p in X, 

such that P n A i i for any P € «. We call A c X dense if the 

collection A (the adherence of A) of all points adherent to A is 

all of X. 

The following is an analogue to the situation in the case of 

CC(X) (cf. appendix of [Bi]). 

Theorem 5: The space V°°(M) is dense in 1 C (M). Moreover the 

restriction map r°° : L L C (M) *- L V^M) is a bicontinuous 

isomorphism. Thus p°° : L V°°(M) »-- C°°(M), defined by 
c 

p°°(0 = Ai!! for each Y € L V°°(M), is a bicontinuous isomorphism. 

Proof: Since C°°(M) is c-reflexive, r°° is a monomorphism. To 

show its surjectivity, consider for each finite k the following 

diagram: /.k+lv* 

V*(M) -^—S Vk+1(M) c L Ck+1(M) <* -= L Ck(M) . 

n n c 

The index n indicates, that the respective spaces carry the usual 

norm topology. The linear map a sending each i M (p) into ijjj(p), 
k+1 * J k 

is evidently continuous. Finally (j* ) restricts each t€ LQC (M) 
to C (M). The next goal is.to show that (j k

+ ) is continuous. 
k+l We recall that the unit ball E k + 1 of C (M) is relatively compact in 

C (M). Hence the polar E° of E, formed in LCk(M) is mapped 



k+1 * k+1 * o 
by (Jk ) into a compact subspace (j, ) ( E

k) n °f the Banach space 
k+1 

L C (M) (cf. [Schae] p.Ill). Prom this, we conclude the continuity of 

(Jv ) • Next let £ € L V^CM) . The functional /o a has a con-

tinuous extension / to L nC
k + 1(M), for which -^°(Jk

+1)*= & is con­

tinuous on L C (M) . Moreover / ° L = /°i^ . Since C (M) is c-re-

flexive, / can be represented as i . (f, ) for some function 
, CK(M) K 

v. ^ / .k / oo 

fk € C (M). Hence ^ljj = ffc for each finite k. Since loiM = fk , 

the function fo i~ is of class C°° and r°°o ip00/-^ (fk) = ^ • Thus 

the injection is bijective. We proceed now to show that V°°(M) is 

dense in L C°°(M). To do this, we introduce V^M) and establish 

three properties (a,b,c) which exhibit this space as an L -space 

[Bi,Bu,Ku]. Thus V°°(K) is c-reflexive. Let us point out that LcC
co(M) 

is the inductive limit (in the category of convergence spaces) of 

countably many absolutely convex^ compact topological spaces K.c^c... . 
Hence we have L^ K. =LC°°(M). For each index i we form the adherence 

. i 1 

K. n V^XM)1 of K. n V°°(M) in K. . This adherence is a convex,com­

pact topological subspace of K. . Moreover 
V°(M) = U K. n V^CM)1 , 

i -

as one easily verifies. Hence V*°(M) , regarded as the inductive 

limit of the compact, convex subspaces K. n V°°(M) , taken over all i 

is a) locally convex, and locally compact and b) admits point-

separating continuous linear functionals. By locally convex we mean 

that, for any filter convergent to q , there is a coarser one having 

a basis of convex sets which also converges to q. Locally compact 

means that any convergent filter contains a compact set. 

The last one, c), of the above mentioned characteristic properties 

is the following: Any compact subspace of "^(M) is a compact topo-
^ - y 

logical space.,But this is evidently true because any compact subset 

of V°°(M) /is contained in one of the compact topological spaces 
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K± n V^M)
1 . Thus VX>(M)/ is an Lc-space. Since V°°(M) ' splits in­

to countably many compact subsets, LcV°°(M) is a Frechet space. 

Hence it is c-reflexive [Bi,Bu,KuJ. In addition, V*°(M) is a dense 

subspace of V*°(M). One easily concludes that 

r°° : LLC°°(M) * Ln^T(M)/ 

c c c 

is a continuous bisection between Pr§chetspaces. Using the closed graph 

theorem, we deduce that r°° is a homeomorphism. The c-reflexivity of 

V^fM) and C°°(M) now immediately yields V^M) = LcC°°(M). The commu-

tativity of 

L L C°°(M) £ — — LjT(M) K ^ cw(M) 
c c 

i 

allows us to conclude that r and p are bicontinuous isomorphisms, 

as asserted in theorem 5. 

4. xMC (M), in particular xjtf*W 

4.1 The group K^C (M) and its Pc-reflexivity 

For any k = o,...,», we consider the collection K MC (M) of all 

functions K * f, where f € C (M) . (Recall, that K : IR •* S sends 

each r into e u:Lr). This collection is a group under the pointwise 

defined operations. Since M is connected, the kernel of 

K M : Ck(M) *• nMC
k(M) 

is Z, the subgroup of all constant functions assuming their values 

in Z. For any z £ Z denote by z the function whose only value 

is z . By virtue of the addition in C (M), Z operates on C (M) 

properly discontinuously [Spa]. Hence the quotient C (M)/Z , taken 

in the category of topological spaces, has C (M) as its (simply con­

nected) universal covering. From this, we conclude that C (M)/£ is 

also the quotient in the category of convergence spaces. Moreover Z 
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is isomorphic to the fundamental group of C (M)/£ . Let us identify 

C (M)/£ with K MC (M) and the projection map onto C (M)/£ with K M . 

The topological group K MC (M) can be represented as a direct 

product (I thank H.P.Butzmann for reminding me of this fact): To a 

k k given point p € M consider the subspace m c C (M) consisting of 

all C -functions vanishing on p. For any two functions f-i>f2 € mD 

we have -^"fp ^ % unless they are identical. Hence ^M'111^ is an 

injection and we conclude from the topological direct sum decomposition 

Ck(M) = m£ © R - l that 

KMC
k(M) = KM(mJ). S

1-! . 

This direct decomposition is evidently topological. Since nr c C (M) 

is a complete,locally convex topological vector space, it is P -re-

1 k 
flexive (Lemma 1). Since S is also Pc-reflexive, K MC (M) is P -
reflexive. Thus we have: 

Theorem 6 For any k = o,...9»3 the topological group K MC (M) has 

C (M) as its universal covering with a fundamental group isomorphic 

to £, splits topologically into 

KMC
k(M) = K^m^iS1-! . 

and is thus Pc-reflexive. 

4.2. The character group of KMC°°(M) ; the group P^(M) 

A linear combination Zr.*iM(p.) € V*°(M) composed with K fac­

tors through K M iff Iri € Z. Denote by P~(M) c rcC°°(M) the . 

collection of all combinations of the form w«Ir^i^(p.) for which 

Zr. £ £, equipped with the continuous convergence structure. Since 

K M is a quotient map, the continuous homomorphism 

- . pco(M)l ^ r KMC°°(M) , 
C 

oo "1 

assigning to each character in PC(M) its factorization through K M> 

is a bicontinuous isomorphism onto a convergence subgroup of r KMC°°(M) 
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Denoting this convergence subgroup by P
Q
(M), then we have a bicon-

tinuous isomorphism 

ӣ : P^CM)
1
 — P~(M) . 

Lemma 7 P
C
(M) is dense in r

c
K
M
C°°(M). 

The proof is analogous to that of Lemma 8 (p.67) given in [Bi,2] . 

We may reformulate Lemma 7 by saying that the character group 

r
c
K

M
C

k
(M) of K

M
C

k
(M) is generated by P~(M). 

Next consider the injective mapping 

£ : M *~ P c ( M ) c rc*MC~(M) 

defined by JM(p)(t) = t(p) for all p € M and all t € KMC°°(M) . 

Since K M is a quotient map, we conclude by Lemma 4, that j M maps 

M homeomorphically onto a subspace of P~(M). Any character 
c 

Y € TP~(M) induces an S -valued function Y • JM • 

Lemma 8 For each Y G TPC(M) the function Y • j« belongs to KMC°
C>(M) 

The map 

rcp°°(M) - M MC"(M) 

sending each Y into Y*jM is a continuous monomorphism. 

Proof: For Y € TP~(M) consider Y ° H € TP~(M) ; and denote 
""™^~-"~" c c 

K*1(P~(M)1) by V^(M) c LCC°°(M). Pulling the character Y°K back onto 

V^(M), we obtain the character Y ° H C ^ IV̂ (M)) : V^(M) ^ S1 . 

Our aim is to extend this character onto the whole space V*°(M) and 

then (using theorem 5) to show that Y ° JM is of class C°°. For this 

purpose we decompose V*°(M) as follows: One factor is M 5 the kernel 
of the linear functional i (l):Vfio(M) -̂'IR. sending each linear 

C°°(M); 
combination Ir.*i!!(p.) into ^r^. Hence M consists of all linear 

combinations Eir*'iM^pi) w i t h Zri = °' F o r a f i x e d P° i n t P € M * 
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we form (R«iM(p), which is homeomorphic to (R. One easily shows now 

t h a t (i) V~(M) = MQ © IR-i~(p) 

holds as an identity between convergence vector spaces. Hence 

1 < V^(M) c: V°°(M) decomposes as 

(ii) V~(M) = M 0®Z-i*(p) . 

(An analoguous decomposition .holds for any k.) We therefore split 

YoHo^lV^d.)') into the product Y-i'Y? °? its restrictions 

Y . - Y O H ^ H ^ I M Q ) and Y2=Y <- K ©(K* \l *iM(p)). Using the classical exten-

sion theorem of characters, we extend Yp:£#iM(p) -»• s t o 

Yp:frt*iM(p) -* s • Then Y^'Yp ^s a continuous character on V°°(M) 

which corresponds via K* to a continuous linear functional / € L V°°(M) 

By theorem 5, the functional <i is of the form (p°°) (f) where 

f € C°°(M) . From this we conclude y(Y)=MM(f). Since / is uniquely 

determined by its values on iM(M) cz V ^ M ) , the continuous map ^ is a 

monomorphism. This completes the proof. (The methods used above yield 

simplifications in the proof of Satz 7, p.62 in [Bi,2].) 

Finally, let us collect some of our results on KMC°°(M) and its 

character group in the following theorem. 

Theorem 9 The topological group K M C (M) splits topologically into 

KM(m )»S -1 where m c C (M) consists of all C -functions vanishing 

on a fixed point p € M. The character group of KMC°°(M) is genera­

ted by P~(M) . Moreover f -T P~(M) -*~ K MC°°(M), sending each 

character Y into Y*JM > is a bicontinuous isomorphism. In addition, 

P~(M) splits topologically into it (NQ) •£• JM(p) , where N carries 

the continuous convergence structure and consists of all combinations 

K oZr.'iM(p^)G TC (M) with Zr. = o. The character group of K ( N ) 

is bicontinuously isomorphic to KM(m ) . 

Proof: The first two assertions are valid by theorem 1 and Lemma 7. 

To verify the others, consider the commutative diagram of continuous 

maps: 
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г c г c и м c o в (м) - ГP~(M) -Z+. имc°°(м) 

V ~ ( M ) ^ .d 

HMC°°(M) 

where the first horizontal arrow indicates the restriction map. Using 

this diagram in combination with Lemmas 7 and 8, we easily obtain the 

. . . . -1 . . 

bijectivity of y , the continuity of y and thus the P
c
-reflexivity 

of K
M
C°°(M) again. That P~(M) splits into K (N

Q
) .£• JM(p) is evi­

dent by using (ii) in the proof above and n introduced at the be­

ginning of section 4.2. The rest of the theorem is straightforward. 

5. Ck(M,S ) and its P -reflexivity 
-c-

5.1. The Bruschlinski group 

1 k 
The collection of all S -valued C -functions endowed with the 

C - topology [Go,Gui] forms a topological group under the point-
r\ "1 

wise defined operations. For k = o, the topological group C (M,S ) 
k 1 carries the topology of compact convergence. In addition, C (M,S ) is 

a Banach manifold for each finite k and is a Frechet manifold for 

k = « . (cf. [Go,Gui] p.76) . However, let us describe a canonical 

chart of the unit element 1 . Consider in S x (R (the tangent bundle 

of S 1), the neighborhood S1 x (-1,1) of S1x{o}. The set <&(U) 

of all functions f € Ck(M) for which (l,f)(M) c S1x(-l,l) forms 

an open convex subset of C (M). On the other hand, the set U de­

fined by {wcflf € *(U)} is open in Ck(M,S1) and *"1:*(U) ^ U 

assigning to each f € «(U) the map Kef € U is a homeomorphism. 

Observe, now, that «(U) is a subspace of wMC
k(M). In fact 

<D(U) c K MC (M) is evenly covered in C (M), the universal covering 

of K MC (M) as remarked in § 4.1, Since *(U) is a subspace of 



15 

both Ck(M,S1) and HMC
k(M), the topological group HMC

k(M) is an 

k 1 
open topological subgroup of C (M,S ). It is even the connected 

k 1 
component W of 1 € C (M,S ). This can be seen as follows. As a 

manifold, modeled on convex charts, W is pathwise connected. Any 

path a: [-1,1] —**• W in W starting at 1 and ending at t defines 

a homotopy a: [-1,1] x M —•--» S , connecting 1 and t. Without loss 

of generality we may assume that t(p )=1. Thus both 1 and t de­

fine the trivial homomorphism from the fundamental group IT1(M,p ) of 

M into 11^(8,1) the fundamental group of S1. But this means that 

t € H M C (M). (In case of C°(M,S ), we used the compactness of M 

only but not the differentiable structure; no arcwise connectedness 

is needed either, compare § 2.3) 

k 1 k 
Let us form the quotient C (M,S )/HMC (M), whose quotient 

structure is the discrete topology. 

We have the following 

k 1 Lemma 10 For any k = o,l...,«>, the group C (M,S ) is dense in 

C°(M,S ). Hence the inclusion C (M,S ) c C°(M,S ) induces an iso­

morphism B:Ck(M,S1)/HMC
k(M) —** C°(M,S1)/xMC

0(M) . 

Proof: Consider t € C°(M,S ) and a map (t,f) : M —*- S XR in the 

r. 1 

canonical chart of t, where f € C (M) composed with n:jR —*• S 

yields t. The set C°°(M) is dense in C°(M). Hence we find a map 

f. € C°°(M) close to f . But then H * f. is close to t, which 

proves the first assertion of the lemma. The second is a simple con­

sequence . 

As mentioned in § 2.3, we denote the quotient C°(M,S )/H MC°(M) 

1 k 1 1 
by n (M). For any k, consider the homomorphism- b:C (M,S ) --» IT (M). 

k 1 I 
which is the canonical projection onto C (M,S ) / H M C

K ( M ) followed by 

B. We now collect some of the material developed in this section: 
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Proposition 11 For any k=o,...,oo
3
 the sequence 

1 ^ н
м
С

к
(М) — - ^ С

к
(М

>
3

1
) — П

1
(М) —-*- 1 

1 
in which i denotes the inclusion map and in which n (M) carries the 

discrete topology, is a topological exact sequence. 

5.2. The character group of C
k
(M

3
S

1
) 

Proposition 11 yields immediately that 

1 *. r
c
n

1
(M) J.k_*-. r Ck

(M,S
1
) !l^. r

c
H

M
C

k
(M) is exact. 

The maps *b and *i are defined by composing characters with b 

and i respectively. Moreover, *i is surjective as we will later 

show. The techniques involved are based on the universal covering M 

of M and the subsequent lemmas. For their formulation, let us intro-

duce u:M —*- M, the covering map of M and, for any k, its in­

duced maps , , ^ 

u* : C
K
(M) *~ C

K
(M), 

k ** 
which is a homeomorphism onto a subspace of C (M), 

u** : L
Q
C

k
(M) s- L

Q
C

k
(M) and finally , 

*u* : r
c
c

k
(M) *• r

c
c

k
(M) . 

These maps are defined by composing functions in C (M) with u , 

k ** k *" 

linear maps in L C (M) with u* and characters in r C (M) with 

u* respectively. By the Hahn-Banach theorem, u** and hence *u* 

are surjective. 

A convergence vector space E and a convergence group G will 

morphisms onto subspaces of L L E and r r G respectively. 

Lemma 12 For any k=o,..,» both L
Q
C

k
(M)

 u
** »» L

c
C

k
(M) and 

r e (M) -i--*-. r C
k
(M) are quotient maps in the categories of L -

c c c 

embeddable convergence vector spaces and r -embeddable convergence 

groups respectively. 
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Proof: First let us prove the second assertion. Let G be a rc-em-

beddable group and h : r C (fvf) --*• G a continuous homomorphism 
c 

which factors over *u* to h : r C (M) • •>• G. The canonical maps 
.k k k / % ~ 

K*<-I M and H*° !§ from M into r C (M) and from M into 
k ~ k k 

r C (M) are again denoted by the symbols J M and jjf respectively. 
k k 

For any Y € TG the map Yohojg is of class C and factors over u 

to the Ck-function Y«h°JM. Hence * E ( Y ) = Y*h € T cr cC
k(M). Since 

*h=**u* *h , the map *h is continuous, and since G is P -embeddable 

h is continuous. The first assertion is verified analogously. 
The next lemma employs *u : Ck(M,S1) *- C k(M,S 1), defined by to-u 

k 1 «?-* 

for each t € C (M,S ). Since M. is simply connected, we have 

Ck(M,S1) = KjjCk(S?) for any k. Restricting *u to K MC
k(M), we ob­

tain the continuous homomorphism **u : r K C (M) ->• rn wM C ^ > de" 
fined by composing the characters with * U I K M C (M) 

cИVГ
 Ч11/

 ^
 ł c T 

MC 

Lemma 13 The homomorphism r

c^g
c (M) —>- rc HM C ^ ^ s a 

quotient map in the category of P -embeddable convergence groups. 

Proof: In order to prove surjectivity, let us consider 

rcKMc
k(M) ^ - l - ~ rcc

k(fi) 

* * i *,,* 

rcKMc
k(M) 5 L - * rcc

k(M) , 

"Kg are defined in the usual 

way, namely by composing the character with K M and Kg respectively. 

We first show that **u is surjective. Consider Y € r ^ C (M) and 
— IT *-* 

form * K M ( Y ) . By lemma 12 we can find a Y € TCC (M) with 

You* = * K M ( Y ) . Since * K M ( Y ) ( £ ) = 1 , and since u*|£=idz ,. we 
— 1 k 1 — 

have Y ( £ ) = ! • Hence we find Y € F^yf (M) with Y o K M = Y. Since 

* K M and * K C are infective, we have * * U ( Y ) = Y- To verify the 

rest of the lemma, one proceeds analogously as in the proof of lemma 12, 
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or one uses lemma 12 in connection with the direct decomposition of 

theorem 6. 

We collect some of our results on the character group of 

Ck(M,S1) in the following theorem. 

Lemma 14 For any k=o,...,» the topological exact sequences 

0 *~ L i- Ck(M) ^ KMC
k(M) ~ 1 

and 

1 *-- KMC
k(M) i-̂ - Ck(M,S1) £-• n1(M) *- 1 

have exact duals, namely 

*K *i 
i > rcKMc

k(M) — - - L * . rcc
k(M) i-*. r z = s1 -*• 1 3 

and 

i >- rcn
1(M) *b » rcc

k(M,s1) *i > rcKMc
k(M) ^ i . 

Here *K M and *b are homeomorphisms onto their ranges, *i. is a 

quotient map and *i is a quotient map in the category of P -em-

beddable groups. 

Proof: Since K M is a quotient map 

*K • 

i *~ rKMc
k(M) — * L * . rcc

k(M) *x*» rcJE 

is right exact and *K M is a bicontinuous isomorphism onto a sub-

space. To show that the last map *i1 , which is a restriction map, 

is surjective, we extend a given character Y G r % onto IR , turn 

it via K* into a real-valued functional -/ and extend this func­

tional V to { € LQC (M) . Obviously, K C / = Y . To show that *i1 , 

is a quotient map, one proceeds as in [Bi,2], p.71. To demonstrate 

that the second dual sequence is exact, we point out that the se­

quence 

l • •» rcn
1(M) *b > rcc

k(M,s) *i > rcKMc
k(M) 

is right exact, where *b maps its domaine homeomorphically onto 
k 1 its range, regarded as a subspace of r C (M,S ) . 
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To verify the surjectivity of *i , we form the commutative diagram: 

г
c
и

й
c

k
(м) ----. *- -^(м.s

1
) 

**1 

Г
c
н

м
C

k
(M) 

From this, we conclude via-lemma 13, the last part of the above theorem. 

5.3. The P
c
-reflexivity of C H M / S

1
) 

For any k=o,...,« consider the commuting diagram 

1 ^
 r

c

r
c

w
M

c k ( M ) ^ ~ r

c

r
c

c k ( M
*

s l
) " ^ ^

 r

c

r
c

n l ( M ) * i 

|Jw
M
c

k
(M) pc

k
(M,s

1
) J ^'n

1 

-*- H
M
C

k
(M) —-—*-• C

k
(M,S

1
) *- II^M) 

where **i and **b are defined by composing the respective characters 

with *i and *b. 

1 k 

Both the discrete topological group n (M) and K
M
C (M) are 

P -reflexive (theorem 8). Using lemma 14, one easily verifies the c 

exactness of the upper sequence. By the five lemma, Jn
k
(M s

1
)

 h a s 

to be an isomorphism. Evidently Jn^tM Q1\ is continuous. To see that 

its inverse is continuous we form J
M
 : M »- T

C
C (M,S ) , de­

fined by J
M
(p)(t)=t(p) for all p G M and all t € Ck(M,S1) . 

The dual map 

* j k : rcrcc
k(M,s1) ^ Ck(M,S1) , 

sends each y € rQrcC
k(M,S1) into *J M(Y) = Y«JM . Since 

*JMc'dCk(M,S1) = idCk(M,S1) » w e o b t a i n t h e continuity of ^k < M sl }. 

Therefore we may conclude with: 

k 1 Theorem 15 For any k=o,...,~ the topological group C (M,S ) is 

P -reflexive, c 
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