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A CONTRIBUTION TO THE DESCRIPTIVE THEORY 
OF SETS AND SPACES 

Z. FROLIK 

Praha 

In the present note the following kinds of spaces are investigated: bianalytic 
spaces (Baire sets of compact spaces; for the definition of Baire sets see 1A0 and 1.5), 
Borelian spaces (one-to-one continuous images of bianalytic spaces), analytic spaces 
(continuous images of bianalytic spaces), one-to-one continuous images of closed 
subspaces of the space of all irrational numbers, and continuous images of the space 
of all irr. numbers. As an introduction one can make use of [6] and [9]. For historical 
notes see Section 5. It should be noted that the notation, terminology and results of 
Section 1 are used without references, the proofs of most results of Section 3 do not 
depend upon Section 2, and Section 4 essentially depends upon the preceding sections. 
The proofs of Section 2 are relatively brief because they are similar to those of [6]. 

For convenience, all spaces under consideration are supposed to be completely 
regular. 

1. NOTATION AND TERMINOLOGY 

1.1. exp H always denotes the family of all subsets of the set H. 

1.2. Let / be a mapping of H onto L. If M cz exp H, then f\M\ denotes the 
family of all / [ M ] , M e M. If M cz exp L, then f~l\M\ denotes the family of all 
f~l\M\ Me J{. 

1.3. If M cz exp H and i V c f l , then Jl n N (= N n M) denotes the family of 
all M n N, MeM. 

1.4. A centered family of sets is a family M with the finite intersection property, 
i.e. the intersection of any finite subfamily of M is non-void. 

1.5. For any family M cz exp H, 3t\M\ 3$(M), @JM) denote, respectively, 
the smallest families containing M and closed under following o p e r a t i o n s : 

(a) countable unions and complementation, 
(b) countable unions and countable intersections, 

(c) countable intersections and countable disjoint unions. 

1.6. By a complemented part of a family of sets M is meant the following family 

compl. p. M = {M : M e M, (L~ M)e 
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where Lis the union of Ji. An Jt will be called complemented if 

compl. p. M = Ji . 

1.7. The letters S and I will always be used to denote the set of all finite sequences 
and infinite sequences, respectively, of positive integers. Sm n = 1, 2, ..., denotes the 
set of all s e S of length n. We shall writes -< a if sis a section of <r, i. e., if s = {s1? ..., 
s„} and a = {r/J, then sf = af for all i ^ n. 

1.8. A determining system1) in a family Jt of sets is a mapping M = {M(s)} of S 
to Jt such that 

(1) .M({s1 , . . . ,sn ,k})c=M({s1 , . . . ,s< l}) . 

The nucleus of the determining system M is the set 

(2) st(M) = J*({M(S)}) = U fl M(s) . 
ffel s<cr 

The nuclei of determining systems in Jt will be called ^-Souslin sets or Souslin with 
respect to Ji. The family of ail ^-Souslin sets will be denoted by st(Ji). It is well 
known that 

(3) st(st(Jt)) = stf(Jt) , 

that means, the family of all ^-Souslin sets is closed under the Souslin operation. Of 
course, by the Souslin operation is meant the operation leading from M to stf(M). 

1.9. By a space is meant a completely regular topological space. The letters 
T, X, Y, Z always denote spaces. For any X, F(X), Z(X) and K(X) denote, respectively, 
the family of all closed sets of X, zero-sets of X and compact sets contained in X. Of 
course, zero-sets of X are sets of the formf_1(0), where f is a real-valued continuous 
function on X. The closure in I of M c I will be denoted by Mx or merely M. If 
Ji cz exp X, then Jix or merely Jt, will be used to denote the family of all Mx, 
MeJt. 

1.10. The elements of ^*(F(X)) will be called Borel subsets of X. According to 
M. Katetov [13], the elements of ^*(Z(X) will be called the Baire sets of X. The 
family &(Z(X) is complemented, for complements of zero-sets are countable unions 
of zero-sets. Thus 

(4) a(z(x)) = a*(z(x)). 
If X is metrizable, or more generally, perfectly normal, then Z(X) = F(X) and hence 

(5) ^*(F(X)) = <f(Z(Jf)). 

To my knowledge, it is not known whether (5) implies that X is perfectly normal (this 
is a problem of M. Katetov [13]). 

1.11. By a perfect mapping of X onto Yis meant a continuous and closed map­
ping of X onto Ysuch that the preimages of points are compact. Iff is a perfect map-

l) By a determining system in^# is usually meant a mapping of S to Jt and the determining 
system satisfying (1) is called regular. 
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ping of X onto Y, and M c X is either closed in X or / ! [ / [ M ] ] = M, then the 
restriction o f / t o M is a perfect mapping. 

1.12. A class D of spaces will be called F-hereditary if closed subspaces of spaces 
from D belong to D. D will be called productive (countably productive, finitely pro­
ductive) if the topological product of any (countable, finite) indexed family of spaces 
from D belongs to D. 

1.13. Let p = {M} be a collection of coverings of X. An /i-Cauchy family is 
a centered family e/V of subsets of X such that Jr n Ji + 0 for all ,.M in p. The collec­
tion p is said to be complete if the intersection of Jf is non-void for every /l-Cauchy 
family Jf. 

One can prove the following results (the proofs may be found in [7]): Le t / be 
a mapping of X onto Y If/is perfect and p is a complete collection in Y, then/ _ 1 [ / i ] = 
= {/~1[-^]} is complete in X. If/ is continuous and one-to-one and /(is complete in 
X, then/[ / i ] = {/[-#]} is complete in Y 

2. ANALYTIC AND BIANALYTIC SPACES 

In the classical descriptive theory of sets, and also in that presented here, the 
space of irrational numbers plays an important role. It is well known that the space of 
all irrational numbers is homeomorphic with the product space I = NN, where N 
is the discrete space of positive integers. Thus I is the set of all infinite sequences of 
positive integers with the topology of pointwise convergence. Setting 

/(*) l 

<*1 + l/(*2 + ' • • ) 

we obtain a homeomorphism of I onto the space of all irrational numbers of the in­
terval <0, 1>. 

In the classical theory, continuous images of I , if metrizable, are called analytic 
sets. G. Choquet first showed that continuous images of spaces belonging to ^(K(X)) 
for some X (K-analytic spaces in his terminology), if metrizable, are analytic sets. 

In [6] and [8] an internal characterisation of K-analytic (analytic in our termino­
logy) is given. Here we make use of another definition, formally similar to that of ana­
lytic sets. 

Definition 1. A space X will be called analytic if there exists a continuous com­
pact multi-valued mapping of I onto X. The class of all analytic spaces will be denoted 
by A and the family of all A c X, A e A, by A(X). 

By a multivalued mapping of X onto Yis meant a mapping/of X into exp Ysuch 
that the union of all/(x) is Y A mapping/ will be called continuous, if for any x e X 
and any open set U =3 /(x) there exists a neighborhood Fof x with 

yeV=>/(y)c=U. 
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Setting 
/ - ' [ M ] = { x : x e X , f ( x ) c = M } , 

we can say thatf is continuous if and only if f_1[U] is open for any open U. The 
composition h = g of of two multi-valued mappings f and g is defined as follows: 

h(x) = U {g(y): )' ef(x)} . 

Clearly the composition of two continuous multi-valued mappings is continuous, 
f will be called compact, if all setsf(x) are compact. It is easy to prove that the image 
of a compact (resp. Lindelof) space under a continuous compact multi-valued map­
ping is a compact (Lindelof) space. From this fact one can deduce at once that the 
composition of two continuous compact multivalued mappings is a continuous com­
pact multi-valued mapping. Next, it is easy to prove that the Cartesian product of 
(compact) continuous mappings is a (compact) continuous mapping. Finally, if T 
is closed in X and f is a compact continuous mapping of X onto Y, then setting 

g(x)=f(x)nT, 

we obtain a compact continuous mapping of X onto T 

Theorem 1. The class A is ^-hereditary, countably productive and closed under 
compact continuous multi-valued mappings, in particular, under continuous map­
pings. Every analytic space is a Lindelof space, and consequently normal. 

Proof. The first and the third assertions follow from Definition 1 and the above 
remarks. The second assertion follows from the obvious fact that the topological 
product of a countable number of copies of I is a copy of I. Finally, any analytic space 
is a Lindelof space, for I is a a Lindelof space. 

Now we shall give an internal characterization of analytic spaces. 

Definition 2. Let M = {M(s)} be a determining system (see 1.8) in exp X. An 
M-Cauchy family (in X) is a centered family M of subsets of X SLich that M(s) e Ji 
for all s < a, where o is an element of I. The system M will be called complete (in X) 
if the intersection of M is non-void for every M-Cauchy family*//'. An analytic struc­
ture in a space X is a complete determining system M in X such that 

(1) s/(M) = X . 

In [6] the following useful result is proved: 

Lemma 1. A determining system M in exp X is complete in X if and only if all 
sets 
(2) M(o) = 0 1 ( F ) 

S < <T 

are compact, and for any o el and open U => M(<r) there exists an s < o with 
W{s) <= U. 

Now, for each s in S, put 

(3) I(s) = {a : s < o} . 
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Either from Lemma 1 or directly from Definition 1 it follows at once that {E(s)} is an 
analytic structure in I. 

Letfbe a compact, continuous multi-valued mapping of I onto X. Set 

(4) M(s) = U {/{*) : A- e I(s)} . 

By Lemma 1, M = {M(s)} is an analytic structure in X. Conversely, let M be an 
analytic structure in X. For each a e 1 set 

(5) f(a) = M(a), 

where the M(a) are defined by (2). By Lemma 1, the multi-valued mapping f is con­
tinuous. Thus we have proved the following 

Theorem 2. A space X is analytic if and only if there exists an analytic struc­

ture in X. 

Now we shall prove the following 

Theorem 3. The following conditions on a space X are equivalent: 

(a) X is analytic. 
(b) X is F(Y)-Souslin for any Y ID X. 
(c) X is K(Y)-Souslin for some Y 3 X. 

Proof. First, from Lemma 1 it follows immediately that if M is a complete 
determining system in X, then also {M(s)} is a complete determining system. Next, if 
M is complete in X, then, clearly, M is also complete in any Y cz X. Finally, if M is an 
analytic structure in X and Y => X, then 

sf({Mji)Y}) = X . 

Thus (a) implies (b). Obviously (b) implies (c). Finally, obviously, every determining 
system consisting of compact sets is complete. Thus (c) implies (a). 

Theorem 4. For any space we have 

(6) sf(A(X)) = A(X) . 

If X is analytic, then 

(7) A(X) = st(f(X)). 

Proof. The second assertion is an immediate consequence of the first and 
Theorems 1 and 3. By Theorem 3 and property (3), Section 1, of ^#-Souslin sets, 
(6) is true for compact X. Now let X be any space and let K be a compactification of X. 
Since 

A(X) = X n A(K), 

(6) follows from the corresponding property of K. 

Let M = {M(s)} be an analytic structure in X. Put 

F(s) = (J {M(a) : a e Z(s)} . 
11 Symposium 
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Thus also F = {P(s)} is an analytic structure in X and 
oo 

(8) F(sl,...,sn) = \JF(sl,...,sn,k). 

Such structures will be called regular. 

Theorem 5. If X and Y are disjoint analytic subspaces of a space T, then there 
exists a Baire set B in Twith 
(9) I c B c T - 7 . 

Remark. The preceding result is a generalization of the famous Luzin's first 
separation principle. 

Coro l la ry 1. For any space we have 

&(Z(X)) 3 compl. p. A(X) . 
If X is analytic, then 

compl. p. A(X) = 8(Z(X)) . 

Corol la ry 2. If {Xn} is a disjoint sequence of analytic subspaces of X, then there 
exists a disjoint sequence {Bn} of Baire sets of X with Bn => Xn. 

Proof of Theorem 5. Let {X(s)}, {Y(s)} be regular analytic structures in X and Y, 
respectively. Supposing (9) is true for no Baire set B, one can construct, by induction, 
a a and a t i n l such that 

(10) *({<-„ ..., <-„}) czB^T- y ({ T . , . . . , T„}) 

for no Baire set B and no n = 1,2,... The sets 

x(a) = nw), Y(t) = nw) 
S<<T t<X 

are compact and disjoint. Thus there exists a Baire set Z in T(in fact, a zero-set) with 

(11) X(a) cz int Z = U , Y(T) CZ int (T - Z) = V. 

By Lemma 1 there exists an i such that 

X({a1,...,ar.})czL/, Y({Tl5...,Tj)c= V. 

It follows that (10) is true for B = Z and n = i. This contradiction establishes the 
Theorem 5. 

Definition 3. A space X will be called bianalytic if X is a Baire set of some com­
pact space. 

Theorem 6. The images and the preimages under perfect mappings of bianaly­
tic spaces are bianalytic. 

Proof. Letfbe a perfect mapping of X onto Y. There exists a continuous map­
ping g of the Cech-Stone compactification ft(X) of X onto /i(Y) such thatfis a restrict­
ion of g. It is well known that 

g[P(X) -X~] = P(Y) - Y. 
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By Theorem 1, X (respectively, j3(K) — X) is analytic if and only if Y (respectively, 
(S(Y) — Y) is such. Since clearly bianalytic space X is a Baire set of P(X) (by the 
Cech-Stone mapping theorem), the proof is complete. 

Remark. The union of two bianalytic sub spaces of a space may fail to be 
bianalytic. A one-to-one continuous image of a bianalytic space may fail to be 
bianalytic. Indeed, let N be a countable infinite discrete space and let x be a point of 
P(N) — N. Clearly, N u (x) is a one-to-one continuous image of N. Next, N is biana­
lytic and N u (x) is not, because p(N) — (N u (x)) is not a Lindelof space. Further, 
N u (x) is the disjoint union of two bianalytic spaces N and (x). 

3. BORELIAN SPACES 

Definition 4. A Borelian structure in a space X is a complete sequence {Jtn} 
(see 1,13) of countable disjoint coverings of X satisfying the following two conditions. 
(1) (a) If M„, N„ e Jtn and Mk =4= Nfc for some fc, then 

oo oo 

nM„nn!V„ = 0. 
n=l n=l 

(b) Jtn+X refines ,///„, n = 1, 2, ... 

Definition 5. A space X will be called Borelian if in X there exists a Borelian 
structure. B will be used to denote the class of all Borelian spaces and B(X) to denote 
the family of all B c X, B e B. 

From the definition we have at once the following 

Lemma 2. If {Jin} is a Borelian structure in X and M e Jfk9 then {M n Mk+n} 
is a Borelian structure in M. 

Let {Mn} be a Borelian structure in X. By induction one can construct deter­
mining system {M(s)} in X such that 

(2) s e Sn, M(s) * 0 => M(s) e Mn , 
oo 

(3) M(su ..., sn) = U M(sl9 ..., sn9 fc). 
k=i 

Clearly {M(s)} is an analytic structure in X. Let / be the corresponding multi-valued 
mapping of I onto X (for the definition see Section 2, (2) and (5)). Clearly 

(4) <r* T=>/((7)n/(T) = 0 . 

Any multi-valued mapping satisfying (4) will be called disjoint. 

Conversely, l e t /be a compact, continuous and disjoint multi-valued mapping of 
I onto X. Put 

M(s) = {f(a) :s<a}. 
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It is easy to see that {JVn}, 

(5) Mn = {M(s):seSn}, 

is a Borelian structure in X. 

By Lemma 1, {M(s)} is an analytical structure in X. Clearly, all J(n are disjoint. 
Thus {Jln} is a complete sequence of disjoint coverings. Finally, let o 4= x. The sets 
f(o) and f(c) being compact and disjoint, we can choose disjoint open sets U and V 
with 

f(a)cz U, f(T)c= V. 

By Lemma 1, there exist s, t e Sn, s -< <r, I -< T, with M(s) <= U and M(t) c V. Thus 
(a) is fulfilled. Clearly also (b) is fulfilled. We have proved the following 

Theorem 7. A space X is Borelian if and only if there exists a compact and 
continuous disjoint multi-valued mapping of I onto X. 

Theorem 8. The class of all Borelian spaces is ^-hereditary, countably produc­
tive and closed under compact and continuous disjoint multi-valued mappings. In 
particular, one-to-one continuous images and perfect preimages of Borelian spaces 
are Borelian. 

The proof follows at once from Theorem 7 and from the properties of multi­
valued mappings. 

Lemma 3. Let f be a compact and continuous disjoint multivalued mapping of X 
onto Y. There exists a space T, a one-to-one continuous mapping g of T onto Y, and 
a perfect mapping h of Tonto a closed subset of X, such that 

(6) f = g°h~l 

where h~l is the inverse of h, i. e. 

*-(*) = h-[(.x)]. 
Conversely, if g is one-to-one continuous and h is perfect, then the mapping f (given 
by (6)) is a compact and continuous disjoint multi-valued mapping. 

Proof. The second assertion is obvious. Letf be a mapping which satisfies the 
assumptions of the first assertion. Let 3> be the smallest topology in the set Ycontaining 
the topology of the space Y(that means, open sets of Y) and all sets f[U] with U open 
in X, where, of course, 

(7) /[C/] = U { f ( x ) : xeU } . 

Let Tbe the set Ywith the topology 3 . Clearly the identity mapping g of Tonto Yis 
continuous. Now, sincefis disjoint, for any t in Tthere exists one and only one point 
x of I with tef(x). Put h(t) = x. Clearly (5) holds. It remains to prove that h is 
perfect. First, h is continuous, because, by definition of 3 , all sets of the form 

g-1[t/]=f[U], 
where U is open in X, belong to 3- Since f is compact and g~i(x) = f(x), the inverses 



Z. FROLIK 165 

of points are compact. Finally, if F is closed in 7̂ , then T — F = U is open in T. To 
prove fo[F] is closed in X it is sufficient to show that 

l / = f"1[U] = {x:f(x)czU} 

is open in X. Let x e V. By definition of the topology 3 of T, there exists an open set 
V\ in X and open set l ^ in Ywith 

/ W ^ i n / ^ j c l / . 

By continuity of/ the s e t / ' ^ U j ] is open in X and by definition of the topology of T9 

also Vx = / [ / _ 1 [ V ] ] is open in X. Clearly 

Thus x is an interior point o f / _ 1 [U ] . Since x is a r b i t r a r y , / " 1 ^ ] is open. The proof is 
complete. 

In view of Lemma 3, Theorem 7 may be restated as follows. 

Theorem 9. A space X is Borelian if and only if X is a one-to-one continuous 
image of a space which admits a perfect mapping onto a closed subspace of the space 
I of irrational numbers. 

Now we shall investigate B(K) for any X. First we shall prove the following 
Theorem 10. For any space X we have 

(8) -**(B(X)) = B(X) . 

Proof. We must show that B(X) is closed under countable intersections and 
countable disjoint unions. Let {Yk} be a disjoint sequence of Borelian subspaces of X 
and let {J£n(k)}n= x be a Borelian structure in Yk. It is easy to see that {Jtn} is a Bore­
lian structure in the union of all Xk, where 

00 

Jtn = U Jtn(k). 

The only one, perhaps, not entirely trivial point is the validity of condition (a) in 
Definition 4. We must show that 

n MX = n MY
n«, 

fc=l n = l 

where MneJin(k), n = 1, 2, ... But this follows from Lemma 1, for any Borelian 
structure may be considered as an analytical structure (see the first part of the proof of 
Theorem 7). 

Now let {Yk} be an arbitrary sequence of Borelian subspaces of X. Let Ybe the 
intersection of all Yk and let {J?n(k)}n=1 be a Borelian structure in Yk. Clearly 

(9) {YnJin(k)} 

is a complete collection of countable coverings of Y. Let J(x be the family of all sets of 
the form 

Yn n {Mn(k) :k ^ i , n g i} 
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where Mn(k)e Jin(U). Obviously, {~#J is a complete sequence of countable disjoint 
coverings of Y, which satisfies condition (b) of Definition 4. To prove that condition 
(a) is also satisfied, let us suppose Mn, Nn e Jin, n = 1, 2, ..., and Mk =# Nk. By con­
struction of the sequence {Jin}, there exist decreasing sequences {Nn(i)}n=i,{J?n(i)}n=:1, 
i = 1, 2, ..., where Nn(i), Mn(i) e Jtn(i), such that 

(10) Mn(n) =3 Mn, Nn(/i) => N„. 

If all Nn and Mn are non-void, the sequences {Mn(i)}, {Nn(i)} are uniquely determined 
by (10) and 

(11) Mn = f){Mi(j):i<^n,j = n}, 
Nn = fl {Nt(j) :i^n,j^n}. 

Since Mk 4= N^, there exist an i and an j ^ k, with 

M,(j) * NlJ). 

{Jtj} being a Borelian structure, we have 

n M„(j) n n Mn(;) = 0 , 
11=1 n = l 

and consequently, in view of (11), (1) holds. The proof is complete. 

Remark . In general the family B(K) is not closed under countable unions. Even 
a a-compact space may fail to be a Borelian space. For example, let K be an uncount­
able compact space with only one accumulation point, say x, and let X be the topolo­
gical product of K and the discrete space N of positive integers. Identifying the points 
of the set (x) x N = y we obtain the quotient space Y We shall prove that Yis not 
a Borelian space. Let us suppose that {Mn} is a Borelian structure Y By Lemma 2, 
any set from 

00 

(12) M = (J Jin 
n = l 

is a Borelian space, and consequently, a Lindelof space. Thus any M.^Ji either 
contains y or is countable. Therefore the set 

Y0 = U { M : M G J , y£M} 

must be countable. The set Y — Y0 is, by definition of Borelian structures, compact. 
But this is impossible for we can choose 

y„ e (K x (n)) - Y0 

and clearly, the set of all yn has no accumulation point in Y 

Theorem 11. For any space X we have 

(13) B(X) a ^(F(X) n @(Z(X))). 

More precisely, B(X) is contained in the family consisting of all countable inter­
sections of countable disjoint unions of sets of the form F n Z, F e F(K), Z e 0$(Z(X)) 
and obviously this family is contained in the right side of (13). 
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Proof. Let Ybe a Borelian subspace of X and let {Jtn} be a Borelian structure in 
Y By Lemma 2, all sets from (12) are Borelian spaces, and consequently, by Corollary 
2 to Theorem 5, there exist Baire sets B(M) D M i n I such that the families 

(14) {B(M) : M e Jtn} 

are disjoint. Put 
F(M) = B(M) n Mx . 

Since {Jtn} is a complete sequence, we have 
oo 

(15) U DMn=Y, 
$Mn)> n = l 

where {Mn} runs over all sequences with Mn e Jltv The coverings {F(M) : M e Jtn} 
are disjoint, because the coverings (14) are disjoint, and consequently, 

00 00 

(16) U n F(M„) = n U {F(M); M e Jfn} . 
<( M „ }• n = 1 « = 1 

Clearly the set on the right side of (16) contains X and the set on the left side of (16) is 
contained in the left side of (15), and consequently, in X. It follows that 

n U { F ( M ) : M e J „ } = Y, 
n = l 

which establishes Theorem 11. 
Remark. The above proof of Theorem 11 depends essentially upon the theory of 

analytic spaces. Indeed, the existence of (14) follows from Theorem 5. Making use of 
the same trick as in the proof of Theorem 5 one can prove the existence of Baire sets 
(14) directly. 

Now we shall prove the following useful 

Theorem 12. If X is a Borelian space, then 

(17) B(X) = ^*(F(X) u St(Z(X))). 

More precisely, B(X) coincides with the family described in Theorem 11. 
Proof. By Theorem 11 the inclusion c holds. To prove the converse inclusion, 

by Theorem 10 it is sufficient to prove 

(18) XeB=> £(Z(X)) c B(X). 

It is easy to see that (18) follows from 

(19) Y compact => a(Z(Y)) c B(Y). 

Indeed, let Y be the Cech-Stone compactification of a Borelian space X. Since any 
bounded real-valued continuous functions on X has a continuous extension on Y, we 
have 

Z(X) = X n Z(Y) 
and consequently, 

(20) ^(z(x)) = x n ^(Z(Y)) • 
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On the other hand obviously 

(21) B(X) = {B:Bc X,Be B(Y)} . 

Combining (19), (20) and (21) we obtain 

(22) ^(Z(X)) c B(X) 

which establishes (18). It remains to prove (19). This follows from lemmas 4 and 5. 
Lemma 4. Every cozero-set N of a compact space Yis a Borelian space. 

Proof. Letfbe a real-valued continuous function on Ywith 

N = {x:f(x) + 0}. 

Let g be the restriction off to N. The mapping g is perfect because f is such. By 
Theorem 8 it is sufficient to show that g[N] is a Borelian space. Let E, P, 7 denote the 
spaces of all real, rational and irrational numbers, respectively. The subspace R n 
n g[N] is countable, and hence, Borelian. The set g[N] n 7 is closed in 7 because 

g[Nf c= / U (0) 

and 0 <£ 7. By Theorem 8, the space g[IV] n 7 is Borelian. By Theorem 10, the space 

9[N] = (g[N] nR)u (g[N] n 7) 
is Borelian. 

Lemma 5. Let N(X) denote the family of all cozero-sets of a space X. Then 

(23) ^*(N(X)) = a(t*(x)) = a(z(x)). 
Proof. I cannot prove (23) without the Borel classification of Baire sets. A proof, 

making use of the Borel classification, may be found, for example, in [13], p. 255. 

Coro l l a ry 1. Every bianalytic space is Borelian. 
Coro l l a ry 2. If Xis a perfectly normal Borelian space, in particular a metrizable 

Borelian space, then 
(24) B(X) = ®(Z(X)) . 

Remark. Conversely, from (24) it follows at once that X is perfectly normal. 
Combining Corollary 2 of Theorem 12 and Corollary 1 of Theorem 5 we obtain 

(25) B(X) = &(Z(X)) = compl. p. A(X) 

for any perfectly normal space X. 

Theorem 13. The class of all Borelian spaces is the smallest class of spaces 
containing all bianalytic spaces and closed under one-to-one continuous mappings. 

Proof. By Corollary 1 every bianalytic space is Borelian and by Theorem 8 a 
one-to-one continuous image of a Borelian space is a Borelian space. Thus the class 
of all one-to-one continuous images of bianalytic spaces is contained in B. By Theo­
rem 9, if X is a Borelian space, then there exists a space T, a one-to-one continuous 
mapping of Tonto X, and a perfect mapping of Tonto a closed subspace B of I. The 
space B is bianalytic because B is a Gd in the closed unit interval of real numbers, and 
open sets of metrizable spaces are Baire sets. By Theorem 6, the space Tis bianalytic. 
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Theorem 14. Y is a Borelian space if and only if there exists a complete sequence 
{Jtn} of countable disjoint coverings of Y consisting of analytic subspaces of Y 

Proof. By Lemma 2, if {J(n} is a Borelian structure in Y, then all sets belonging 
to the union of all Mn are Borelian spaces, and consequently, analytic spaces. Conver­
sely, let {Mn} be a complete sequence of countable disjoint coverings of Y consisting 
of analytic subspaces of Y By the proof of Theorem 11, for any space X containing Y 
we have 

(26) Ye #*(F(*) u &(Z{X)) . 

By Theorem 12, Yis a Borelian space. 
In [9] other proofs of the theorems of this section are sketched. The space Z and 

multi-valued mappings may be eliminated. Using Borelian structures one can prove 
Theorem 9 directly. Theorem 9 follows from the following two lemmas. 

Lemma 6. X is the preimage under a perfect mapping of a closed subspace of Z 
if and only if there exists a Borelian structure {Jin} in X such that all sets belonging 
to 

00 

(27) . # = U Mn 
n = l 

are open. 

Lemma 7. Any Borelian space is an one-to-one continuous image of a space 
which has a Borelian structure {Mn} such that the sets belonging to (27) are open. 

Next, Theorem 10 and 11 depend neither on Z nor on multi-valued mappings. 
Moreover, one can prove Theorem 11 without the theory of analytic spaces (see the 
Remark following the proof of Theorem 11). 

In the proof of Theorem 12 the space Z is used to prove that any cozero-set of 
a compact space is a Borelian space. We need only the fact that Z is a Borelian space. 
In this case the use of Z is very convenient. 

Making use of the following lemma and Lemma 7 one can prove Theorem 12 
without Theorem 9. 

Lemma 8. Let {Jfn} be a complete sequence of disjoint open coverings of a 
space X. Then 

00 

(28) x = n u ^ 
n = l 

oo 

where K is the Cech-Stone compactification of X, and all sets from (J J(n are closed 
n = l 

and open in K, in particular, all these sets are zero-sets in K. 

Proof. The sets from (27) are closed in X. Thus their closures in K are open and 
closed. Clearly all the families,/^ are disjoint. It follows that 

oo oo 

(29) n u A K = u n MK„ . 
n = l {Mn} n=\ 

But the set on the right side of (29) is X and hence (28) holds. 
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We conclude this section by the following 

Theorem 15. A space X is analytic if and only if X is a continuous image of a 
bianalytic space. Moreover, every analytic space is a continuous image of a space 
which admits a perfect mapping onto a closed subspace of I. 

The complete proof can be found in [6]. Here we give only a suggestion. Let 
{M(s)} be an analytic structure in X and let K be a compactification of X. Let n be the 
projection of the product space Y = K x I onto K. Consider the subspace 

oo 

T = n U {M(7) x I(s) :seS„} 
n=l 

of Y It is easy to see that TT[T] = X and that {Jin} is a Borelian structure in T, such 
that all sets belonging to (27) are open, where 

Jln = Tn {M(s) x I(s) : s e Sn} . 

4. METRIZABLE BORELIAN AND ANALYTIC SPACES 

For convenience, metrizable Borelian (analytic) spaces will be called classical 
Borelian (classical analytic) spaces. Since every metrizable Lindelof space is separable, 
every classical analytic space is separable. 

Theorem 16. The following conditions on a metrizable space X are equivalent: 
(a) X is Borelian. 
(b) X is bianalytic. 
(c) X is a Baire set of some complete metrizable separable space. 
(d) X is separable, and if X is contained in a metrizable space Y, then X is a 

Baire set of Y. 
In the classical theory the following theorem plays the fundamental role: 

Theorem 17. Every classical Borelian space is an one-to-one continuous image 
of a closed subspace of the space I of irrational numbers. Every classical analytic-
space is a continuous image of I. 

The classical theory makes use of this theorem instead of Borelian and analytic 
structures. Thus this theorem loses its importance in our presentation. 

First we shall prove the following two results: 

Theorem 18. A space X is a continuous image of I if and only if there exists an 
analytical structure {M(s)} in X such that the sets 

0) M(G) = n W) 
s<a 

contain at most one point. 

Theorem 19. A space X is an one-to-one continuous image of a closed subspace 
of I if and only if there exists a Borelian structure {Jln} in X such that 

00 

(2) the sets f) Mn contain at most one point. 
n=l 



Z. FROLIK 171 

Proof. In both theorems the conditions are clearly necessary. Conversely, letfbe 
the multivalued mapping of I onto X corresponding to the analytic structure {M(s)}. 
Let F be the set of all a with non-void images. Sincefis continuous, F is closed in I. For 
each a in F let g(o) be the element of f(o). Then g is a continuous mapping of F onto 
X. It is well known and easy to prove that any closed subset of S is a continuous image 
of I, moreover, a retract of I. The proof of Theorem 18 is complete. The proof of 
sufficiency of the condition of Theorem 19 can be proved analoguously. 

Remark. The fact that every non-void closed subset F of I is a retract of l e a n be 
proved as follows: 

There exists a mapping f of S to F such that f(s) e F n l(s) if possible. Put 
g(o) = a for a e F. If a $ F and l(ox) n F = 0, put g(o) = f(o"i). In the remaining 
case there exists an n with 

l({ou ..., on}) n F * 0 , M ^ , ..., d„+1}) n F = 0 . 

Put g(cr) = f({0"l5 ..., on}). It is easy to see that g is a retraction of T to F. Indeed, if 
F n r(s) =t= 0, then g[£(s)] c f n Z(s) and in the other case g[M(s)] is a one point 
set of F. 

The part of Theorem 17 concerning classical analytic spaces follows easily from 
18. Indeed, if {M(s)} is an analytical structure in a metrizable space X and if Q is 
a metric generating the topology of X, then one can construct a determining system 
{F(s)} in X, such that sf{F) = X and 

(a) if s e Sn, then the diameter of F(s) is less than \jn. 
(b) {F(s)} is a refinement of {M(s)}, i. e. for each a el there exists a t in I such 

that 

^ ( { * I , . . . , T B } ) C M({(71, ..., on}). 

By (b), {P(s)} is an analytic structure in X and by (a) the sets F(<r) contain at most 
one point. 

The proof of the second part of Theorem 17 is more difficult. Let Bt be the class 
of all one-to-one continuous images of closed subspaces of I and let B^X) = 
= {Y: 7 c X, YeBj. Using Borelian structures satisfying (2), we obtain at once 

(3) a*(Bt(x)) = B.(X) . 
Indeed, the proof of Theorem (10) is applicable. Next 

(4) Bt is countably productive and F-hereditary. Indeed, the topological product 
of a countable number of copies of E is homeomorphic to I. From (3) and (4) one can 
deduce at once 

(5) Any complete metrizable separable space belongs to B^ 

Indeed, clearly the Euclidean line belongs to Bt (as a union of I and a coutable 
set); by (4) closed subspace of the topological product of the coutable number of 
Euclidean lines belong to B t . Finally, it is well known that any complete metrizable 
separable space is homeomorphic with a closed subspace of this topological product. 

Now let K be a metrizable compact space. Every open subspace of K is a complete 
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metrizable separable space, and hence, every open subspace of K belongs to BX(K). 
By Lemma 5 (Section 3) and (3) we have 

B.(X) -> #(Z(K)) . 

We have proved that Baire sets of compact metrizable spaces belong to Bt. The proof 
is complete. 

5. REMARKS 

Classical Borelian spaces are precisely those spaces which belong to 

(1) # ( * ( * ) ) 

for some metrizable space. It seems that this fact led V. SNEJDER to introduce the spaces 
which belong to (1) for some space X (called K-Borelian by G. CHOQUET) and their 
continuous images which coincide by analytic spaces (by Theorem 15). 

In [2] G. Choquet showed the relation between analytic spaces (K-analytic in his 
terminology) and the so-called K-Souslin spaces (spaces which are K(X)-Souslin for 
some X). In [3] he proved the essential part of Theorem 15 and showed that a metri­
zable space X is analytic if and only if X is a classical analytic space (using classical 
results). M. SION independently reproved all Choquet's results from [3]. Further, he 
tried to prove the invariance of K-Borelian spaces under one-to-one continuous 
mappings. He proved that a one-to-one continuous image of a K-Borelian space X 
is K-Borelian under certain drastic assumption on a a-compact space containing X. 
It seems that this problem is still unsolved. 

In [8] the author introduced analytic structures, and using these, reproved all 
Choquet's results and proved some, it seems, new results. In [10] he introduced biana-
lytic spaces, proved Theorem 5 and gave the first internal characterization of classical 
Borelian spaces. In [9] and [6] somewhat other proofs of some results of the present 
note are given. 
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